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The small-angle scattering (SAS) structure functions are analyzed for an

idealized, random two-phase system: a stationary arrangement of hard puzzle

particles, separated by a relatively thin interspace, which can be approximated

by an interlayer. The detailed shape of the interlayer is defined by the shape of

the particles themselves: The starting point for producing these initial particles is

a three-dimensional initial puzzle P0 in the state of tessellation. Its pieces,

homogeneous particles of random shape, fit together filling the space. In a

second step, an expanded puzzle P� is constructed by translating the initial

particles by a certain length � (relative to one another). The whole tightly

packed particle arrangement depends on P0. The interlayer region between the

particles is a connected, homogeneous region. The SAS intensity of P� depends

on the parameter � and on the typical shape and size of the pieces of P0. Chord

length distributions (CLDs) are used in the description. The random shape of

the pieces of P0 possesses a CLD 1. The CLD 2 of the intermediate spaces is

approximated by that of an idealized layer of constant thickness �. The

scattering of P� results in terms of the CLDs of both phases. The approach can

be applied to many types of P0. Two initial tessellations of P0 are studied, a ‘dead

leaves’ tessellation produced by spherical primary grains and the Poisson plane

mosaic.

1. Introduction

There are several approaches in the field of small-angle scattering

(SAS) for random two-phase systems, where the particle shape or the

particle arrangement, or both, are defined by a stochastic model

(Porod, 1952a,b; Debye et al., 1957; Chen et al., 1991; Levitz &

Tchoubar, 1992, and others). A survey was given by Hermann (1991)

and by Torquato (2002). In this paper, a new approach named puzzle-

interlayer model (PIM) is added to those methods. This approach is

based on the construction of arrangements of hard particles as illu-

strated in Fig. 1. A tessellation is given. It involves random pieces (the

subsequent particles), the separation of which followed by a certain

translation constitutes the PIM. The two-dimensional puzzle (Fig. 1)

can be extended to three dimensions (two- or three-dimensional

scatterer). The fact that the tightly packed particles on the right-hand

side of Fig. 1 were regions of a random tessellation before leads to the

following conclusions: It will be possible to determine SAS structure

functions, including the scattering intensity I(h) [h ¼ 4� sinð�Þ=�, 2� =

scattering angle, � = wavelength of radiation], in terms of inherent

properties of the initial tessellation. Its origin can be manifold. Any

starting mosaic, the real structure functions of which are well inves-

tigated, can be operated with. Then, the only parameter of the

approach is a length parameter, describing the shifting of the pieces.

The analysis of the information involved in a section (see also Fig. 2)

is the subject of stereology, but is not part of the calculations here.

Based on the theory of chord length distributions (CLDs), two PIMs

will be considered: First, a spatial tessellation can be constructed from

a general ‘dead leaves’ model (DLM) (Serra, 1982, pp. 508–509).

Based on the analytic expressions describing the DLM tessellation

type (see Gille, 2003), a PIM with DLM puzzle pieces is studied

(x3.1). Second, the Poisson plane tessellation (Hermann, 1991, pp. 13–

15) can also be used as the originating mosaic of a PIM (x3.2).

2. Properties of the model

In the initial tessellation P0, gaps between one and the next puzzle

piece (PP) do not exist. By ‘expanding’ P0 an expanded puzzle P�
results. The random shape of the PPs is defined by P0. Key parameters

of P� are the volume fraction c of the PPs and the shifting-length

parameter �.

2.1. The initial puzzle P0

The largest PP has the largest diameter L0, e.g. L0 ’ 2–20 nm. The

sample size is several orders of magnitude greater than L0. The

assembly of randomly shaped PPs allows a complete filling of the

space, later fulfilling the condition for an isotropic scatterer. Let the

(electron) density inside all the PPs be constant. For P0 the lines

(interfaces) of separation between the PPs are infinitely thin. The

whole sample volume consists of the PP phase, phase 1. Thus, for P0

no SAS effect can be expected. In the following, all the PPs change

neither shape nor size or inner constitution (no change of the

homogeneity inside the PPs). The characteristic shape and size of the



pieces of P0 are the first component for determining IðhÞ of the

particle arrangement P� .

2.2. The expanded puzzle P�

A slightly modified (but not mixed or even distorted) puzzle P�
results, after translating all the PPs one by one, approximately by a

length �, 0<� <L0 (Fig. 1). The length � can be detected perpen-

dicularly to the touching PP surfaces. Simply said, � is the typical

distance between two neighboring PP interfaces (see Figs. 1, 2 and 3).

Let the PPs be embedded in a second phase of constant (electron)

density (Fig. 2b). Particle arrangements P� involving intermediate

layers result. It is simple ‘to move back’ P� to P0, without any rotation

or exchange of any two PPs. The larger �, the greater the volume

fraction c of the connected interlayer phase 2.

If � is not too small and if the (electron) density in the newly

produced connected intermediate regions differs from that of the PPs,

P� will lead to a clear isotropic SAS. The large number N of PPs

allows fulfillment of the condition of an isotropic scatterer. The

random shapes of the PPs cannot be arbitrary, as they must be able to

completely fit together without intermediate spaces, c! 1 for �! 0.

On the one hand, this requirement is not fulfilled by spherical,

hemispherical or conical PPs, which cannot act as PPs in the PIM. On

the other hand, cubes or parallelepipeds with matching edge lengths

cannot be inserted as PPs either. Such trivial ‘stone by stone samples’

do not fulfill the requirement of isotropy.

2.3. The chord length distributions of P�

The analysis of I(h) of P� is hard to achieve based on elementary

methods (Feigin & Svergun, 1987). In the present approach, CLDs

are operated with. Whatever the origin of a random two-phase

system, two CLDs ’ðlÞ and f ðmÞ, simultaneously considered, define

the SAS correlation function (CF) �ðrÞ and I(h) (Méring & Tchoubar,

1968; Levitz & Tchoubar, 1992). Details, concerning the kernels of

the integral transformations, connected with the functions �ðrÞ and

� 00ðrÞ are analyzed by Burger & Ruland (2001). A theoretical example

was analyzed (Gille, 2005). Let ’ðlÞ be the CLD of the PP phase

(isotropic uniform random chord lengths li in phase 1) and f ðmÞ that

of the intermediate spaces (chord lengths mi in the connected phase

2) (Fig. 2c). The system P0 involves the property f ðmÞ ¼ �ðmÞ. The

mean chord length m disappears, m � 0. On the other hand, P� has a

limiting property: If �!1 then m!1 and f ðmÞ ! 0 results. The

function ’ðlÞ and its first moment l ¼ 4V0=S0 describe the PPs with

average volume V0 and average surface area S0. This was discussed

for non-convex particles (Mazzolo et al., 2005). The shape of phase 2

is defined by the shapes of the PPs.

2.4. Chord length distribution densities, specific functions and I(h)

For independent segment lengths li and mi, there are compre-

hensive equations (see Cox, 1963; Weil, 2004; Gille, 2002). Equations

(1)–(3) connect the functions ’ðlÞ and f ðmÞ with the SAS CF �ðrÞ and

I(h). The CLDs define the corresponding characteristic functions pðtÞ

and qðtÞ,

pðtÞ ¼
R1
0

expðitrÞ ’ðrÞ dr; qðtÞ ¼
R1
0

expðitrÞ f ðrÞ dr: ð1Þ

A working function QðtÞ is defined in terms of the CF via

gðrÞ ¼ � 00ðrÞ=j� 0ð0Þj þ 2�ðrÞ,

QðtÞ ¼
R1
0

expðitrÞ gðrÞ dr: ð2Þ

Furthermore, the function QðtÞ, involving a real part and an

imaginary part, is related to pðtÞ and qðtÞ:

QðtÞ ¼
pðtÞ þ qðtÞ � 2pðtÞ qðtÞ

1� pðtÞ qðtÞ
: ð3Þ

At the origin, =½Qð0Þ� ¼ 0 and Qð0Þ ¼ 1 follows. Equation (3) allows

the determination of QðtÞ if both ’ and f are known (Méring &

Tchoubar, 1968). By combining equation (3) with the inverse trans-

formation of equation (2), the function gðrÞ of the particle arrange-

ment,

conference papers

s692 Wilfried Gille � Puzzle-interlayer model J. Appl. Cryst. (2007). 40, s691–s695

Figure 3
A cubic section of a mosaic P0 of a model sample involving PPs resulting from
Poisson polyhedra. Specific translations � lead to specific P� .

Figure 1
Tessellation P0 and puzzle P�. Although infinite tessellations are discussed, an
illustrative representation requires a finite planar- or spatial section. Thus, the
border pieces of the tessellation additionally reflect the shape of the quadratic
section.

Figure 2
A plane PIM and the CLDs ’ and f . (a) All PPs of the initial puzzle P0 exactly fit
together, no intermediate space, � � 0. (b) Modification of P0 by a shifting process
produces small intermediate layers �, �! 0. (c) A magnified section of (b).



gðrÞ ¼
1

2�

Z1
�1

expð�itrÞQðtÞ dt

¼
1

�

Z1
0

cosðtrÞ <½QðtÞ� þ sinðtrÞ =½QðtÞ�
� �

dt; ð4Þ

is obtained (Gille, 2005). For all r, =½gðrÞ� � 0. The normalized scat-

tering intensity, Ið0Þ ¼ 1, basically results from

IðhÞ ¼ 4�=vc

R1
0 r2�ðrÞ sinðhrÞ=ðhrÞ dr. More tailormade for the

actual case, I follows in terms of g (Gille, 2005, Appendix B, p. 526),

IðhÞ ¼
4�

vc lp

Z1
0

gðrÞ
2� 2 cosðhrÞ � hr sinðhrÞ

h4
dr: ð5Þ

Besides gðrÞ= [see equation (4)], equation (5) requires the length

parameter lp ¼ 1=j� 0ð0Þj and the characteristic volume vc (Porod,

1952a). These parameters can be traced back to QðtÞ [see equations

(11) and (12), Appendix A]. Summing up both integral transforma-

tions, equations (4) and (5), enables the determination of IðhÞ in

terms of QðtÞ via one transformation step.

2.5. I(h) in terms of Q(t)

Assuming a certain order range L in the system, equation (5)

connects gðrÞ with IðhÞ. Inserting equation (4) into equation (5) gives

IðhÞ ¼
2

vc lp

Z1
�1

Tðh;L; tÞQðtÞ dt: ð6Þ

Thus, IðhÞ can be traced back to QðtÞ and to a function Tðh;L; tÞ,

defined in Appendix B [see equations (16)–(19)]. The working

function QðtÞ depends on the actual CLDs for 0< r<L. For a

selected L of the system, QðtÞ is fixed in terms of ’ and f via equations

(1)–(3). Now, QðtÞ, gðrÞ and IðhÞ will be derived for two cases.

3. Analysis of three-dimensional puzzle-interlayer models

Each initial system P0 defines a specific PIM. However, there is a

natural restriction: The calculation steps, described for any special PP

type, require that the CLD ’ðlÞ of the selected tessellation type has

already been investigated. This is the case with the DLM puzzle

(Gille, 2003), as well as with PPs belonging to the so-called Poisson

tessellation (Stoyan et al., 1995; Hermann, 1991).

The two cases (see Figs. 2 and 3) possess a common property, which

results from the assumption � <L0, say 4� � L0: The CLD f ðmÞ of

the interlayer region can be approximated by that of a single layer

(lamella). The smaller the ratio �=L0, the better f ðmÞ can be

approximated by f ðmÞ ¼ 2�2
�

m3 (� <m<1). The first moment m

obeys m ¼ 2�. Higher moments do not exist. According to equation

(1), qðtÞ can be represented in terms of the incomplete � function

qðt; �Þ ¼ expðit�Þ ð1þ it�Þ � t2�2�ð0;�it�Þ: ð7Þ

Equation (7) is used to determine the SAS structure functions of two

special PIMs.

3.1. A ‘dead leaves’ puzzle-interlayer model

For PPs defined by a DLM, a complete set of formulas describing

the PPs is known (Serra, 1982). Based on spherical grains of diameter

d, a DLM puzzle can be constructed (Gille, 2003) (see Fig. 2). The

CLD ’ðl; dÞ of the PPs is

’ðr; dÞ ¼
2

9d
1þ 100

d

2dþ 3r

� �3
" #

: ð8Þ

The function qðtÞ [equation (1)] can be represented by two terms

involving the exponential integral function. The CLD possesses the

property ’ð0; dÞ ¼ 3=d. The PPs are described by the first moment

l ¼ d=3 and by a radius of gyration RG ’ 0:372d. Equations (1)–(4)

give QðtÞ and gðrÞ. For selected relative length parameters, d ¼ 2 and

� ¼ 0.5, the functions gðrÞ (Fig. 4) as well as IðhÞ and the Porod plot

P1ðhÞ (Fig. 5) result by numerical integration.

The function gðrÞ possesses a singularity (finite jump) at r ¼ �,

originating from the CLD of the lamella (Fig. 4 insert). For r<�, the

function ’ðlÞ defines the behavior of gðrÞ. For the PIM considered,

gð0Þ ¼ ’ð0Þ is obtained. In the actual case of smooth primary grains,

the parameter l results from l ¼ 1=’ð0Þ ¼ 1=gð0Þ. For larger r,

� < r<L, the CLDs ’ and f are intermixed and both define the

behavior of gðrÞ, according to equations (2) and (3). In two r intervals,

g< 0. The first local minimum is connected with both parameters, d

and �. It cannot be interpreted as a distinctive length of the model.

The PIM parameters can be obtained from scattering intensities

(Fig. 5). For relatively large h values, a normalized Porod plot,

P1ðhÞ ¼ vclp Iðh; d; �Þ h4=ð8�Þ, reflects the scattering of a single

lamella, P1ðh; �Þ ¼ 2� vclp sinð2�h=4Þ2=ð2�Þ. The model parameter d,

intermixed with this asymptotic behavior, can be detected observing

Iðh; l; �Þ at relatively small h, e.g. h< 10=d. The shoulder at h ¼ hs

(Fig. 5, left-hand side plot) reflects the PP size via hs l ¼ 2�.
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Figure 4
CLDs of a PIM based on a DLM tessellation with relative length parameters d; �.
The pure CLDs are shown in the insert. The behavior of the function gðrÞ
significantly reflects the relative length parameters d ¼ 2 and � ¼ 0:5.

Figure 5
Normalized scattering intensity Iðh; lÞ and Porod plot P1ðh; 2�Þ for a DLM-PIM.
The full line describes the scattering of a single lamella of thickness �.



Evidently, the determination of the parameter � is simpler than that

of l, d, as the PPs do not have a fixed shape.

3.2. The puzzle-interlayer model based on Poisson polyhedra

In the Poisson polyhedra case, the boundaries of the PPs inside the

cubic section (Fig. 3) are planes. Such a tessellation is generated by

planes, homogeneously and isotropically distributed in space. This

model has been thoroughly investigated in stochastic geometry

(Stoyan et al., 1995 ; Weil, 2004). It is frequently used in materials

science (Hermann, 1991) and involves one free parameter. The

randomly shaped PPs are described by ’ðlÞ, reflecting geometric

properties of the tessellation. Let l be the first moment. Then

’ðlÞ ¼ ð1=lÞ exp
�
� l=l

�
. The radius of gyration RG of the PPs is

RG ¼ 2ð3Þ1=2
l.

The expression pðtÞ ¼ i=ðiþ ltÞ results from equation (1). Applying

equations (3) and (4) for selected parameters l and �, gðrÞ follows.

Inserting the corresponding relative length parameters (here l ¼ 1

instead of d), Fig. 6 results. The first moment of ’ðlÞ is indicated by

gð0þÞ via l ¼ 1=gð0þÞ. The position of the finite jump indicates �.
These parameters reflect the intrinsic properties of the CLDs (see the

insert of Fig. 6). Two different representations of the scattering

intensity functions enable the detection of the model parameters.

Analogously, l is connected with a shoulder in I, and P1 is qualified

for detecting � (Fig. 7).

4. Summary and conclusions

The approach describes isotropic arrangements of tightly packed

homogeneous particles, a two-phase system of non-overlapping

particles of random but fixed shapes. For this purpose, CLDs are

applied. Shape specification is inherent in the PIM, so pair correlation

functions need not be operated with. The shape of the PPs is random,

but not arbitrary.

Parameters that result from an infinitely diluted arrangement of

PPs [CF, CLD, RG, I0ðhÞ, P1ðhÞ, lc, fc, vc], describe a single PP (Gille,

2003). The volume fraction c of the PIM approach is defined by the

particle size of the PPs (parameters d, l) and by the interlayer

thickness � (parameter m ¼ 2�) by the equation c ¼ l=
�
l þ 2�

�
. The

fact that the PPs of a three-dimensional initial puzzle P0 fit together

and occupy the space completely is reflected by ’ð0Þ ¼ 1=l. This

equation is connected with the construction of the PPs. So, the

attempt to use spherical PPs of diameter D, characterized by

’ðlÞ ¼ 2l=D2 (0 � l<D), results in ’ð0Þ ¼ 0 6¼ 1=l. Thus, there is a

discrepancy between the positive length l ¼ 2D=3 and ’ð0Þ. An

attempt to form a puzzle from arbitrary smooth single particles will

result in contradictions. For the large class of PPs constructed from a

DLM tessellation originating from smooth grains [second derivative

of the grain CF �G
00ð0Þ ¼ 0], ’ð0Þ ¼ 1=l is a characteristic property.

The Poisson mosaic case is not so far from an elementary DLM. In

both cases, the analysis of the CFs �PðrÞ of the PPs leads to

�P
00ð0Þ ¼ 1=ðlÞ

2
. Additionally, �PðrÞ ¼ expð�r=lÞ in the Poisson

mosaic case. In the most general DLM case (Serra, 1982), the func-

tion ’ is connected with the particle CF �P via

’ð0þÞ ¼ ½1=l þ l �P
00ð0þÞ�=2. Formally extending this to the Poisson

mosaic case yields a correct result ’ð0Þ ¼ ½1=l þ l=ðlÞ
2
�=2 ¼ 1=l.

However, the author does not know of any attempt to trace back

the Poisson mosaic case to a superimposition of simple grain shapes

with a DLM. The parameters d, l and � can be determined from the

functions P1, I or g. The interpretation of the function gðrÞ ’ � 00ðrÞ
should confirm the parameter values estimated in reciprocal space.

The parameter � is simpler to obtain than any PP parameter. The

smaller the ratios �=d or �=l, the better the extraction of the PP

parameters d, l of the specific model from the approximations

d ’ 2�=hs, l ’ 2�=hs. There are many possibilities for modifying the

model and adapting it to special materials. For example, for porous

materials other grain shapes can be introduced. The scattering of a

large class of tightly packed two-phase systems can be described.

APPENDIX A
Characteristic parameters

The parameters lp and vc are connected with the moments M1;4 of

gðrÞ, lp ¼ M1 and vc ¼ �M4=ð3lpÞ. Operating with equation (4),

lp ¼

ZL

0

r gðrÞ dr ¼

ZL

0

r
h 1

2�

Z1
�1

expð�itrÞQðtÞ dt
i

dr

¼
1

2�

Z1
�1

h ZL

0

r expð�itrÞ dr
i

QðtÞ dt ð9Þ

is obtained. After changing the order of the integration, dr dt ¼ dt dr,

of equation (9), the dr integration leads to a function Pðt;LÞ,

Pðt;LÞ ¼
RL
0

r expð�itrÞ dr: ð10Þ
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Figure 6
Real structure functions of a PIM based on the Poisson mosaic. The function gðrÞ
reflects the relative length parameters l ¼ 1 and � ¼ 0:5. A graph of the CLDs ’
and f is shown in the insert.

Figure 7
The functions Iðh lÞ and Porod plot P1ðh 2�Þ for a Poisson polyhedra PIM (see Figs. 3
and 6). The full line describes the asymptotic approximation.



Thus, lp results from

lp ¼
1

2�

Z1
�1

Pðt;LÞQðtÞ dt: ð11Þ

By an analogous procedure, based on the connection between vc and

M4,

vc ¼
�

3lp

ZL

0

r4 gðrÞ dr ¼
1

2�

�

3lp

Z1
�1

h ZL

0

r4 expð�itrÞ dr
i

QðtÞ dt;

vc ¼
1

2�

�

3lp

Z1
�1

Vðt;LÞQðtÞ dt; Vðt;LÞ ¼

ZL

0

r4 expð�itrÞ dr; ð12Þ

vc ¼
1

6lp

Z1
�1

Vðt;LÞQðtÞ dt ð13Þ

results. The terms Pðt;LÞ and Vðt;LÞ are defined by equations (14)

and (15):

Pðt;LÞ ¼
expð�iLtÞð1þ iLtÞ � 1

t2
; ð14Þ

Vðt;LÞ ¼
expð�iLtÞð24i� 24Lt � 12iL2t2 þ 4L3t3 þ iL4t4Þ � 24i

t5
:

ð15Þ

In this way, lp and vc are directly traced back to a fixed range order L

and to QðtÞ. Finally, the connection down to the CLDs is defined by

equations (1)–(3). A simpler approach to determine lpðL; ’; f Þ and

vcðL; ’; f Þ does not seem to exist.

APPENDIX B
Scattering intensity

The normalized SAS intensity, Ið0Þ ¼ 1, results from a combination

of equations (4) and (5):

IðhÞ ¼
4�

vc lp

1

2�

Z1
�1

h ZL

0

expð�itrÞ
2� 2 cosðhrÞ � hr sinðhrÞ

h4
dr
i

QðtÞ dt:

ð16Þ

After replacing the inner integral by a function Tðh;L; tÞ; from

equation (16),

IðhÞ ¼
2

vc lp

Z1
�1

Tðh;L; tÞQðtÞ dt ð17Þ

follows. If h 6¼ �t, the term Tðh;L; tÞ is defined by

Tðh;L; tÞ ¼
expð�iLtÞ

h4tðh2 � t2Þ
2

�
ht
	
ðiLt � 3Þh2

þ t2
ð1� iLtÞ



sinðhLÞ

þ 2i
	
ðh2
� t2
Þ

2
� h4eiLt



þ t
	
Lh4
þ tð4i� LtÞh2

� 2it3



cosðhLÞ

�
: ð18Þ

In the limiting case h ¼ �t, from equation (18),

Tðt;L; tÞ ¼
expð�2iLtÞð16ieiLt þ 2Lt � 5iÞ

8t5
þ

ið2L2t2 þ 8iLt � 11Þ

8t5

ð19Þ

results. Equations (17)–(19) fix a normalized intensity function IðhÞ in

terms of QðtÞ and L.
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