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Abstract

We provide detailed derivation of the equations in our paper, “Diffraction Profiles of
Elastically Bent Single Crystals with Constant Strain Gradients” in 5 sections. In the 1%
section, we derive the classical plane-wave dynamical diffraction theory from first
principles. In the 2" section, we develop the formalism which leads to the recursion
equations for dealing with the diffraction problem from strained crystals. In the 3
section, we show how these recursion equations lead to differential equations that make
analytical solutions possible for some cases. In the 4™ section, we show the solution of
these differential equations for a constant strain gradient, and in the 5™ section, we
combine this solution with Kato’s spherical wave theory and provide the integral
equation for the surface intensity distribution in real space which can be evaluated
through numerical integration. We also provide analytical equations that approximate this

integral for simple calculations.
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1. Plane-wave Dynamical Diffraction Theory for Perfect Crystals

In describing diffraction from perfect crystals using the Ewald-Von Laue formulation,
Maxwell’s equations can be reduced to the following set of equations (Authier, 2002,

Pinsker, 1978)
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Here Dl[h] refers to the component of the electric displacement D, parallel to D, , K is

the wave vector in vacuum, K,, are wave vectors in the crystal, y, is the h’th Fourier

coefficient of the susceptibility and the summations are done over all reciprocal lattice
vectors.
Using two-beam approximation (Authier, 2002, Pinsker, 1978), fundamental

equations are reduced to two equations:
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where C, the polarization factor, is equal tocos26 for m-polarization and 1 for o-

polarization. At the exact Bragg angle calculated from the kinematical theory, the

diffracted wavevector K, in vacuum must satisfy:
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From Figure 1, we also have



h =(h_,h )= h(sin p,—cosp)
K, = (K,,,K,,) = K(sin 8,cos B) . (1.4)
K, =(K,,,K,)=K(siny,—cosy)

There are a number of assumptions that need to be made about the angles in order for the
problem to be tractable, first the incidence always occurs from the left side and £ and &
are in the range of 0 to 772, while ¢ can vary from -7 (on the left side of N) to 7 (on the
right side of N). The exit angle y is not independent, but determined by ¢ and £ (or 6).
Subscript B is used to refer to parameter values at the exact Bragg condition calculated

from the kinematical theory. Combining Equations (1.3) and (1.4), we obtain,

K? = (hsing + K sin ;)* +(=hcosp + K cos ),
B B

which yields,
h=2Kcos(p+ fz) =2Ksin b,
pa (1.5).
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Fig. 1. Diffraction geometries and coordinates system. a) Bragg case, where || < /2
and cos > 0; b) Laue case, where |/ > n/2 and cos y<0.



The exit angle, y;, can be calculated from Equations (1.3) and (1.4), using the equation
of the horizontal component of K, ,

Ksiny, =hsing+ Ksin £,
=2K cos(p+ f;)sinp+ Ksin £,
= Ksin(2¢p+ f;)
=75 =20+ f

(1.6).

Inside the crystal, the plane wave vectors K,, are not equal to Ko’h. However, the

tangential component of the wave vector must be continuous across the interface to

satisfy the boundary conditions at the interface,

Therefore, the Xx-component of the wave vector inside the crystal remains unchanged and
we simply need to introduce a small change in vertical component for IZO,

k, = K(sin 3,cos 8 + 5) . (1.7)
The periodicity of y leads to a Bloch wave solution to the wave equation, which means,
k, =k, +h =(Ksin 8 +hsing, K cos f —hcos g + K&). (1.8)
Now we consider a plane wave incident on the crystal with an incidence angle deviating

from the exact Bragg angle d; by 7. Eq. (1.5) becomes,
/4
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y=rgtAy.

We may write Ay in terms of 77, by noticing the fact that the diffracted wave outside of

the crystal still possesses a wave vector K, = K(siny,—cosy) and its x-component is the



same as that of Rh in the crystal. Thus, using (1.5) and (1.8), it follows that:
Ksiny =hsing + Ksin f = siny = 2sinf, sin @ +sin f; + Af cos ;.
Using Egs. (1.5) and (1.6), we can prove,
2sin @ sin @ = cos(@; — @) —cos(bg + @) =siny, —sin Sy
sin(yg +Ay) =sinyg + A cos g = Ay = Afcos By /cosyy.
Substituting Eqgs. (1.7) and (1.8) into Eq. (1.2), and utilizing several trigonometric

relations of angles, precise to the first order, one obtains:

Tz25cosﬂ+5 ~26cos f;. (1.9)
0

kZ —-K?*

hT ~ —2175in 26, — 25 cos ¥ .
h

Here we make several approximations to simplify the expression. First, we assume

‘ko,h‘ ~ K, so k, and k; in the denominator can be replaced by K. Second, f and y are

large angles so that cosy ~cosyg,, cos /3 ~cos B, and the §° term can be ignored.
Third, we assumesin(d; +177) —sin ; = r7cos 8, , which is valid when the deviation angle,
17, 1s not very large and @, is not close to 7 /2. As a result we are not considering the

grazing incidence or emergence, nor the case that Bragg angle is close to #/2. With these
approximations the fundamental equation of dynamical diffraction with two-beam

condition can be written as:

. (1.10)

{(;{0 —26cos Bg)Dy +Cy-Dy, =0 {1 o — polarization

Cx.D, +(x, +21sin26; +26cosyy)D, =0 ’ cos26 m —polarization

For non-trivial solutions the determinant of the coefficient matrix of Eq. (1.10) must be

zero, which leads to the dispersion equation,



— 457 cos By cosyy +25¢08 Bl x, (9 —1)—27sin 26 |

, ‘ , (1.11)
+ 2y +2xomsin20; —C~ y, x-=0
Eq. (1.11) is a quadric function of 6 which has two roots,
- V+2 +w .
s = VT X 9T W, j=12, (1.12)
4cosy,

with

g =cosyg/cos fy
v=(1+9)y, +2nsin26; .

W:\/v2 —4C° gy xs

g is the geometry factor, which is positive for Bragg geometry and negative for Laue
geometry, and V is the deviation parameter. The “F ” sign implies that two wave branches
will be excited for both forward-diffracted and diffracted beams. Thus, in general the
entire wave field in a perfect crystal is represented by a set of four plane waves. To
denote those branches there is one thing needs to be clarified: the complex variable w has
two possible values determined by the phase of the complex argument under the square
root.

In the Laue case where g is negative, we assume the real component of W is

€ 9

always positive and denote the “-” sign in Eq. (1.12) as branch 1. In the Bragg case where

g is positive, to avoid ambiguity, we set a cut line from origin to the positive infinity of
the X-axis on the complex plane and restrict the phase of a complex variable to (0, 27).
This means the phase of w will vary within (0, 7) and its imaginary part is always
positive. By this convention, we denote the “-” sign in Eq. (1.12) as branch 1 and the “+”

sign as branch 2. The real part of & represents refraction and its imaginary part

absorption. We shall notice a wave form exp(—i2zK - F) is used in our derivation; as a



result a positive Im(o) stands for a wave increasing with depth, while a negative Im(0)
stands for a wave decreasing with depth. In the Bragg case (g >0), Im[6"]<0but
Im[6®]> 0, thus, for a semi-infinite crystal branch 2 is physically impossible due to the
fact that at infinity the amplitude of branch 2 will be infinit. In the Laue case (g < 0), the
thickness is finite and Im(o) for both branches have negative values, and both branches
will be excited. But when 7 is very negative only branch 1 is strongly excited, and when
n 1is very positive only branch 2 is strongly excited, according to our definition of
branches. Substituting Eq. (1.12) into Egs. (1.7) and (1.8), we deduce expressions of
wave vectors K, and k, ,

i - “1)—2psin2¢pF
KU = K(sin 8,08 B+ 50) ~ K(sin 3, cos B, + Lol D = 20sin2pF W,

4cosy,
2o(g—-1)—2nsin2¢p F W
4cosy, )
with y =y, +AB/ Q. (1.13)

ki =k" +h ~ K(siny,—cosy +

Substituting the expressions of ¢ given in Eq. (1.12) into Eq. (1.10), one obtains

the diffraction coefficient in terms of deviation angle 77,

Déj) 2gCZﬁ

j=12. (1.14)

Combining Eq. (1.14) with Eq. (1.12) is still insufficient to describe the whole wave field

because we don’t know the fraction of energy taken by each branch. By applying proper
boundary conditions, for example, D{" +D{” =1 and D" +D\? =0 for Laue

geometry, we can solve the amplitudes of all these four plane waves. Consequently, the



entire wave field inside a perfect crystal corresponding to an incident plane wave is

expressed as the superposition of all excited waves,
D(r)= > {Dg” exp[-i27k " - F]+ D\ exp[-i27k\" - F]} (1.15)
j=1,2
2. Recursion Relations for Strained Crystals
Using some simple considerations, we can extend the classical theory to a strained
case. The basic idea is to consider the dynamical diffraction of a very thin layer in a
distorted crystal (Fig. 2), and treat the strain within this layer as constant and the layer as
still perfect. The four plane waves in Fig. 2 (two for reflection and two for transmission)
with constant amplitudes on the top boundary of the thin layer propagate through the
thickness and then reach the bottom boundary. If the wave amplitudes of these four plane
waves at one boundary are known, taking into account the phase change and absorption
which can be obtained from the classical theory, one can obtain the total diffracted and
forward-diffracted wave amplitudes at the other boundary, leading to the recurrence
relations for reflection and transmission. All results obtained in classical dynamical
diffraction theory are applicable to this thin layer except local values must be used for all
parameters to reflect the change of material properties. The concept of a local dispersion
equation is introduced as in the optical theory of dynamical diffraction (Authier, 2002),
which describes the ray trajectory inside a strained crystal. In our model because the
entire wave field, not the individual branch is considered, the “interbranch scattering”
problem (Balibar et al., 1983) for large strain gradients, which refers to the energy
interchange between two branches, is solved automatically, and the limitation of very

small deformation field in optical theory is eliminated.
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Fig. 2. Dynamical diffraction on a thin layer with thickness dz. Inside the layer
the strain 1s treated as constant.

Usually, a deformation field consists of rotations and changes of the spacing of
the lattice planes, and their effects are reflected by the local deviation angle, 7, which is
the difference in the incidence angle from the local exact Bragg angle. A strain will cause
a shift of the local Bragg angle that can be calculated from Bragg’s law, and a rotation
angle 06 will cause a change in the local incidence angle. Thus, the deviation angle can
be written as:

n=n,+00+¢ctandy, (2.1)
where 77, is the value of 7 for the unstrained crystal. Inside a very thin layer, dynamical
diffraction theory of perfect crystals still holds and the forward-diffracted and diffracted

waves are still written in the form of Bloch waves:

D, (F) = D" exp[-i27K" - F]+ D> exp[-i27k.” -
D,(F) = D" exp[-i27k " - F]+ D{® exp[-i27k > - T
ki =k +h; ji=12

=l
—

-
[R—

(2.2)

Here we use h’ to represent the local reciprocal lattice vector, which is a function of

depth, z. By using the local values, we can find the diffraction coefficient ¢V and wave



vectors Iz(f” and th“‘) of each branch from Eq. (1.13) and (1.14). Usually, the diffraction
ratio Dy/Dg is what we want to know, where both D, and D, are the sum of two wave

branches. By substituting Eq. (1.13) into Eq. (2.2), we can obtain the expression of the

overall diffraction coefficient,

D, exp[-i2z(K, +h")-F]{D{" exp[-i22K5 " z] + D’ exp[-i22K5 @' z]}
D,  exp(-i2aK, -1){DV[-i22K5" 2]+ D exp[-i27K5 2]}

D" exp(i®z/2) + D\* exp(-idz/2)

D" exp(i®z/2) + D{* exp(-i®z/2)

= exp(—i27h'-F)

with ® = Kzw/cosyg.

Because only the vertical components of wave vectors can vary in a deformed

crystal, for convenience, we can define a new variable X that solely depends on z,

X =exp(i2zh'- r)%. (2.3)

0
X has the same modulus with the true diffraction ratio, but differs it by a phase depending

on positions. At boundaries of this layer, we can write:

_ D" exp(i®z, /2)+ D{? exp(-idz, /2) |
' DWexp(idz, /2)+ D exp(~idz, /2)’
_ D" exp(i®z, /2)+ D{? exp(-i®z,/2)
> DY exp(idz, /2)+ D exp(-i®z,/2)’ ?

, (2.4)

and the subscripts ; and , of X refer to its value at depth z; and z,. By substituting Eq.

(1.14) to Eq. (2.4), we obtain two equations:

) : —c? )
D0 = eXp(—l(DZl)m D0 5
) (2.5)
DO — i® X, =c? 5
0o eXp(_l 22) C(l) X 0

2

After canceling out D{" and D{” on both sides of Eq. (2.5) and plugging in the



expressions of the diffraction coefficient, one obtains the recurrence relation for
reflection,

~ WX, —i(2Cy, +VX,)tan[D(z, - 2,)/ 2]
X, = . , (2.6a)
W+i(29Cy. X, +V)tan[D(z, — 2,)/2]

or

_ WX, +i(2Cy, +VX ) tan[D(Z, —2,)/2]
W—i(29Cx: X, +V)tan[®(z, —2,)/2]

(2.6b)

2

This recurrence relation is not a new result. It has been obtained by some authors from
integrating the Takagi-Taupin equations for a perfect lamellar of crystal (Halliwell et al.,
1984, Bartels et al., 1986), and is implemented in some commercial software, such as
RADS?, which is used for rocking curve simulation of epitaxially grown heterostructures,
but our approach gives a very simple and clear derivation of this relation.

The derivation of the recurrence relation for transmission is analogous to that of
reflection. The overall forward-diffracted wave is the sum of two excited branches,

therefore the ratio of the forward-diffracted wave amplitude at z =z, to thatat z=12, is

written as:
D (T L DWW —i27250 D® —i275®
0(_2) = exp[-i27K, - (F, = T))] o(l)exp[ I- e (1)22]+ (22) expl ' 7[5(2)22]
D,(F}) D,’ exp[-i276"z,]1+ Dy~ exp[-i270" 7z, ]
D e o . 1 1
= exp[—-127K, - (F, — T )Jexp[—17K  ( - Nz, —2))] , (2.7)
cos g cosyy
y D" exp(i®z, /2) + D{® exp(~idz, / 2)
D" exp(i®z, /2) + D’ exp(~idz, / 2)
L in?2
with Kj =K, -K MZ. Using Egs. (2.5), we obtain the recurrence relation of

2cosy,

the transmission at z; to its adjacent layer at z,,

? RADS is a product of Bede Scientific Instruments Ltd.



Y, Wcos[®(z,~-2,)/2]-i(2Cgy- X, +V)sin[D(z, —2,)/2]

2 _
Y
1 1 Wl , (2.8a)
xexp[—17K y, ( - Nz, —7,)]
cos By cOSyg
or
Y_2 _ \'
Vi Weos[®(z, ~2)/2]+iQCgZ X, +V)sinl@(z, ~2)/2] o
. 1 1 ’ |
x exp[—izKy, ( - Nz, —7,)]
cos By cosyg

where Y is defined as

Y = D, (F)exp(i27K, -T).
The subscripts | and , of Y refer to its value at depth z; and z,. We should note that
|X|=|Dn/Do|, |Y|=|Do| and |XY|=|Dy|, and the expressions of the true diffracted and
forward-diffracted wave with correct phase terms are:

D, (F) =Y exp(~i27K| - T) 2.9)
D, (F) = XY exp[-i2z(K, +h")-F] '
Combining with Eq. (2.7) and Eq. (2.8), by applying dynamical diffraction theory

consecutively on thin slabs with constant strain, we are able to solve the entire x-ray

wave field in crystals with heterostructures, misorentation or strain field.

3. Fundamental Differential Equations for Strained Crystals
To find the analytical description of the wave field, generic equations including
the misorientation or strain function need to be established. The idea is to reduce the

thickness dz = z, — z, of the layer into an infinitesimal thickness and write all functions

as Taylor expansions around z . When dz becomes infinitesimal, the approximation up to



the first order of dzis always justified, but in practice dz cannot be smaller than the

interplanar spacing, d,, . Thus the approximation up to the first order is equivalent to the
statement that the variation of the strain over a range of d,,, is very slow and high order

derivatives can be neglected. Consequently, Eq. (2.6a) turns into [if Eq. (2.6b) is used,
the result is the same],

_W(X +dzX") =i[2Cy, + V(X +dzX")]ddz /2

X(2) .
W+i[2Cgy. (X +dzX") +Vv]Ddz /2

By rearranging terms and neglecting high order terms in dz, one obtains the differential
equation for diffraction:

iKr
COS g

X'=

(Cox X* +VX +Cyxp). (3.1

Very similarly, by expanding Eq. (2.8a) or Eq. (2.8b) as a Taylor series, up to the first
order of dz, we can deduce,

Y' . Kr

Y 2cosyg

[2Cgr: X +V+ (g —1)]. (3.2)

By noting (InY)'=Y'/Y, we recognize Eq. (3.2) is the equation that relates the local
amplitude attenuation of the forward-diffracted wave to the local diffraction ratio X. This
is the equation of extinction. The weakening effect of transmission due to diffraction is
shown clearly by Eq. (3.2). Furthermore, if we differentiate both sides of Eq. (3.2) and
substitute into Eq. (3.1), a new equation only involving Y'/Y is derived,

Y'Y)HY'/Y)? =—ialv+2(Y'/Y) r,(9 - D]+ @[, (g -1 —w’], (3.3)
with a =Kz /2cosy,. Since (Y'/Y)+(Y'/Y)> =Y"/Y, Eq. (3.3) can also be written as,

Y''+i2ay, (g — DY “+{a’[w’ — y2(g-1)*]+iav'}Y =0. (3.4)



This equation can be further simplified if we set Y (z) = exp[—iay,(g —1)z]JU(z), which

leads to a wave equation in the simple form:
U"+@’w’ +iav)u =0, (3.5)

and Eq. (3.2) is rewritten as

'

LLJJ— =-ia(Cgy X +V). (3.6)

Egs. (3.1) and (3.5) are the fundamental differential equations of dynamical diffraction on
crystals with a one-dimensional strain field, with the incident-plane-wave and two-beam
approximations. They are not independent equations, but related by Eq. (3.6), so we only
need to solve one equation to obtain the complete set of solutions. We note these
differential equations have a similar form to the well-known Howie-Whelan equations in

electron diffraction (Diffraction and Imaging Techniques in Material Science, 1978).
4. Analytical Solutions in Symmetric Bragg Case

For simplicity, in the following we only consider symmetric Bragg diffraction and
a o-polarized incident plane wave. Under these conditions the fundamental differential

equations we derived in the preceding section are simplified to:

X'=i2a(z- X> +VX + 7,), (4.1a)
Y'Y =—ia@2y X +V), (4.1b)
Y"+(@’w’ +iav')Y =0, (4.1c)

with



a=Kr/2sinby
V=2y,+2n(z)sin26; .

W= 1/V2 —4;(h;(H
For a given constant misorientation/strain gradient in the normal direction, we can write
the deviation angle as:
n=n,+n'z, 4.2)
where 7' is a constant. Accordingly, the deviation parameter v will be a linear function
of depth z too,
V(z)=v,+V'z, (4.3)
where V' is a constant and V, is the value of v at the entrance surface.
Due to its linearity, Eq. (4.1c¢) is the one we can find a solution easily. Combined
with Eq. (4.1b), the diffraction coefficient X can be derived as well. To simplify Eq.

(4.1c) we define a new variable q,

\/E'e””“v v'>0
ia Vi

q = V = . (4'4)
B sy V'<0
V1
Eq. (4.1c) is then transformed to:
Y'(@)+(2b+1-9)Y(q) =0, (4.5)
. 2iay, 1y . . L . .
with b =——"="_ The solution of Eq. (4.5) is a parabolic cylinder function, which is
VV

known as a Weber function. To explain the physical meaning of the solution in a better

way, we transform Eq. (4.5) to a Hermite equation,

¢'"-294'+2bs =0, (4.6)



with £(q) =exp(q”/2)Y(q) . Eq. (4.6) can be solved using a polynomial series (Arfken

& Weber, 1995). Assuming £(() can be expanded to a series of polynomials,

C@=3Ca". @.7)

Substituting the above equation into Eq. (4.6), one obtains a new equation,

y [C..,(n+2)(n+1)—C_(2n-2b)]q" =0. (4.8)

n
The sum of the coefficients of terms with same polynomial number n must be zero to
fulfill Eq. (4.8). This results in the coefficient iteration equation:

o= e 00,23, 4.9)
(n+2)(n+1)
It is seen that all even coefficients, C,,, can be written in terms of Cy, and all odd

coefficients, Con+1, can be written in terms of C,. Using C, and C,, we can construct two

linearly independent solutions,

b(b-2 b
G@=1-bg* + 202 gt s F (250,

», B-b)d-b) , I-b 3
) =g.F(——-=-
+ 30 q + ) ql 1( 2 52’q )’

1
2 (4.10)

gz(q)=q(1+1;bq

here | F, is a confluent hypergeometric function.(Andrews, 1985, Magnus et al., 1966,

Luke, 1969) The general solution is the linear combination of these two confluent

hypergeometric functions,

¢ = Cogl(q) + Clgz (a),
2 4.11)

@
Y(@)=¢e *c(a).
In general, the linear combination coefficients are determined by boundary conditions

and expressed in complicated forms. Here we consider a special case in which the crystal



thickness is infinite. In reality, an infinite thick crystal with a linear strain gradient is
physically impossible, but this is a good approximation to the true solution if the crystal
thickness is large. Under this assumption the boundary condition for Bragg diffraction

can be written as:

Y| >0 if z— 400, (4.12)
According to the definition, q is proportional to z and |q| — ooas Z — . For an infinitely

thick crystal, the boundary condition at infinity requires that the forward-diffracted wave
intensity is decreased to zero. When ( is very large, in Eq. (4.10) we only need to keep

terms with very large n, and approximately, C,,,/C, ~2/n, which is equivalent to the

n+2
expansion coefficients of an exponential function. Thus, if |g|—>co, the approximate

expression of £(() is:

£(q) ~exp(q’),

and

Y (@) ~exp(q*/2).
Because Re(Q®)=-2ay,2Z —> +o when z — +oo(in our derivation, we chose the wave
form exp(—i27k -F), so Yo 1s negative), either Y, or Y, does not converge at infinity and

1s not the solution. To find the combination coefficients Cy and C; that can construct a

function convergent at infinity, we need to study the asymptotic expansions of ¢, and ¢,
around infinity. It is known that for [x| — oo, the asymptotic expansion of a confluent

hypergeometric function is (Slater, 1960):



1- -R
F (a,}/,X) F(}/) gam —a {Z( 1) (a) ( 7/+a) O(|X| )}

(7;0){) (. )n (1 ) - G
7/ Xy @7 y—a),l—a), 0 X’S
F(a) {z n'x" " (| | 2
for R,S=0,1,2,....,.and e =1 if O<argx<rz, e =-1if —7 <argX<0. Hence,
F(1/2) .s( b/2)7 b n (_b/z)n(l/z_b/z)n
~——— 1 1
6@ ra/2+ b/2) o +Z( ) nlg*" J (4.143)
, .14a
N I'(1/2) o z(l/2+b/2) 2(1+b/2)n}
I'(-b/2) nig™
[B/2) eumymrgp n (1/2-b/2),(-b/2),
~ 1 1
¢, () F(1+b/2) q'{ +Z( ) g §
(4.14b)

ra/2) i (1/2+b/2),(1+b/2),
ETERrYEN 2 o }
ra/2-nb/2) n'q

The second terms on the right side of Eqgs. (4.14a) and (4.14b) represents a steeply

increasing function as |q| — o and should be canceled to ensure convergence at infinity.

This requires a special linear combination of £, and £, to construct the solution, which

is known as a Hermite function,

2

Y@= H @ = 2R L@ -4, (@)]
re>) r(—f)
. (4.15)
— b1 , 2q -b 3
=€ 22 \/_[ F(==:7:07) 1 1( 307)]
r(—b) 27271 1_(_b) 2 2

where I' represents a gamma function. For a normalized incident beam, a normalization

factor is introduced to ensure that Y(z =0) =1,

2 2

a9

Y(@)=e 2 H,(q)/Y, with Y, et H .(q,) and q, = q(0). (4.16)



If we write g in terms of z and expand g%, because Re(—q°/2) = (Kx/sin O) 102 (1418
the imaginary part of y,and is negative in our derivation), the pre-exponential factor

actually represents the normal linear photoelectric absorption.
To find the expression of X, we utilize the differential formulas of Hermite

function (Andrews, 1985),

oH
% = 2bH b-1 (q)a

oH. Q) (4.17)
2 20H, (@) = ~Hy, (@),
q
By combining with Eq. (4.1b), the expressions of X is derived,
Yoo —H, ,(Q)
— =—iav + 2byiav' 2122 (4.18)
Y H, (@)
X :—2Zh\/ia/v'M. (4.19)
H, ()

The right-hand side of Eq. (4.18) consists of two terms; the first one represents the linear
photoelectric absorption and the second one represents dynamical attenuation by
reflection. Eqgs (4.16), (4.18) and (4.19) are the analytical solutions for diffraction on an
infinitely thick crystal with a constant strain gradient, and are good approximations for
crystals with thickness larger than the penetration depth. We may call this the thick-
crystal approximation. The rigorous solutions for a crystal with finite thickness can also

be obtained by noting that H, (—q) is also a solution to Eq. (4.6). For b # 0,£1,£2,--,
which is the case in dynamical diffraction, H,(—q) is linearly independent of H,(Q).

Thus, the general solution can also be written as:

Y (9) =exp(-q* /2)[C,H, (a) + C,H, (-)]. (4.20)



The boundary condition at z =t in the Bragg case requires:
X({t)=0=CHy,[q®)]-C,H,,[-q(t)]=0.

So, we deduce:

& — H b—1[q(t)] _ Ct ’ 4.21)
C,  Hyu[-q@®)]
and the exact solution 1s
Y(q) = exp(-q* /2)[H, (a) + C,H, (-0)1/Y,, (4.22)

with Y, =exp(-q, /2)[H,(d,)+CH,(-q,)] and g, =q(0). From Eq. (4.1b), one

obtains:

i Ho (@ -CHy  (-0)
X==2 /vt —2 L bl . 4.23
@+ G, (a) e

5. Surface Intensity Distribution for Spherical Incident Wave
a) General Formalism
To obtain the correct expression of the diffracted wave for an incident spherical
wave, we follow Kato’s spherical-wave theory (Kato, 1960). His method comprises three
steps:
i.  Expand a spherical wave in terms of a distribution of plane waves with same
wave number by means of the Fourier transform.
ii.  Apply the plane-wave model for each plane wave component of the spherical
wave to obtain the forward-diffracted and diffracted wave amplitude

corresponding to this plane wave component.



iii.  Obtain the sum of the induced wave amplitudes of all plane-wave components
by means of the inverse Fourier transform to obtain the induced wave

amplitude caused by the incident spherical wave.

Detailed discussions about Kato’s theory can be found in the textbooks by
Pinsker (Pinsker, 1978) and Authier (Authier, 2002). Here we give a brief derivation. In

real space a scalar wave emitted by a point source can be written as (the time dependent

term is dropped)
exp(—2izKr
(1) = SPEATED
4nr
Written as a Fourier transform,
i Frexp(-i2aK'-T)
#(r) _E_Uw . dK , dK,, (5.1)

Here K' is the running vector, having wave components

2 2 2

K,. K, and K, =\[K? =K} -K
The geometry is shown in Fig. 3. It is clear that the contribution of a given plane wave
component exp(—i27K'-F) is 1/K .. Thus the induced wave amplitude corresponding to

an incident spherical wave is

spherical __ L T OOL plane
D™ = L [O DI dK K, (5.2)

— z'

where D™ are the amplitude of the forward-diffracted and diffracted waves induced in

a perfect crystal by an incident plane wave with wave vector K', and have forms given in



Eq. (2.9) (assume the point source is located at the sample surface). The integration over

K, can be performed using stationary phase method (see Appendix A) and taken out,

with K, = K> —K2

Texp[—iZﬂJK2 - K} -K;z'] ik o P2, 2/ 4)

2 2 2 v ' ’
S KP-KI-K JK, 2
By noticing K, = K7, and K, = K, the forward-diffracted and diffracted waves caused

by a point source are

DPrerieal — A j K exp[i27zK 7, xsin 8 Y (2)d7, (5.3a)
Dl = A j K exp[i27K 77, sin 8 1X (2)Y (2)d7, (5.3b)

A\ KZ'

and K, = K(cos@,sind,).

with A, = exp[-i27(K, -F — Krp'cos g 2-1/8)], A, = A exp(-i2zh'-F)

Source Ky

Kz’

Sample Surface

Fig. 3. Geometrical representation of a spherical wave incident on a
single crystal.



Pre-factors A, and A, are of no importance in describing the waves and will be

dropped in following discussion. Egs. (5.3a) and (5.3b) have the form of the Fourier
transform, which maps the solution in reciprocal space to real space. Using plane-wave
solution for diffraction on a crystal with uniform strain gradients given in Egs. (9a) and
(9b), we are able to obtain spatial distribution of the forward-diffracted and diffracted

waves from Egs. (5.3a) and (5.3b) caused by a point source:

exp(—q° /2)H, (q) d (5.4a)
exp(—q; /2)H,(q,) ’

Dgpherical =K Iexp[iZﬂKﬂoXSin 98]

X0’ DH @ (5
XD /2, (@)

Dsphencal _ \/_ Zn J.exp |27Z'K UOXSIH 0 ]

\/Zhlh

These two equations can be valuated by numerical integration. For the purpose of
analytical analysis, however, approximate equations would be useful. These are derived

in the following.

b) Approximate Equations for Surface Intensity Distribution

For this purpose we use the asymptotic expansion of the analytical solution for an
absorption crystal from Olver’s theorem (Slater, 1960) (see Appendix B). The techniques
used are very similar to those in ref. (Chukhovskii & Malgrange, 1989), but here we take

absorption into account. In summary, we can expand a Hermite function into:

exp(—%)Hbm)

~ (" =) {c, exp[-4xg(D)]x[1+ O(i)_1 1+ ¢, exp[4xg(D)][1+ O(i)_1 1 (5.5)

~ (t2 - 1)_1/4 {e,w, [c®]+c,w,[c(D]}



where x =b/2+1/4. Here the definitions of C,, C,, t and ¢ depend on the phase of Q.

In case |arg(q)| <rml2,

e " —1/4 q 1 2 2
C, = (4x) ,C,=0,1= and ¢ =—[tvt" =1 —In(t +~+t" —1)].
NG : Jax 0572

In case |arg(q)| >r/2,

—k—ébri
eﬁ (4,(,))(—1/4, \/; Kk —k—-1/4 t=— q and

c :l[t\/tz —1-In(t++t* =1)],

2

C =

where ¢ =—-1 if x/2<arg(qQ)<~z (negative strain gradient) and e&=1 if
—r <arg(q) < —x/2 (positive strain gradient). Here we reuse symbol t, which does not
represent sample thickness anymore. The asymptotic expansion of exp(—q°/2)H,_,(q) is

obtained by using the recurrence relation of Hermite function:

T 20, (@).

Differentiating both sides of Eq. (5.5) and arranging terms, one can obtain

e_%H @ 1 |=@® =D tew, + f,(t)c,w,} |arg(q)| <rm/2,t= q/\/ﬂ 56
b-1 2b (t2 _ 1)—1/4 fl (t)CIWI s |arg(q)| S 72-/2’t _ g /m .
where

1 t 1 t
f = - 2— _ f = 2 _ _
() = Vart —\Jar(t? -1 W e L) = VaKt + J4x(t? -1 Vi)

The function w, represents a wave with amplitude decreasing with depth z, while
function w, represents a wave with amplitude increasing with depth z . It is possible to

calculate higher order terms from Olver’s theorem and obtain expressions for higher



order mirage peaks similar to those in ref. (Chukhovskii & Malgrange, 1989). When high
order terms are considered, the interference fringes caused by rays emerging on the same
position can be discussed. If we consider a normalized incident plane wave which has

unit amplitude at the entry surface, when the deviation angle at the entrance surface 7,

has big negative value for a positive strain gradient or big positive value for a negative

strain gradient so that |arg(q)| >7/2, from Egs. (5.4b), (5.5) and (5.6), the diffracted

wave amplitude can be written as (neglecting high order terms):

X exp(=q°/2)H, ()
XY@ =2 (g~ W

-~ Tfhz \/IQexp[ dxg(t) + duc(ty)], (5.7a)
w, = Zo BOC )+ drectt, ), (5.7b)

Jnxs ~2be,
where t; is the value of t at the entrance surface, t, =t(0). Below depth z, at which
q(z,) ~ 0, or when 7, has big positive value for a positive strain gradient (big negative
value for a negative strain gradient) so that |arg(q)| <rn/2, ¢,=0 and only wave 1

exists.

Consequently, the problem of x-ray Bragg diffraction from a crystal with a
constant strain gradient illuminated with an incident spherical wave is reduced to

evaluating two integrals,

D, = [ Kexp[i2aK n,xsin 6, W,d7, (5.8a)



Dy, = [ K exp[i2zK n,xsin 6, W,d 7, (5.8b)

Here D,, originates from the entrance surface, while D,, originates from a layer beneath

the sample surface. Equations (5.8-a,b) can be integrated by means of the stationary
phase method (Appendix A). In the following discussion we assume a positive strain

gradient. Let us write

f,t) . Xh . .
W =—— exp[—4xg(t) +4xg(t, )] = ——=F, (t) exp[-is(t) +is(t,)]
v2b N An AR ) N An AR i

— f2 (t)cz Zh _ /?h ) )
W, = \/%01 \/}(h){ﬁ exp[4xg(t) +4xc(t,)] Py F, (t)exp[is(t) +is(t,)],

where s = Im[4x¢(t)] and

F0) = Y exp (Re[—dre(t)] + Ref4xs(t, )]}

V2b
f,(t)c,
J2be,

F,(t) = exp {Re[4xc(t)] + Re[4xg(t,)]} .

Defining the phase terms S,, S, in Eqts. (5.4):

S, =27Kn,Xsin g, —s(t) +s(t,),

S, =2aKn,Xsind; +s(t) +s(t,) .

For the phase to be stationary, we need to find the point at which 0S;/0n,=0. The

derivative of s with respective to 7, can be obtained from,

0
on,

(4xc) 22(41@‘) a = 4iAlt* —1 a .
ot on, on,



Koi|
Zhr

For a crystal with absorption, both y and y,; are not zero. In the case o, = <<1,

Zhl
Zhr

Zhl
Zhr

<<1 and o, = cosv, (v, is the phase difference between y,, and y,,, equal

to 0 or 7 for centro-symmetric structures), following approximations can be made

2
bl= .

b~ilb|(1+2io,),

(4 )~ 251n2|6’ bfiyfv? =1+ V.0, + 0y — 1/4|b|

| hr \/Vr —1
77(2)51n26’ + Zor R %: sin 26,

with v
|Zhr | 8770 |Zhr |

and “+”if v, >1;“-"if v, <-1.

This approximation is not valid when |vr| is very close to 1, but works well when

v; —1>1. Thus, 665 _ 25120, |b|w/

Mo |2

The condition for the phase to be stationary imposes restriction on the travel path

of the x-ray. When v, < -1, for wave 1,

gs =0 = 27KXsin 6, +%|b|(\/ — Vi -1)=0 (5.9a)
770 hr

Similarly, for wave 2:

SS = 0= 27Kxsin 6, %“’W —1+V3 -1)=0 (5.9b)
770 hr

When v, >1, wave 2 does not exist since C, =0, and for wave 1,

272Kxsin 0, me 1—\v2 -1)=0 (5.9¢)

hr|



Eqts. (5.9-a, b, c) are the ray trajectory functions that describe the travel path of the
reflected wave in a crystal with a constant strain gradient. They can be also obtained from

optical theory of dynamical diffraction (Gronkowski & Malgrange, 1984).

The second part of the problem is determining the reflection intensity distribution
at the sample surface (z =0) as a function of X. For D,,, the phase is not stationary at the
surface, but the integral can be performed exactly. In the symmetric Bragg case the
reflection intensity distribution of wave 1 at the sample surface has the form:

X tan G

Ji(

2 X 28,
=D, =exp(- A% 2oy (5.10)
B B

I, has a maximum value at X =0, which is equal to p, = (4, cosd,) . The first zero
point of I, is located at X =7.66¢,/tan ;. From the property of Bessel function, most

intensity of the first wave falls within the range from zero to its first zero point. If we
normalize 1,(0) to unity, the form of |, here is identical to Eqt. (4) in our paper, which

describes the surface reflection intensity distribution for a semi-infinite strain free crystal.

An approximate expression for D,, can also be derived using stationary-phase

method. For a positive strain gradient, when v, <—1 the second wave field is excited,

and approximately,

£, ~ L+ bl(yvi - —vr>(1+i%),



Re(4xc) ~ —|b|[21/vr2 ~lo, + Ve (o) _1/4|b|)] —(1/2-2plo) In(yv; -1-v,)+P,

Jvi-1

1+1)4/b
with P = Re[—ZKIn(%);/H] .

At z =0 for the phase to be stationary, it requires

2 _1 ﬂK|)(hr|
o 4|b|cos 6,

<

X=u

The second derivative of s(t,) with respect to 7, can be derived from,
2 2sin* 26, b
0 Im[4x¢(t,)] = B| | Yo _

2sm 20 |b| Ju? +1
2

6773 |;(hr|2 Vio -1 |;(hr| !

Therefore, we arrive at

D,, X G \/EK|Zhr| U+ /u 1 )4\b\ah( )1/2

\/ZhZh 2bsin 26, w/ +1

Ju? +1
u

xexp {~2jp[2uc, - (0, — 1/ 4]+ 2P} expdi[S, (u) - %]}

For the intensity, one obtains

I, ~ p,(u+u? + 1) (ﬁ)exp(l— ”“;+l)exp[—4|b|(2u<;0 ”“u+ o)1 (5.11)

K2|;(hr r’ exp(—72|b| - 4|b|ah)|b|
sin® 20, |b|2|I‘(—b)|2

|2 4‘b‘o‘h 4‘b‘o‘h

exp(—iz|b| - 4|b|0'h )|b|
blr-b)f

with p, =

~
~

1

We notice exp(—8|b|u 0, ) 1s the linear kinematical absorption, since
exp(—8|b|u o,) = exp(—2fzK|;(0i |X /cosby) = exp(—u,X/cosby).
Other terms in Eq. (5.11) are due to dynamical diffraction. When u >>1 or equivalently

\v}, =1 >>1, the following approximation is valid,



u Ju? +1

~ ~

~ ~1,

VJu® +1 u

and Eqt. (5.11) turns into,

l, = p,exp(4blo, ) exp{—8bluc,[1 - (1/u)(o, /o) In(u +u’ + D]}, (5.12)
which is similar to Eqt. (2), and is only applicable for X not close to zero (|V|,0| >>1). If

the crystal is perfect then |b| — o, thus p, =0 and the second wave does not exist. The

intensity of wave 1 is described by Eqt. (5.10), which is identical to Eqt. (4) in our paper.

For a transparent crystal that has o, = o, =0, b is a pure imaginary number and

_ b| sinh(7r|b|)
r(-b)~” = |—
e =
Consequently, Eqt. (5.11) is reduced to
1-exp(-27}pl) u’+1

u(? +1)"?exp(1-

l, = 1
2 ® Py 271 ) (5.13)

which 1s equivalent to the equation obtained by Chukhovskii and Malgrange

(Chukhovskii & Malgrange, 1989) for a transparent crystal, except that there is an

additional (last) exponential term in our derivation. In kinematical limit where the strain
gradient becomes infinity so that |b| becomes zero, |, turns into
I, = p, exp(—u,Xx/cosby), (5.14)

which is the equation predicted by the kinematical theory.



Appendix A

For an integral of the type

=" FOoexpliSOOHx, (A1)

the phase S(X)is generally large and rapidly varying. The integration over most of this
range would be averaged to almost zero because of the rapid oscillation of exp(iS),
except in the neighborhood of a saddle point X, where the phase is stationary. In other
words, the first derivative of S(X)is zero at X, . The integral therefore can be evaluated

only around X, . If we may expand S as a Taylor series around this point,
S0 = $(%)) + 5 8" (X)X =X,)* 4+ (A2)

and F (X) s a slowly varying function around X, an approximate value of the integral can

be obtained

> f;O':(Xo)"'XP“S(XO)+i%S”(XO)(X— X,)*Jdx

— FOx)expliS O] expli 8" (¢, )(x-x,)*Jix (A3)

2
1S (%,)|

= F(x,) eXP{[iS(Xo)i%]}

where “+” sign is taken if S'"'(X,) > 0 and “-” sign is taken when S''(X,) <O0.



Appendix B
Olver (Slater, 1960) discussed the asymptotic expansions of solutions to equation

that has the form

2
d \;V =[k*z" + f(D)]w

He showed that for n =0,%1 and large values of k, asymptotic expansions of the solutions
can be obtained in three cases. Here we will consider only the first case, n =0, where
the equation becomes :

dz‘;" — K2 + f(2)w (B1)

Equation (B1) has two independent asymptotic solutions

w,(z) = ek z( 1)° As(Z)JrO(k )

- (B2)
kz z -M
(@)= (3 500y
where A)(z) =LA, (2) = —%A;(Z) +%I f(z)A(2)dz + K, and K| is an arbitrary
constant.
If we define t =q /m, Eqt. 4-c becomes:
Y'(t) = (4x)7 (€ = DY (V) (B3)

Furthermore, we consider the transformation ¢ = %{t\/t2 —1—In(t++t>=1)}. The

square root and logarithm are both many-value functions. We chose the principal branch

for the many-value function logarithm (|arg| < 7)) and the branch with positive real



component for the many-value function square-root, so |arg(t)| <7m/2.A cutline is set

from 1 to -oo along the real axis on t plane. By putting

W= (j—t)‘zvm — (D)"Y () (B4)
4

we have

% — ((4x)* + FLe®T (V)] (B5)

1 5t?

where f[g(t)]= 2 1) - RS

The solution of Eqt. BS is given by the linear combination of w, and w,,

wW(g) =c,w,(¢)+¢c,wW,(s)
W, () = e“'“{z_% +O[(4r) ™ ] ~ e (1 +O[(4x) ']} (B6)

W, (c) = e“"§{2%+ Ol(4x) ™ 1} ~ € {1 + O[(4x) ']}

We should note that the above asymptotic expansion is limited to ‘arg(q / 1/4|1<|)‘ <rl/2,
but can be extended to ‘arg(q /5 /4|K| )‘ > /2 by replacing qwith Q = —q. If we define

t =Q/+/4x , the form of Eq. (B3) does not change but now ‘arg(Q /1/4|/c| )‘ <7 /2and all

results are the same.

The coefficients ¢, and c, can be determined from the comparison of leading

terms with the known asymptotic expansion of Y(q) as |q| — . In case |arg(q)| <m/2
and |q| —> 0,

exp(-q° /2)H, (q) ~ exp(—q° /2)(2q)° = exp(-2xt> (1647 )",



and
w, ~ exp[—2x(t* —1/2)](4t%)"~,
W, ~exp[2x(t* —1/2)](4t%) ™",
=D~ )™
From the comparison of the leading terms, one obtains,

C] =e_K(4K')K_1/4/\/§,
c, =0.

In the case |arg(q)| >7m/2 so |arg(—q)| <m/2,t=—-q/+4x =Q/4x,

QZ\/;

eXP(-q"/ DH, @ ~ e 7

Az
- T(-b)

@ _
Q—b—l +e 2 (2Q)be—5bm

(4Kt2)—l(—l/4 eXp(2Kt2)+22K_1/2(4Kt2)K_1/4 exp(—&bﬂI)eXp(—Zk‘tz),

Therefore,

C, = e (4x) " exp(—ebri) /2, £=1if arg(Q)>0; & =—1 if arg(Q) < 0.

C2 — \/; eKK—K'—l/4 ]
I'(-by2
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