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The X-ray photon correlation spectroscopy technique probes the slow dynamics

of disordered materials, overcoming the limitations of using photon correlation

spectroscopy with coherent visible light. It extends the accessible range of the

modulus of the scattering vector to short wavelength density fluctuations and is

not sensitive to multiple scattering. We measure here experimentally the short-

time self-diffusion coefficient DS of a charge-stabilized colloidal dispersion. It is

in contradiction with theoretical models including many-body hydrodynamic

interactions.

1. Introduction

One of the outstanding properties of third-generation synchrotron-

radiation sources is their ability to produce coherent X-ray beams

several orders of magnitude more intense than previously available.

The access to coherent X-rays opens up a variety of possibilities for

new techniques such as X-ray photon correlation spectroscopy

(XPCS) [Grübel & Zontone (2004) and references therein]. Complex

relaxations in disordered systems have been studied successfully

using both visible coherent light and neutron scattering techniques.

Photon correlation spectroscopy techniques with coherent visible

light (also called dynamic light scattering, DLS) can cover the low-

frequency dynamics (!< 107 Hz) but probe only the long-wavelength

fluctuations (Q< 4� 10�3 Å) in materials that do not absorb visible

light. The modulus of the scattering vector Q is defined by

Q ¼ ð4�=�Þ sinð�=2Þ, where � is the scattering angle and � is the X-ray

wavelength. The use of coherent X-rays for performing photon

correlation spectroscopy enables the study of slow dynamics

comparable to the timescales probed by DLS (10�3 to 107 Hz) on

submicron, mesoscopic length scales (10�3 <Q< 1 Å
�1

), thus

enlarging the accessible Q range of DLS. In addition, this technique is

not sensitive to multiple scattering (Grübel et al., 2000; Robert et al.,

2005a), a problem usually occurring with DLS.

We present here experimental results that use the capabilities of

two-dimensional (2D) XPCS to probe the dynamics at large wave-

vectors of optically opaque samples. We measure the self-diffusive

properties (i.e. the asymptotic behavior of the effective diffusion

coefficient for large wavevectors) of a colloidal dispersion.

2. Dynamics of a colloidal dispersion

2.1. Speckle patterns

When coherent light is illuminating a disordered system, such as a

colloidal suspension, the instantaneous far-field scattering produces a

random diffraction pattern or ‘speckle pattern’ (Grübel & Zontone,

2004) as illustrated in Fig. 1. These speckle patterns are related to the

exact spatial arrangement of the scatterers, as a result of the inter-

ference of the scattered waves from all particles within the coherently

illuminated volume.

If the spatial arrangement of the scatterers changes with time, as in

the case of colloidal particles dispersed in a fluid phase, i.e. under-

going Brownian motion, one will observe that the corresponding

speckle patterns also change and evolve with time, as shown on the

movie presenting the time evolution of the recorded speckle patterns

(available as supplementary material1). A characterization of the

temporal intensity fluctuations IðQ; tÞ at a given wavevector Q within

the speckle pattern can thus reveal information on the underlying

dynamics of the system.

2.2. Intensity autocorrelation function

In a classical photon correlation spectroscopy experiment (i.e. with

a zero-dimensional detector) one places a detector with an aperture

Figure 1
One of the measured ‘time-resolved’ 2D speckle patterns from the colloidal silica
dispersion. The acquisition time was 1 s. The feature located close to (0, 0) is the
shadow of the beamstop. An example of the time evolution of these patterns is
available as supplementary material.1

‡ Present address: SLAC, Stanford University, USA.

1 A time-resolved movie presenting the evolution of the speckle patterns is
available from the IUCr electronic archives and can be viewed in the online
version of this paper (Reference: CJ6012). Services for accessing these data
are described at the back of the journal.



roughly equal to the size of a single speckle in the far-field scattering

region of the sample. The registered signal, which is proportional to

the fluctuating intensity IðQ; tÞ, is processed in a digital auto-

correlator to produce the normalized intensity autocorrelation

function gð2ÞðQ; �Þ defined as (Pusey, 1989)

gð2ÞðQ; �Þ ¼
hIðQ; tÞIðQ; t þ �Þi

hIðQ; tÞi2
; ð1Þ

where the angular brackets h. . .i denote the ensemble average. For

equilibrium dynamics, the time average is equivalent to the ensemble

average, thus allowing the intensity autocorrelation function to be

obtained with a point detector connected to a digital autocorrelator.

The intensity autocorrelation function is connected to the normalized

intermediate scattering function (ISF) f ðQ; �Þ via

gð2ÞðQ; �Þ ¼ 1þ �ðQÞjf ðQ; �Þj2; ð2Þ

where �ðQÞ is the contrast and depends on the coherence properties

of the beam and on the overall optical setup. For Brownian particles

[i.e. a diluted dispersion of non-interacting particles, e.g. Grübel et al.

(1999)], f ðQ; �Þ is expected to be in the short-time limit an expo-

nential decay (Pusey, 1989),

f ðQ; �Þ ¼ expð���Þ; ð3Þ

with a Q2 dependence of the relaxation rate �ðQÞ,

�ðQÞ ¼ D0Q2: ð4Þ

The proportionality factor D0 is the Stokes–Einstein diffusion

constant,

D0 ¼
kBT

6��RH

: ð5Þ

D0 depends on the Boltzmann constant kB, the temperature T, the

hydrodynamic radius of the particle RH and the shear viscosity � of

the suspending medium.

2.3. Self-diffusion properties of colloidal dispersions

For interacting colloidal systems, in the short-time limit the same

formalism can be used, replacing the diffusion constant D0 by a Q-

dependent effective diffusion constant DðQÞ. It presents deviations

from D0 that can be interpreted by the presence of two different

interaction phenomena (Pusey, 1989).

The first one is related to the direct interactions in the system and is

quantified by measuring the static structure factor SðQÞ, which can be

related to the mean-field interaction potential between the particles.

It is classically measured with small-angle scattering techniques. The

second one is related to many-body indirect interactions that are

mediated by the solvent. This can be quantified by accessing the so-

called hydrodynamic function HðQÞ [i.e. it is related to the coupling

of the mobility tensor and requires a N-body approach for concen-

trated dispersions (cf. Beenakker & Mazur, 1984)].

The effective diffusion coefficient is connected to these two

quantities by

DðQÞ ¼
D0

SðQÞ
HðQÞ: ð6Þ

A slowing down of the diffusion around the peak in SðQÞ is expected

and is often referred to as the cage effect. However, there is still an

open question about the diffusion behavior in the small and large

wavevector limits. In the limit of small wavevectors, Q! 0, collective

dynamics, characterized by a collective diffusion coefficient DC, are

probed. For large Q one expects to probe the individual dynamics, i.e.

the self-diffusive properties of the particles within the cage formed by

the neighboring particles.

The asymptotic behavior of the effective diffusion coefficient

DðQ!1Þ for large wavevectors is in fact a direct measure of a

specific value of the hydrodynamic function, i.e. Hð1Þ, and is

referred to as the short-time self-diffusion coefficient DS.

For large wavectors (i.e. typically for QR> 5), equation (6)

simplifies to

DS ¼ DðQ!1Þ ¼ D0Hð1Þ; ð7Þ

as SðQ!1Þ ¼ 1 by definition (Pusey, 1989).

For hard-sphere systems, the volume-fraction dependence of the

self-diffusion constant has been predicted (Beenakker & Mazur,

1984; Nägele et al., 1993) and experimentally measured (Segré et al.,

1995). DS is expected to be smaller than the Stokes–Einstein diffusion

constant D0 and to decrease with increasing volume fraction. The

theoretical evaluation of Hð1Þ from Nägele et al. (1993) is expected

to be identical for hard-sphere and charge-stabilized systems and is

expressed to the second order in volume fraction � as

Hð1Þ ¼ ðDS=D0Þ ¼ 1� 1:72�þ 0:88�2: ð8Þ

For very dilute samples (i.e. �� 1) the self-diffusion coefficient DS

is expected to be identical to the Stokes–Einstein diffusion constant

D0.

3. Experimental details

The investigated sample consists of spherical colloidal silica particles

dispersed in glycerol. These particles are slightly charge-stabilized. A

highly turbid sample with volume fraction � ¼ 0:1 (as obtained from

the measurement of the weight fraction of particles during the

dispersion process) was placed in a thin quartz capillary.

The XPCS experiment was carried out at the ID10C branch of the

Troı̈ka beamline at the European Synchrotron Radiation Facility

(ESRF) with X-rays of energy of 8 keV (� = 1.54 Å) selected by a

double-bounce Si(111) monochromator operating in horizontal

scattering geometry. A collimated and partially coherent X-ray beam

is obtained by using a pinhole with a diameter of 20 mm. The scat-

tering intensity (speckle pattern) is recorded 3.3 m from the sample

by a direct-illumination charge-coupled device (CCD) area detector

(Princeton Instruments). As an illustration, a measured speckle

pattern is presented in Fig. 1, with its typical and characteristic grainy

appearance. The CCD pixel size is 20 � 20 mm. The sample is cooled

down to T = 259.55 K. At this temperature the viscosity of the

glycerol is � = 56.193 Pas.

A time series of speckle patterns was recorded (a sample ‘speckle

movie’ is available as supplementary material) where one can clearly

observe the speckle intensity fluctuations, especially at low Q where

the dynamics are the slowest. The movie is made using measured data

and with a speed of 50 times real time, in order to calculate the

ensemble-averaged intensity autocorrelation using a multi-Q, multi-�
autocorrelator algorithm (Cipelletti & Weitz, 1999),

gð2ÞðQ; �Þ ¼
hIijðQ; tÞIijðQ; t þ �Þiij
hIijðQ; tÞiijhIijðQ; t þ �Þiij

; ð9Þ

where h. . .iij denotes an average over a selection of intensities Iij at

pixels (i; j), defining a specific Q (which here corresponds to a circular

average). The minimum lag time �, set by the acquisition time of a

single frame (1 s) and the transfer rate of the CCD (0.51 s), is 1.51 s.

(Speckle patterns were acquired at this rate over about 3 h.) The

correlation functions are obtained by performing circular averages at

given values of Q, thus performing the required ensemble average.
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The large number of pixels defining a single wavevector (i.e. typically

larger than a thousand) allows high-quality data to be obtained even

for weakly scattering samples. It also allows the dynamics of non-

ergodic systems to be measured properly, as one would expect, for

example, for probing the dynamics of glassy colloidal systems, where

a proper ensemble average is required. This has recently been

performed in two experiments (Robert et al., 2006; Bandyopadhyay et

al., 2004). As an example, the ISF at QR = 15.5 displayed in Fig. 3 was

obtained with a mean number of X-ray photons per pixel per second

of 0.1 (cf. Fig. 2) and the number of pixels contained in the annulus

defining QR = 15.5 was 4491. For comparison, the time required to

access the same ISF with a comparable accuracy and a point detector

(with identical spatial resolution, i.e. 20 � 20 mm) connected to a

digital autocorrelator would be 562 days! In addition, 2D XPCS is

probing the dynamics of the sample over the entire Q range simul-

taneously. This feature allows the dynamics of out-of-equilibrium

systems to be probed and should open up new perspectives in this

field (cf. Robert et al., 2006; Bandyopadhyay et al., 2004).

4. Experimental results

4.1. Small-angle X-ray scattering

We first characterized the colloidal dispersion by measuring its

small-angle X-ray scattering (SAXS). This was obtained by circularly

averaging the mean of the whole series of time-resolved speckle

patterns recorded during the XPCS experiment (i.e. equivalent to

measuring the SAXS with an incoherent X-ray beam). It is presented

in Fig. 2. The solid line is the fit to the data using a model describing

the form factor for an assembly of polydisperse spheres with a Schultz

size distribution function (Kotlarchyk & Chen, 1983). We obtained

the mean radius of the spheres to be R ¼ 2608� 5 Å and a poly-

dispersity of � ¼ 0:03. The extremely low polydispersity makes it a

model system for comparison with colloidal hydrodynamic theories,

which until now do not include size polydispersity. The data are

presented for QR � 4:5, as the smaller wavevectors are contained

below the shadow of the beamstop covering the area close to

ðQx;QyÞ ¼ ð0; 0Þ to protected the CCD from the strong direct beam

intensity. The scattering intensity IðQÞ ¼ SðQÞFðQÞ [where SðQÞ is

the static structure factor and FðQÞ the form factor] thus reduces to

the single-particle form factor FðQÞ as SðQÞ ¼ 1 for these large

wavevectors (Pusey, 1989).

4.2. Two-dimensional X-ray photon correlation spectroscopy

The correlation functions gð2ÞðQ; �Þ were evaluated for the whole

series of recorded speckle patterns, from which the ISFs were

extracted. A selection of ISFs are presented in Fig. 3 with their

corresponding fit (solid lines) to equation (3) for QR = 4.5, 5.3, 7.7, 9.5

and 15.5. The high quality of the data unambiguously shows that the

ISFs are single exponential decays for the whole Q range, in agree-

ment with Lumma et al. (2000), in which a charge-stabilized colloidal

sample of comparable volume fraction was investigated.

Fig. 4 summarizes the results of the fitting procedure from all the

obtained ISFs. It presents the dispersion relation of the relaxation

rate � as a function of QR. The dotted line shows the expected

behavior for a system consisting of the same colloidal spheres but

that are not interacting (i.e. undergoing free Brownian motion).

The dispersion relation is given by equation (4) with DTh
0 =

1:29� 10�17 m2 s�1 using the mean radius from the SAXS measure-
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Figure 3
Measured normalized ISFs for QR = 4.5, 5.3, 7.7, 9.5 and 15.5. The solid lines are the
fit to the data with a single exponential decay [cf. equation (3)].

Figure 2
Small-angle X-ray scattering intensity obtained from the radial average of the mean
of all the recorded speckle patterns. The solid line is the fit to the data, using a
model describing the form factor for an assembly of polydisperse spheres with a
Schultz size distribution function. The fitted radius and size polydispersity of the
spheres are R ¼ 2608� 5 Å and � ¼ 0:03, respectively.

Figure 4
Dispersion relation (symbols) of the relaxation rate �. The dotted line is the
prediction for the systems at infinite dilution (i.e. undergoing free Brownian
motion) with the proportionality factor being the Stokes–Einstein diffusion
constant DTh

0 ¼ 1:29� 10�17 m2 s�1. The solid line is a fit to the data assuming a Q2

‘parabolic’ behavior. It gives the self-diffusion constant D
exp
S ¼ 7:5� 10�18 m2 s�1.

The dashed line is the predicted dispersion using equation (8), giving
DTh

S ¼ 1:08� 10�17 m2 s�1.



ment as input to equation (5). As expected, the data strongly differ

from free Brownian behavior. With the large QR range explored here

[i.e. > 4:5, in contrast with Lumma et al. (2000) who investigated the

dynamics in the vicinity the maximum of the static structure peak, i.e.

QR< 7] one expects the experiment to be only sensitive to the self-

diffusion constant DS. This is perfectly in agreement with theory as

the experimental observations present a ‘parabolic’ Q2 dependence

of the relaxation rate.

The result of the fit to equation (4), displayed by the solid line in

Fig. 4, replacing D0 by D
exp
S , gives the measured self-diffusion

constant D
exp
S ¼ 7:5� 10�18 m2 s�1 and Hexpð1Þ ¼ D

exp
S =D0 ¼ 0:579.

It contrasts strongly with previous measurements by Lumma et al.,

where the dynamics were ‘showing quantitative agreement’ with a

hard-sphere theoretical model. Our result is here in contradiction

with the theoretical prediction given by equation (8) [i.e.

HThð1Þ ¼ 0:837], giving DTh
S ¼ 1:08� 10�17 m2 s�1 as shown by the

dashed line in Fig. 4.

The experimental value Hexpð1Þ ¼ 0:579 is observed to be smaller

than the theoretical one. This points towards a lack of colloidal

hydrodynamic theories (Beenakker & Mazur, 1984; Nägele et al.,

1993), in which the hydrodynamic behavior is assumed to be identical

for hard-sphere and charge-stabilized systems.

Until now experimental confirmation of equation (8) has been

obtained on hard-sphere systems only (e.g. Segré et al., 1995).

However, the system investigated here is known to be weakly charge-

stabilized. This could be the origin of the observed discrepancy

between Hexpð1Þ and HThð1Þ. Recent measurements (Grübel et al.,

2000; Robert, 2001; Robert et al., 2005b) of the whole Q dependence

of the hydrodynamic function HðQÞ for charge-stabilized colloidal

dispersions in non-dilute solutions (i.e. �> 0:04) have shown similar

behavior and tend toward the same conclusion. The charge-stabilized

system investigated by Lumma et al. is, however, described ‘quanti-

tatively’ by the hard-sphere model from the static, dynamic and

hydrodynamic points of view, and points towards a small contribution

of the electrostatic direct interactions.

5. Conclusion

We used 2D XPCS to probe the dynamics of an opaque colloidal

dispersion. The large wavevector behavior, i.e. where the static

structure factor SðQÞ ¼ 1, was probed. We mapped out the Q

dependence of the normalized ISFs. The high 2D XPCS data quality,

resulting from the ensemble average for each wavevector over a large

number of pixels from the 2D speckle patterns, allowed the data to be

unambiguously modeled with single exponential decays using equa-

tion (3).

The dispersion relation of the relaxation rate � is observed to have

a ‘parabolic’ Q2 dependence, thus confirming that the self-diffusive

properties can be modeled with equation (4), just replacing the

Stokes–Einstein diffusion constant D0 by the self-diffusion constant

D
exp
S .

The measured self-diffusion constant D
exp
S is observed to be smaller

than the theoretical one, DTh
S . We do thus observe slower dynamics

than expected, which points towards a lack of modeling for colloidal

many-body hydrodynamic theories, which until now assume that the

hydrodynamic behavior is identical for charge-stabilized and hard-

sphere particles.

These results, in combination with recent measurements of the

complete Q dependence of the hydrodynamic function HðQÞ, clearly

demonstrate that the charge-stabilized character of the particles

should be taken into account.

From a phenomenological point of view the presence of the surface

charges, resulting in a screened Coulomb interaction potential, slows

down the dynamics of the system as compared to dispersion of non-

charged particles of identical volume fraction.

Veronique Trappe (University of Fribourg, Switzerland) is

acknowledged for providing the sample and fruitful discussions.

References

Bandyopadhyay, R., Liang, D., Yardimci, H., Sessoms, D. A., Borthwick, M. A.,
Mochrie, S. G. J., Harden, J. L. & Leheny, R. L. (2004). Phys. Rev. Lett. 93,
228302(1–4).

Beenakker, C. J. W. & Mazur, P. (1984). Physica A, 126, 349–370.
Cipelletti, L. & Weitz, D. A. (1999). Rev. Sci. Instrum. 70, 3214–3221.
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Magn. Magn. Mater. 289, 47–49.
Robert, A., Wagner, J., Autenrieth, T., Härtl, W. & Grübel, G. (2005b). J.
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