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The technique enables precise three-dimensional birefringence information of

optically biaxial materials to be obtained. Equations derived here describe a

mathematical model of the tilting-stage system for such crystals in any general

orientation. This leads to precise values of the three principal birefringences and

the optical orientation. The method is also able to obtain information on

preferred orientation in a biaxial polycrystalline material, providing compre-

hensive information on both optical orientation of crystallites and spatial

resolution. In addition, an unknown crystalline material may be identified, or at

least classified within a specific group of crystalline materials.

1. Introduction

In this paper, we apply a new optical technique for the three-

dimensional examination of birefringent materials to optically

biaxial crystals. The uniaxial case has already been considered

in detail in a previous article (Pajdzik & Glazer, 2006).

In optically anisotropic crystals, light waves are transmitted

with different velocities in different directions. Consider

plane-polarized light passing through a biaxial crystal. In

general, there are two different values of the phase velocity,

defining two different refractive indices corresponding to a

specified direction of propagation. These two values are

associated with two mutually perpendicular polarizations,

which means that the light is split into two light paths travel-

ling subject to different refractive indices n00 and n0. These

refractive indices can be described by a cross section of a

general ellipsoid known as the biaxial optical indicatrix, with

semi-axes n�, n� and n� , where n� < n� < n�. These are

referred to as the principal refractive indices. This also intro-

duces a phase difference between the two light paths with the

result that when the two rays recombine, the final phase

difference between them is a measure of the optical anisotropy

of the sample corresponding to a specified propagation

direction. The phase difference is given by

� ¼
2�

�
ðn00 � n0Þt; ð1Þ

where � is the wavelength of the light, t is the thickness of the

sample, and n00 � n0 is the so-called plano-birefringence of the

sample. Strictly speaking, the term birefringence, which is a

characteristic of the sample, is obtained only when n00 and n0

coincide with n� and n�, n� and n�, or n� and n�, respectively.

Measurement of optical linear birefringence has been one

of the standard tools in the study of anisotropic properties of

materials for nearly two centuries. Classically, birefringence is

detected or measured using the crossed-polars technique and

compensators (see, for example, Hartshorne & Stuart, 1964,

1970). The classical technique is fast and easy; however, it

suffers from a number of disadvantages. Firstly, if the bire-

fringence of the sample is very low, it can be difficult to detect.

Secondly, in this technique the sample must be oriented with

respect to the polarization direction of the light and this makes

the crossed-polars method impractical for determination of

birefringence in non-homogenous samples, because the

sample needs to be rotated to compare different regions

simultaneously. Thirdly, classical compensation methods

require manual point-by-point measurements. Finally, the

accuracy of compensator measurements is limited. Because of

this, some years ago we developed a new optical microscopy

technique for automatically recording birefringence (Glazer et

al., 1996) which has subsequently been commercialized under

the name Metripol (see http://www.metripol.com). This system

uses a combination of a rotating polarizer and a circular

analyser to separate out three types of images: one repre-

senting the light transmission I0 through the specimen, one

showing the orientation angle � of one of the axes of a section

of the optical indicatrix measured from the predetermined

direction, and one giving quantitative information on jsin �j at

any point within the image captured by the CCD camera,

where � is the phase difference introduced by the birefringent

sample. The intensity of the light I measured at any position

within the image captured by the CCD camera is a function of

the angular orientation � of the rotating polarizer and is

defined by the following equation:

I ¼
I0

2
½1þ sinð2�� 2�Þ sin ��: ð2Þ

The Metripol technique has already been used for a broad

range of applications (see, for example, Glazer et al., 1996;

Geday et al., 2000; Shuvaeva et al., 2005; Tixier et al., 2005;

Owen & Garman, 2005).

http://crossmark.crossref.org/dialog/?doi=10.1107/S002188980604009X&domain=pdf&date_stamp=2006-11-10


Recently, by adding a computer-controlled two-axis tilting

stage, we have created a new version of the system, which is

able to collect three-dimensional data in order to obtain

precise birefringence information for optically anisotropic

samples in any general orientation (Pajdzik & Glazer, 2006).

A computer program was written in Visual C++ in order to

perform the actual measurement process and the subsequent

analysis of the data was carried out using MATLAB (http://

www.mathworks.com). This program was designed to interface

with the Metripol software. The current system fully reveals

the three-dimensional character of the anisotropic properties

of birefringent materials and thus provides a versatile optical

technique, which may have applications in the fields of crys-

tallography, mineralogy, geology, archaeology, chemistry,

biology, etc. Furthermore, the method also makes possible

automatic identification of an unknown crystalline material, or

at least classification within a specific group of crystalline

materials. However, one of the most important advantages of

this technique is that for uniaxial and biaxial crystallites in

polycrystalline materials, it provides comprehensive informa-

tion on preferred orientation. Below we show how our method

can obtain such texture information automatically for opti-

cally biaxial polycrystalline samples.

2. Tilting-stage technique

In x2.1 we present the derivation of the formulae. The equa-

tions derived here describe very well a mathematical model of

the tilting-stage system for biaxial crystals in any general

orientation. Subsequently, x2.2 illustrates an algorithm for the

three-dimensional examination of optically biaxial crystals in

order to obtain birefringence information, as well as to

determine the optical orientation of biaxial samples. x2.3

presents the data analysis performed for a single crystal of a

muscovite sheet with a thickness of 0.06 mm, while x2.4 shows

the data analysis for a polycrystalline rock section of anhydrite

with a thickness of 0.03 mm.

2.1. Derivation of formulae

Fig. 1 is a stereographic representation of the optical indi-

catrix for a biaxial sample. OA1 and OA2 represent the two

optic axes which are separated by the optic angle 2V. The x, y

and z axes correspond to the three principal refractive indices

n�, n�, and n� , respectively. We assume here that the z axis is

perpendicular to the plane of the drawing. S represents the

general direction of propagation of the light within the biaxial

sample (wave-normal direction), for which the value of jsin �j
is being measured. The direction S makes angles #1 and #2

with the optic axes OA1 and OA2, respectively. OAP denotes

the optic axial plane containing the two optic axes.

Taking into consideration the relations defining the two

possible phase velocities �0p and �00p for a given direction of

propagation S within the biaxial sample (see Appendix A;

symbol definitions are listed in Appendix B),

�0 2p ¼
1
2½�

2
� þ �

2
� þ ð�

2
� � �

2
�Þ cosð#1 � #2Þ� ð3Þ

and

�00 2p ¼
1
2½�

2
� þ �

2
� þ ð�

2
� � �

2
�Þ cosð#1 þ #2Þ�; ð4Þ

we can obtain the following expression:

�0 2p � �
00 2
p ¼ ð�

2
� � �

2
�Þ sin#1 sin#2: ð5Þ

Using refractive indices instead of velocities, equation (5)

becomes

1

n0 2
�

1

n00 2
¼

1

n2
�

�
1

n2
�

� �
sin#1 sin#2: ð6Þ

Since the birefringence �n�� = n� � n� usually takes a small

value, we can write to a good approximation1 the value of the

birefringence �nS (in general the plano-birefringence)

measured down the propagation direction S in the following

form (see, for example, Ramachandran & Ramaseshan, 1961):

�nS ’ ðn� � n�Þ sin#1 sin#2: ð7Þ

Note that, although n� does not appear in equations (6) and

(7) explicitly, it is involved implicitly in the definition of the

relationships for the angles #1 and #2.

Using spherical trigonometry with Fig. 1 and denoting the

angles z–A and z–B as  1 and  2, respectively, we obtain

cos#1 ¼ cosðV þ  1Þ cos 2 ð8Þ

and

cos#2 ¼ cosðV �  1Þ cos 2: ð9Þ

 1 is the component angle of S measured from the z axis

projected onto the optic axial plane OAP, and  2 is the

corresponding component angle of S projected on the xz plane

perpendicular to OAP.

Taking into account equations (8) and (9), equation (7)

becomes
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Figure 1
Stereographic representation of the optical indicatrix for a biaxial sample.

1 The difference between refractive indices is usually much smaller than their
values.



�nS ’�n��½1� cos2ðV þ  1Þ cos2  2�
1=2

� ½1� cos2
ðV �  1Þ cos2  2�

1=2: ð10Þ

Using the Metripol technique, we actually measure jsin �j and

therefore we can write

j sin �Sj ’ sin
2�

�
�nSt

� �����
����; ð11Þ

where jsin �Sj denotes the value of jsin �j measured down the

direction of propagation S within the biaxial sample. Thus

equation (10) becomes

j sin �Sj ’

���� sin

�
2�t

�
�n��½1� cos2

ðV þ  1Þ cos2  2�
1=2

� ½1� cos2
ðV �  1Þ cos2  2�

1=2

�����: ð12Þ

Fig. 2 is a stereographic representation of the optical indi-

catrix for two different positions of the microscope tilting

stage, S0 and S. Assuming that the position S0 corresponds to

the direction of propagation of the light normal to the sample

plane, i.e. before tilting, and the position S denotes the

direction of propagation after tilting, we can decompose

angles  1 and  2 into two components in the following way:

 1 ¼ 	1 þ !1 ð13Þ

and

 2 ¼ 	2 þ !2: ð14Þ

Thus equation (12) becomes

j sin �Sj ’

���� sin

�
2�t

�
�n��

� ½1� cos2ðV þ 	1 þ !1Þ cos2ð	2 þ !2Þ�
1=2

� ½1� cos2
ðV � 	1 � !1Þ cos2

ð	2 þ !2Þ�
1=2

�����: ð15Þ

In equation (15), angles 	1 and 	2 are the component angles of

S0 measured from the z axis projected on the optic axial plane

OAP and the xz plane perpendicular to OAP, respectively.

Angles !1 and !2 are internal tilt angles also measured along

these planes.

Note that the two internal tilt angles !1 and !2 depend on

the refractive indices of the sample and are different from the

corresponding external tilt angles �1 and �2, which are

defined by the tilting of the microscope stage (Pajdzik &

Glazer, 2006). In order to obtain the values of internal tilt

angles, we can assume a mean refractive index of the biaxial

sample and use Snell’s law written in the following form:

!1 ’ sin�1 sin �1

nmean

� �
; !2 ’ sin�1 sin �2

nmean

� �
: ð16Þ

In biaxial crystals, the mean refractive index of the sample

can be calculated as (Wahlstrom, 1960)

nmean ¼
ðn� þ n� þ n�Þ

3
: ð17Þ

For crystals with a large difference between the maximum and

minimum refractive indices, the mean refractive index of the

biaxial sample takes the following form (Wahlstrom, 1960):

nmean ¼ ðn�n�n�Þ
1=3: ð18Þ

Considering equations (16), equation (15) becomes

j sin �Sj ’

���� sin

�
2�t

�
�n��

�

�
1� cos2

�
V þ 	1 þ sin�1

�
sin �1

nmean

��

� cos2

�
	2 þ sin�1

�
sin �2

nmean

���1=2

�

�
1� cos2

�
V � 	1 � sin�1

�
sin �1

nmean

��

� cos2

�
	2 þ sin�1

�
sin �2

nmean

���1=2�����: ð19Þ

Note that if the external tilt angles �1 and �2 are small,

equation (19) can be written in a simplified form:

j sin �Sj ’

���� sin

�
2�t

�
�n��

�

�
1� cos2

�
V þ 	1 þ

�1

nmean

�
cos2

�
	2 þ

�2

nmean

��1=2

�

�
1� cos2

�
V � 	1 �

�1

nmean

�
cos2

�
	2 þ

�2

nmean

��1=2�����:
ð20Þ

Furthermore, if the thickness of the sample t or the tilt angles

are significant, then a thickness correction should be applied

to the equations derived above (Pajdzik & Glazer, 2006).

However, for most cases this correction is very small and can

be neglected.
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Figure 2
Stereographic representation of the optical indicatrix for a biaxial sample
for two different positions of the microscope tilting stage, S0 and S.



2.2. Data analysis

In the uniaxial case, in order to perform the analysis it is

sufficient to find the principal section which contains the optic

axis and the direction of propagation S0 (Pajdzik & Glazer,

2006). For this principal section, one of the component angles

of S0 becomes equal to zero and the other is equal to the angle

of the sample normal with respect to the optic axis. In order to

locate this principal section, it is necessary first to find the

value of the orientation angle �0 corresponding to the direc-

tion of propagation S0, and subsequently to rotate the tilt axes

�1 and �2 through the angle �0. In this way, the process of

analysis is significantly simplified and the refinement of

unknown parameters of the uniaxial sample such as the value

of the birefringence �n = ne � no, the inclination angle #0

measured between the optic axis and the direction of propa-

gation S0 and the mean refractive index nmean are obtained by

means of non-linear curve fitting applied to the data along this

principal section.

The analysis of the three-dimensional data obtained from a

biaxial sample is rather more difficult. In this case, the non-

linear curve fitting has to be replaced by a more complicated

surface fitting procedure. Note that for any general alignment

of the biaxial sample, the two tilt axes �1 and �2 of the tilting

stage will not necessarily be parallel to the optic axial plane

OAP and the xz plane perpendicular to OAP, respectively.

Furthermore, in order to carry out the analysis using equation

(19), it is necessary to locate these directions.

In the uniaxial case, the orientation angle �, defined as the

angle of one of the axes of a section of the optical indicatrix

measured from the tilt axis �1 of the tilting stage, for any

position of the tilting stage indicates the principal section

containing the optic axis and the specified direction of

propagation. One of the axes of the relevant section of the

optical indicatrix corresponds to the radial direction which

coincides with this principal section, whereas the other

corresponds to the tangential direction. Fig. 3 is a stereo-

graphic representation of the optical indicatrix showing the

two permitted vibration directions corresponding to the

direction of propagation S0. These vibration directions are

determined using the Biot–Fresnel construction (see, for

example, Bloss, 1961).

In the figure, the direction of propagation S0 makes angles

#
0

1 and #
0

2 with the optic axes OA1 and OA2, respectively, and

the dashed lines �1 and �2 represent traces of the two

perpendicular tilt axes of the tilting stage. Note that in the

biaxial case, the orientation angle �0, which is measured down

the direction of propagation S0, in general, does not provide

any information about the position of the plane parallel or

perpendicular to OAP and containing the direction of

propagation S0 because the two axes of a section of the optical

indicatrix usually do not coincide with these planes. The

orientation angle � is the angle of one of the axes of a section

of the optical indicatrix measured from the tilt axis �1 of the

tilting stage, and each time jsin �j passes through zero, the

computed value � changes through 90�. This ambiguity results

from the fact that m�, where m is a positive integer, can be

added to the measured relative phase difference �0 for positive

slopes of the jsin �j function, or to ��0 for negative slopes of

the jsin �j function without change of jsin �j itself. This means

that
j�j ¼ �0 þm� or j�j ¼ ��0 þm� ð21Þ

for positive and negative slopes of jsin �j, respectively, and

�0 ¼ sin�1
ðjsin �jÞ: ð22Þ

For m = 0, for which the ambiguity does not appear, the

orientation angle � corresponds to the slow axis of the

specified section of the optical indicatrix.

In the biaxial case, in order to find the positions of the

planes parallel and perpendicular to OAP and containing the

direction of propagation S0, we rotate the tilt axes of the jsin �j
contour map through a small angle �
 and subsequently we

apply a surface fitting procedure to the whole set of data using

equation (19).2 The rotation operation is then repeated and

the surface fitting procedure is applied again. By repeating

these steps over the angular range of 0 � 
 < 180� and by

analysing the corresponding fitting errors and the values of the

refined parameters, it is possible to find the best fitted direc-

tions parallel and perpendicular to the optic axial plane OAP

containing the direction of propagation S0 and thus to obtain

the orientation information of the biaxial sample. Note that

because of symmetry, for 180 � 
 < 360�, we obtain the same

absolute values of the refined parameters as within the angular

range 0 � 
 < 180�. The difference is only in the signs of the

component angles 	1 and 	2. This introduces an ambiguity in

determining the correct component angles 	1 and 	2, for
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Figure 3
Stereographic representation of the optical indicatrix for a biaxial sample
representing the two permitted vibration directions corresponding to the
direction of propagation S0 and determined using the Biot–Fresnel
construction. The dashed lines marked �1 and �2 are traces of the two
perpendicular tilt axes of the tilting stage. The orientation angle �0

corresponds to the direction of propagation S0 and represents the angle
between the tilt axis �1 and one of the axes of the relevant section of the
optical indicatrix.

2 Note that the rotation of the tilt axes of the jsin �j contour map through an
angle �
 is equivalent to the rotation of the jsin �j contour map through an
angle ��
.



example in preferred orientation studies where the sign of the

component angles matters. However, for most cases this can

be easily solved by analysing the shape of the corresponding

jsin �j contour map (see x2.4).

In equation (19), the angle V, the corresponding component

angles 	1 and 	2, and the mean refractive index nmean are

highly correlated. This means that in order to perform the

analysis, additional knowledge of approximate values of at

least one or preferably two parameters of the sample is

required. Substituting the initial values for the angle V and the

mean refractive index nmean into equation (19) helps to refine

precise values of the birefringence �n�� and the component

angles 	1 and 	2. Furthermore, after these operations, it is

possible to adjust the initial values for V and nmean by means of

minimizing the fitting error and thus to find an even better

solution.

The algorithm presented below is summarized by the

following sequence of steps.

Step 1. Collect data on the Metripol system for a large set of

tilt angles of the biaxial sample within a specified range of the

two perpendicular tilt axes �1 and �2 of the tilting stage.

Step 2. Assume initial values of the optic angle 2V and

preferably also of the mean refractive index nmean of the

biaxial sample.

Step 3. Apply surface fitting to the whole set of data using

equation (19) and record values of the corresponding fitting

error and the estimated parameters.

Step 4. Rotate the tilt axes of the jsin �j contour map

through a small angle �
.

Step 5. Repeat steps 3 and 4 over the angular range of

0 � 
 < 180� and record the corresponding fitting errors and

the estimated parameters.

Step 6. By analysing the fitting errors, the refined para-

meters and the shape of the corresponding jsin �j contour map,

among all the solutions, choose the one corresponding to the

most probable values of the birefringence �n�� and the

component angles 	1 and 	2 and hence the most probable

directions of the planes which are parallel and perpendicular

to the optic axial plane OAP and contain the direction of

propagation S0.

Step 7. For the chosen solution, adjust the initial values of

the angle V and the mean refractive index nmean of the biaxial

sample and subsequently reapply the surface fitting procedure

in order to minimize the fitting error and thus find an even

better solution.

Applying the algorithm to the measured jsin �j data some-

times gives several solutions with high R2 values.3 In this case,

there is a need to use an additional criterion which would

allow one to choose the correct result. Some of the proposed

solutions can be easily ignored if the refined values of the

birefringence �n�� (or the mean refractive index nmean) of the

sample lie outside a range given by the literature. Otherwise,

when this criterion cannot be applied, in order to choose the

correct solution, we use the information on the orientation

angle �0 measured down the direction of propagation S0.

For each possible solution we can easily determine the two

permitted vibration directions corresponding to the direction

of propagation S0 using the Biot–Fresnel construction (see

Fig. 3). Having done this, it is possible to locate the positions of

the two tilt axes �1 and �2 of the tilting stage using infor-

mation on the orientation angle �0.
As mentioned before, the orientation angle �0 represents

the angle of one of the axes of a section of the optical indi-

catrix measured anticlockwise from the tilt axis �1 of the

tilting stage. For each proposed solution, by using the refined
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Figure 4
Sample images of (a) jsin �j, (b) orientation angle � and (c) light
transmission I0 measured for a muscovite sheet with a thickness of
0.06 mm. The images correspond to the external tilt angles �1 and �2 of
the tilting stage set equal to zero.

3 In order to measure the goodness of fit, we usually use several different
statistics. However, in this paper we present results only for one of them, i.e.
the R2 statistic. The coefficient is defined as the ratio of the sum of squares due
to regression (SSR) and the total sum of squares (SST). The term ‘sum of
squares’ means the sum of squared differences between predicted values and
the mean (SSR) or between measured values and the mean (SST).



parameters and taking into account the ambiguity expressed

by equations (21) and (22) and also the ambiguity in the

computed value of �
0

, we can easily determine for the specified

slope of the jsin �j function to which axis of the relevant

section of the optical indicatrix the orientation angle �0 is

being measured. Thus, the positions of the tilt axis �1 and �2

can be found unambiguously.

Note also that if the proposed solution is correct, the

angular difference between the determined �1 axis and the

direction parallel to the optic axial plane OAP and containing

the direction of propagation S0 should be equal to the corre-

sponding angle 
 for which the highest R2 value is found using

the sequence of steps given above.

2.3. Three-dimensional birefringence information

As shown below, the tilting-stage technique applied to

biaxial crystals allows us to obtain three-dimensional bire-

fringence information as well as to determine the optical

orientation of biaxial samples. Below we present results

obtained for a single crystal of a muscovite sheet with a

thickness of 0.06 mm. Muscovite is a common mineral which

has a perfect basal cleavage yielding very thin laminae with

(001) orientation.

Fig. 4 shows three types of images measured for a part of the

muscovite sheet which correspond to the tilt angles of the

tilting stage, �1 and �2 set equal to zero (propagation direc-

tion S0). The first image provides quantitative information on

jsin �j; the second illustrates the orientation angle � of one of

the axes of the relevant section of the optical indicatrix

measured from the horizontal direction within the image, and

the third gives information on the light transmittance I0

through the sample. The rectangle shown in the figures

represents the set of pixels for which average values of jsin �j
and the orientation angle � were subsequently calculated.

Fig. 5 is a graphical representation of jsin �j and � as a

function of the two tilt angles �1 and �2 collected for the

muscovite sample. As in the uniaxial case (Pajdzik & Glazer,

2006), the 441 data points were calculated as average values

taken only from a small portion of the actual collected images

(see rectangle marked in Fig. 4).

Fig. 5 shows that the contours form hyperbolic curves

characteristic of the (001) orientation of the muscovite sheet.

From the properties of the biaxial optical indicatrix, it is

known that for directions of propagation which coincide with

the optic axial plane OAP, one of the axes of a section of the

optical indicatrix lies within OAP and the other is perpendi-

cular to it (see, for example, Bloss, 1961). A similar situation

can be observed for the xz plane perpendicular to OAP. In this

case, one of the axes of a section of the optical indicatrix lies

within this plane and the other is parallel to OAP. This also

means that here, for this particular orientation of the musco-

vite sample, the orientation angle � provides information

about the location of these two planes. Thus, by analysing the

information on the orientation angle � given by Fig. 5(b), it is

possible to find approximately4 the two probable locations of

the optic axial plane OAP. Note also that by taking into

consideration only Fig. 5(b), it is difficult to judge which

direction corresponds to the optic axial plane OAP and which

corresponds to the plane xz perpendicular to OAP because of

the 90� ambiguity introduced in the computed value of �.
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Figure 5
(a) jsin �j and (b) � as a function of the two external tilt angles �1 and �2 for a muscovite sample with a thickness of 0.06 mm. The measurement was
carried out at a wavelength of 600 nm for a total of 441 positions of the tilting stage.

4 The propagation direction S0 does not coincide exactly with the specified axis
of the optical indicatrix because muscovite belongs to the monoclinic crystal
system. There is also a small shift in the perpendicular direction, possibly
because of a very small error in positioning the tilting stage with respect to the
axis of the optical system.



Below, in order to obtain the value of the birefringence

�n�� as well as to determine the optical orientation of the

muscovite sample with respect to one of the principal axes of

the optical indicatrix,5 we carry out the analysis of the three-

dimensional data by applying the steps given in x2.2. Since the

optical sign of muscovite is negative, we assume that the z axis

from Fig. 1 corresponds here to the refractive index n�, and

the optic angle denoted as 2V� is measured through this axis.

Furthermore, because of the high correlation between the

angle V� and the corresponding component angle 	1, we

substitute into equation (19) a value of V� equal to 21.5�,

which corresponds to the V� angle range given by the litera-

ture. The value of the angle V� = 21.5� was chosen after

performing a rough surface fitting procedure applied to the

data for different angular positions of the tilt axes of the jsin �j
contour map for different initial values of V�, and after

observing the behaviour of the estimated parameters and the

fitting errors.

Subsequently, by rotating the tilt axes of the jsin �j contour

map over the angular range of 180� in steps of �
 = 1�,

applying the surface fitting procedure to the data using

equation (19) and then by analysing the corresponding fitting

errors and the estimated parameters �n��, 	1, 	2 and nmean, we

can determine the directions parallel and perpendicular to the

optic axial plane OAP containing the direction of propagation

S0. These directions are marked in Fig. 5 by thick white lines

labelled �k1 and �?2 .

Fig. 6(a) shows R2 values for different angular positions 
 of

the tilt axes of the jsin �j contour map. In the region where
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Figure 6
(a) R2 and the refined values of the (b) birefringence �n��, (c) component angles 	1 and 	2, and (d) mean refractive index nmean corresponding to
different angular positions 
 of the tilt axes.

5 Using this technique we determine the orientation of the biaxial sample with
respect to one of the axes of the optical indicatrix, which, in general, does not
have to coincide with any of the crystallographic axes of the biaxial sample, as
in monoclinic and triclinic crystal systems (see, for example, Born & Wolf,
1999; Wahlstrom, 1960).



R2 ! 1, we used smaller angular steps of �
 = 0.5� in order

to determine the specified directions more precisely. By

analysing the results, we found that R2 reaches its maximum,

equal to 0.9935, for an angle 
 = 53.5�, measured clockwise

from the tilt axis �1 in Fig. 6. In the figure, this angle is

denoted by �. By analysing the results presented in Fig. 6(a),

we also found that a good surface fitting was recorded for an

angle 
 = 143.5� with R2 = 0.9777 (exactly 90� difference from

the 53.5� position of the rotated tilt axes). However, this latter

result can be discarded by choosing the case with larger R2.

Moreover, for 
 = 143.5�, the refined value of nmean lies slightly

outside the literature range of the refractive indices for the

muscovite sample (also for different initial values of V�). A

simple measurement of the optical retardation with a first-

order retardation plate and a Michel–Lévy chart confirmed

that the angular position 
 = 53.5� corresponds to the plane

parallel to the optic axial plane OAP (see, for example,

Wahlstrom, 1960).

Fig. 6(b) shows the refined values of the birefringence �n��,

Fig. 6(c) gives the refined values of the component angles 	1

and 	2 and Fig. 6(d) presents the refined values of the mean

refractive index nmean corresponding to different angular

positions 
. The value of �n�� which corresponds to the best

fit was recorded as 0.036� 0.001, the component angles 	1 and

	2 were found to be equal to 1.3 � 0.5� and 0.8 � 0.5�, and the

mean refractive index nmean was equal to 1.60 � 0.05,

respectively. Note also that the best surface fitting corresponds

well with the literature range of the birefringence �n��, 0.036–

0.049 (see, for example, Deer et al., 1992).

Finally, after these operations it is possible to adjust the

initial value for V� by means of minimizing the fitting error

and thus to find an even better solution. In order to realize

this, the initial value for V� was changed in a specified range in

steps of 0.5� followed by the surface fitting procedure. At the

same time, the corresponding fitting error was observed. This

process was carried out also for different angular positions of

the tilt axis close to the value �. Eventually, minimizing the

fitting error by adjusting the initial value for V�, followed by

the surface fitting procedure, did not change significantly the

refined values of the birefringence �n�� and the component

angles 	1 and 	2. The mean refractive index nmean was found to

be equal to 1.58 � 0.05 and the adjusted value of V� for which

the best result was recorded was equal to 22 � 0.5�. Further-

more, adjustments of the assumed angle V� did not change the

position of the tilt axes for which R2 reached its maximum.

Fig. 7(a) illustrates the surface fitting applied to the

measured data (marked by black points) using equation (19)

for the angular position of the tilt axes 
 = 53.5�. Fig. 7(b) also

shows the corresponding residual plot. In the figure, we can

see that the residual plot shows systematic differences,

presumably caused by the approximations used in the equa-

tions. However, the residuals are very small.

Note that the value of the birefringence measured for the

direction of propagation corresponding to the n� axis is equal

to �n�� = n� � n�. For this direction, the component angles  1

and  2 are equal to 0�. Similarly, for the direction of propa-

gation corresponding to the n� axis, the birefringence is equal

to �n�� = n� � n�. In this case, the component angle  1 = 90�

and the component angle  2 = 0�. Thus, by using the refined

value of the birefringence �n�� and the adjusted angle V�, we

can calculate the other two principal birefringences, i.e. �n��
and �n��, using the special cases of equation (10) written in

the following forms:

�n�� ’ �n�� sin2 V ð23Þ

and

�n�� ’�n��½1� cos2ðV þ 90�Þ�1=2
½1� cos2ðV � 90�Þ�1=2

¼�n�� cos2 V: ð24Þ

By evaluating equations (23) and (24), we obtain the values of

�n�� = 0.005 � 0.001 and �n�� = 0.031 � 0.001, which
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Figure 7
(a) Surface fitting applied to the measured jsin �j data for the angular position of the tilt axes 
 = 53.5� and (b) corresponding residual plot.



correspond well with the literature values (see, for example,

Deer et al., 1992).

In order to check the results obtained using the tilting-stage

technique, we estimated the value of the optic angle 2V of the

muscovite sample from a conoscopic figure. The estimated

optic angle 2V was found to be equal to 45� 2�. Subsequently,

we measured the value of the plano-birefringence corre-

sponding to the 001 plane of the muscovite lamina using an

Ehringhaus compensator. This value was found to be equal to

0.0048 � 0.0002, which corresponds to the value of the prin-

cipal birefringence �n�� = 0.005� 0.001 obtained by means of

the tilting-stage technique.

Taking into account the refined value of the birefringence

�n�� and the adjusted angle V�, we can easily calculate the

jsin �j contour map for the muscovite sample using equation

(12). Fig. 8 shows a three-dimensional representation of jsin �j
and a two-dimensional contour map as a function of the two

internal angles  1 and  2.6 In order to simplify the calcula-

tions, the thickness of the sample was taken as a fixed value

equal to 0.06 mm.

Note that here by applying the surface fitting to the whole

set of data, we remove the ambiguity expressed by equations

(21) and (22), because a large part of the three-dimensional

shape of the jsin �j function is very characteristic of the values

of m [see equations (21) and (22)]. Therefore, in general, we

are able to determine the component angles 	1 and 	2 and the

birefringence �n�� directly from the jsin �j values. However,

by considering equations (21), (22), (10) and the refined

parameters, we can easily calculate the values of m as well as

obtain the corresponding values of the phase difference �S,

optical retardance �nSt and plano-birefringence �nS for any

position of the microscope tilting stage.

It is also worth pointing out here that this technique makes

it possible to identify unknown biaxial single crystals or biaxial

crystallites in rock sections. In order to achieve this, we can

create a database containing the values of the birefringences

�n��, the optical angles 2V measured through a specified axis

of the optical indicatrix, and the mean refractive indices nmean

corresponding to specified biaxial samples. Subsequently, by

substituting in the process of analysis the stored values of V

with the corresponding mean refractive indices nmean, and by

observing the refined parameters with the relevant fitting

error, this technique may identify an unknown biaxial sample

or, at least, classify it within a specific group of biaxial samples.

2.4. Preferred orientation of biaxial polycrystalline materials

Optical methods have many important advantages in

preferred orientation studies. They not only provide infor-

mation about the orientation of crystallites, but also about

spatial resolution and shapes of grains within a sample.

However, optical techniques for preferred orientation studies

using a standard microscope universal stage are very compli-

cated and time-consuming. Some optical techniques are also

very difficult to automate and usually require the presence of

an expert. On the other hand, some automated optical texture

systems are fast but also limited to uniaxial crystals only or

some groups of crystals (Heilbronner & Pauli, 1993; Heil-

bronner, 2000; Yun & Azuma, 1999). Moreover, in the biaxial

case, optical techniques are often combined with other

approaches such as X-ray diffraction in order to provide

reliable orientation information.7

In the previous paper (Pajdzik & Glazer, 2006) we showed

that our tilting-stage system provides an automated technique

giving precise information on preferred orientation as well as

on the birefringence of uniaxial crystallites. Below we show
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Figure 8
(a) Three-dimensional representation of jsin �j with (b) two-dimensional contour map as a function of the two internal angles  1 and  2.

6 Note that although the representation of the jsin �j function in the Cartesian
coordinate system requires equal spacing between angle units in the  1– 2

plane, it does not have any effect on the relations between variables and,
moreover, makes the interpretation of the plot easier.

7 Comprehensive information on the preferred orientation techniques is given
by Wenk & Van Houtte (2004) and Kocks et al. (1998).



how the system can provide similar information for a biaxial

sample. This technique can easily detect any changes in

anisotropy caused by strain and deformations formed during

growth of the polycrystalline material. Furthermore, any

changes occurring as a result of recrystallization or phase

transformations can be precisely recorded and analysed. With

the Metripol technique, each grain of the polycrystalline

specimen can be analysed to very high precision. The highest

possible resolution which can be achieved by the current

optical system is equal to 0.3 mm with a 50� objective. This,

combined with the possibility to identify unknown uniaxial

and biaxial crystallites in a thin rock section, makes the tilting-

stage technique an extremely useful and important tool in

preferred orientation studies.

Fig. 9 shows jsin �j, the orientation angle � and the light

transmittance I0 images corresponding to tilt angles �1 and �2

of the tilting stage set equal to zero (propagation direction S0)

measured for a region of an anhydrite rock section from

Yorkshire (UK) with a thickness of 0.03 mm.

Fig. 10 is a graphical representation of jsin �j and � as a

function of the two tilt angles �1 and �2, collected for one

single grain of the anhydrite rock section marked in Fig. 9. The

measurement was carried out at a wavelength of 600 nm and a

total of 441 data points were calculated as average values

taken from a large part of the grain area. A complete set of

measurements with the current setup took approximately

55 min. This usually provides three-dimensional data for many

grains of a rock section (see, for example, Fig. 9). In Fig. 10(a),

we can see that the contours form a portion of nearly

concentric half circles characteristic of a position near one of

the optic axes of the biaxial sample.

As with the analysis of the muscovite sample, we applied the

algorithm given in x2.2. However, in this case, in order to

obtain precise orientation information for all grains in the

image, we assumed initial values of both the angle V and the

mean refractive index nmean of the sample. Assuming these

two initial values improves the location of the correct residual

minimum in the surface-fitting process and allows reliable

comparison of orientation information between all the grains

studied. Since the optical sign of anhydrite is positive, we

assume that the z axis of Fig. 1 corresponds here to the

refractive index n� , and the optic angle denoted as 2V� is

measured through this axis. The value of the angle V� was

taken to be equal to 21�, which is within the V� angle range

given in the literature, and a mean refractive index nmean equal

to 1.584 was calculated using equation (17) and the literature

values for the principal refractive indices n�, n� and n� of the

anhydrite sample.

Fig. 11(a) shows R2 for different angular positions 
 of the

tilt axes of the jsin �j contour map. The highest R2 = 0.9890 was

recorded only for 
 = 132�. Fig. 11(b) also shows the corre-

sponding values of the birefringence �n�� and Fig. 11(c), the

corresponding values of the component angles 	1 and 	2

refined for different angular positions 
. The value of the

birefringence �n�� for which the best fit was recorded was

equal to 0.039. The values of component angles 	1 and 	2 were

found to be �25.8� and 10.2�, respectively.

Subsequently, minimizing the fitting error by adjusting the

initial values for the angle V� and the mean refractive index

nmean, followed by the surface fitting procedure, allowed us to

obtain even better values for the component angles 	1 and 	2,

equal to �26.8 � 0.5� and 9.9 � 0.5�, respectively, and a value

of the birefringence �n�� of 0.039 � 0.001. This corresponds

very well with the literature �n�� values of 0.039–0.40 (see, for

example, Deer et al., 1992). The values of the angle V� and the

mean refractive index nmean for which the best results were

recorded were found to be 22 � 0.5� and 1.60 � 0.05,

respectively. In this way, the adjusted value of nmean corre-

sponds now to the mean value of the refractive indices for the

specified set of the examined cross sections of the optical

indicatrix rather than to the whole optical indicatrix.
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Figure 9
Sample images of (a) jsin �j, (b) orientation angle � and (c) light
transmission I0 for a region of an anhydrite rock section with a thickness
of 0.03 mm. The images correspond to the external tilt angles �1 and �2

of the tilting stage set equal to zero.



Furthermore, adjusting the angle V� and the mean refractive

index nmean did not change the best estimated value of 
.

Fig. 12 shows surface fitting applied to the measured data

(marked by black points) using equation (19) for 
 = 132�,

along with the corresponding residual plot.

By using the refined value of the birefringence �n�� and the

adjusted value of the angle V�, we can calculate the other two

principal birefringences, i.e. �n�� and �n�� as presented in

x2.3, obtaining the values of �n�� = 0.034 � 0.001 and �n�� =

0.005 � 0.001.

As mentioned in x2.2, because of symmetry, for the rotation

angles of the tilt axes within the angular range 180 � 
 < 360�,

we obtain the same absolute values of the refined parameters

as within the angular range of 0 � 
 < 180�. The difference is

only in the signs of the component angles 	1 and 	2. It is worth

pointing out here that in preferred orientation studies in order

to mark the component angles 	1 and 	2 on a stereographic

plot, we have to solve this ambiguity. Fig. 13 shows the two

possible solutions of the component angles: (1) in the angular

range 0 � 
 < 180�, i.e. 	1 = �25.8 � 0.5� and 	2 = 10.2 � 0.5�,

and (2) in the angular range 180� 
 < 360�, i.e. 	1 = 25.8� 0.5�

and 	2 = �10.2 � 0.5�, respectively marked by two white

points. The corresponding jsin �j contour map was calculated

as a function of the two internal angles  1 and  2 using

equation (12) for the refined value of the birefringence �n��
and the adjusted values of the angle V�. In order to simplify

the calculations, the thickness of the sample was taken as a

fixed value equal to 0.03 mm. Subsequently, by taking into

account the curvature of the jsin �j contour map shown in

Fig. 10(a), we chose here solution (2) [the jsin �j contour map

shown in Fig. 10(a) rotated clockwise through an angle equal

to 180� � � is consistent with the choice of solution (2)]. Note

that this has an entirely conventional character and corre-

sponds to the chosen alignment of the sample on the micro-

scope stage.

Fig. 14 is a stereographic plot showing the orientation

information for 21 different grains in the anhydrite rock

section.
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Figure 11
(a) R2 and the refined values of the (b) birefringence �n�� and (c) component angles 	1 and 	2 corresponding to different angular positions 
 of the tilt
axes.

Figure 10
(a) jsin �j and (b) � as a function of the two external tilt angles �1 and �2 for a single grain (marked in Fig. 9) of the anhydrite rock section with a
thickness of 0.03 mm. The measurement was carried out at a wavelength of 600 nm for a total of 441 positions of the tilting stage. [The angular range of
the orientation angle � measured by the Metripol system is 0 � � � 180�; this causes the 180� step seen in Fig. 10(b).]



2.5. Precision of the technique

Equation (7) is based on the assumption that the difference

between refractive indices is usually much smaller than their

values. This equation is an approximation for which the error

is small for samples with low and medium values of the bi-

refringence. However, we have found that even for large bi-

refringences, the results still seem reasonable.

The values of the estimated errors depend mainly on the

value of the birefringence of the sample, the thickness of the

sample and the precision with which the thickness is

measured. Equation (16), used to obtain internal tilt angles,

assumes the mean refractive index of the biaxial sample. This

may be a source of error, which is comparatively larger for a

sample with a high value of the birefringence. Furthermore,

equation (20) assumes small angles. For tilt angles greater than

10�, this approximation gives an error which cannot be

neglected and equation (19) should be used instead.

Finally, in estimating errors, one should take into consid-

eration the thickness correction (Pajdzik & Glazer, 2006). If

the thickness of the sample t or the tilt angles are significant,

then a thickness correction should be applied to the equations

derived in x2.1. In our technique, by setting the external tilt

angles of the tilting stage typically from �10� to 10�, for most

of our samples we do not have to apply a thickness correction.

For the samples presented in this paper, we have estimated

the corresponding errors by taking into account results

obtained for different regions of the same sample and by

consideration of the sources of errors discussed above. In

estimating errors for the muscovite sample, we measured the
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Figure 14
Stereographic plot showing texture information in the anhydrite rock
section (21 data points). The points denote the angles of the sample
normal with respect to the indicatrix axes.

Figure 13
Graph representing a jsin �j contour map as a function of the two internal
angles  1 and  2 showing the two possible solutions of the component
angles 	1 and 	2 for the analysed grain (marked by two white points).

Figure 12
(a) Surface fitting applied to the measured jsin �j data for 
 = 132� and (b) corresponding residual plot.



optic angle 2V using a conventional conoscopic figure and the

birefringence �n�� with an Ehringhaus compensator

(approximately because the [001] direction does not coincide

precisely with the n� direction of the muscovite sample). As

�n�� for the anhydrite section is similar, we can assume

similar errors.

Note that the pleochroism can have an effect on measure-

ments carried out using this apparatus. However, the tech-

nique uses monochromatic light and the choice of an

appropriate filter may avoid the occurrence of the selective

absorption for a specified direction of propagation within a

crystal.

3. Conclusions

We have shown that by applying the tilting-stage technique to

optically biaxial crystals, it is possible to collect three-dimen-

sional data for jsin �j and the orientation angle � in order to

obtain precise three-dimensional birefringence information,

as well as to determine the optical orientation of biaxial

samples. The following information on biaxial samples can be

obtained from the above technique.

(i) Two-dimensional projections of lines of equal birefrin-

gence.

(ii) The three principal birefringences �n��, �n�� and

�n��.

(iii) The component angles 	1 and 	2 determining the optical

orientation of the sample.

(iv) The corresponding values of the phase difference �S,

and thus optical retardance �nSt and plano-birefringence

�nS.

(v) An estimate of the mean refractive index of the sample

nmean.

(vi) Whether the sample is uniaxial or biaxial.

(vii) Texture information from polycrystalline materials.

(viii) Identification, or at least classification within a specific

group of crystalline materials, of unknown samples.

APPENDIX A
Phase velocities within the biaxial sample

Maxwell’s equations for a nonmagnetic, homogeneous and

transparent medium are defined by the following relations

between the electric field E, the electric displacement D, the

magnetic field H and the magnetic induction B:

��0

@H

@t
¼ r � E;

@D

@t
¼ r �H;

r �D ¼ 0;

r �H ¼ 0:

ð25Þ

For plane monochromatic waves given by

E ¼ E0 exp½iðk � r� !tÞ�; ð26Þ

we obtain from Maxwell’s equations:

�0i!H ¼ iðk� EÞ;

�i!D ¼ iðk�HÞ:
ð27Þ

In addition: (i) vector D is perpendicular to the direction of

the wavevector k determining the propagation of the surface

of constant phase; (ii) vectors D, E, k and the Poynting vector

S = E � H are coplanar; (iii) vectors S and k do not normally

coincide in direction.

From equations (27) and

k2 ¼
!2

c2
n2; k ¼ ks; jsj ¼ 1; ð28Þ

we obtain

"iEi ¼ n2½Ei � siðs � EÞ�; where i ¼ 1; 2; 3: ð29Þ

This then leads to the result

s2
1

n2 � "1

þ
s2

2

n2 � "2

þ
s2

3

n2 � "3

¼
1

n2
: ð30Þ

From equation (30) and

s2
1 þ s2

2 þ s2
3 ¼ 1; �i ¼

c

"1=2
i

; �p ¼
c

n
; ð31Þ

the Fresnel equation for the velocity of phase propagation of

electromagnetic waves in an anisotropic medium (Born &

Wolf, 1999) is obtained:

s2
1

�2
p � �

2
1

þ
s2

2

�2
p � �

2
2

þ
s2

3

�2
p � �

2
3

¼ 0: ð32Þ

For biaxial crystals, taking into account the Fresnel equation,

we can write

s2
1ð�

2
p � �

2
�Þð�

2
p � �

2
�Þ þ s2

2ð�
2
p � �

2
�Þð�

2
p � �

2
�Þ

þ s2
3ð�

2
p � �

2
�Þð�

2
p � �

2
�Þ ¼ 0: ð33Þ

Using equations (31), equation (33) can be written as

�4
p � �

2
p½s

2
1ð�

2
� � �

2
�Þ þ s2

3ð�
2
� � �

2
�Þ þ �

2
� þ �

2
� �

þ s2
1�

2
�ð�

2
� � �

2
�Þ þ s2

3�
2
�ð�

2
� � �

2
�Þ þ �

2
��

2
� ¼ 0:

ð34Þ

Assuming that the propagation vector s makes angles #1 and

#2 with the optic axes, and considering the following equal-

ities,

s2
1 ¼

1
4

ð�2
� � �

2
�Þ

ð�2
� � �

2
�Þ
ðcos#1 � cos#2Þ

2;

s2
3 ¼

1
4

ð�2
� � �

2
�Þ

ð�2
� � �

2
�Þ
ðcos#1 þ cos#2Þ

2;

ð35Þ

we can derive the solution given by (Petykiewicz, 1992)

�0 2p ¼
1
2½�

2
� þ �

2
� þ ð�

2
� � �

2
�Þ cosð#1 � #2Þ� ð36Þ

and

�00 2p ¼
1
2½�

2
� þ �

2
� þ ð�

2
� � �

2
�Þ cosð#1 þ #2Þ�: ð37Þ
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APPENDIX B
Notation

�: phase difference.

�: wavelength of the light.

n0, n00: two possible refractive indices for a given direction of

propagation of the light.

n0 � n00: effective birefringence projected onto the plane of

the sample, the so-called plano-birefringence.

t: thickness of the sample.

I: intensity of the light measured at any position within the

image captured by the CCD camera.

I0: intensity of unpolarized light transmitted through the

sample.

�: orientation angle of one of the axes of a section of the

optical indicatrix measured from a predetermined direction.

�: angular orientation of the rotating polarizer.

OA1 and OA2: two optic axes of the biaxial sample.

2V: optic angle of the biaxial sample.

n� , n� and n�: three principal refractive indices of the biaxial

sample.

S: general direction of propagation of the light within the

sample (wave-normal direction).

OAP: optic axial plane.

#1: angle between the direction of propagation S and the

optic axis OA1.

#2: angle between the direction of propagation S and the

optic axis OA2.

�0p and �00p: two possible phase velocities for a given propa-

gation direction S.

�� : phase velocity corresponding to the n� refractive index.

��: phase velocity corresponding to the n� refractive index.

�n��, �n�� and �n��: three principal birefringences of the

biaxial sample, calculated as n� � n�, n� � n� and n� � n�,

respectively.

�nS: plano-birefringence measured down the direction of

propagation S.

�S: phase difference corresponding to the direction of

propagation S.

jsin �Sj: jsin �j measured down the direction of propagation

S.

 1: component angle of S measured from the z axis

projected on the optic axial plane OAP.

 2: component angle of S measured from the z axis

projected on the xz plane perpendicular to OAP.

S0: direction of propagation of the light normal to the

sample, i.e. before tilting.

#
0

1: angle between the direction of propagation S0 and the

optic axis OA1.

#
0

2: angle between the direction of propagation S0 and the

optic axis OA2.

�0: orientation angle � measured down the direction of

propagation S0.

	1: component angle of S0, measured from the z axis,

projected on the optic axial plane OAP.

	2: component angle of S0, measured from the z axis,

projected on the xz plane perpendicular to OAP.

�1 and �2: two perpendicular external tilt angles of the

tilting stage (also denote relative tilt axes).

�1: external tilt angle measured along the optic axial plane

OAP.

�2: external tilt angle measured along the xz plane

perpendicular to OAP.

!1: internal tilt angle measured along the optic axial plane

OAP.

!2: internal tilt angle measured along the xz plane

perpendicular to OAP.

nmean: mean refractive index.

�0: relative phase difference.

m: positive integer.


: angular position of the rotated tilt axes of the jsin �j
contour map.

�
: a small angle (typically 1�) defining an angular step.

�k1: external tilt angle measured along the plane parallel to

the optic axial plane OAP and containing the direction of

propagation S0.

�?2 : external tilt angle measured along the plane perpen-

dicular to OAP which contains the direction of propagation S0.

�: angular position of the rotated tilt axes of the jsin �j
contour map for which the highest R2 value is recorded.

E: electric field.

D: electric displacement.

H: magnetic field.

B: magnetic induction.

k: wavevector.

S: Poynting vector.
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