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Analytical formulae describing multiple small-angle neutron scattering in

ferromagnetic materials are derived from transport equations. The derivation is

based on Molière’s theory of multiple small-angle scattering assuming that the

mean free path of the neutrons is large compared to the size of the scatterers. In

addition to the formalism developed earlier for nuclear scattering, the new

formulation takes into account the spin dependence of the scattering cross

section and spin flips caused by subsequent scattering events. This leads to an

anomalous distribution of scattering intensity and polarization, as demonstrated

by examples of model calculations and Monte Carlo simulations. In particular,

multiple scattering of polarized neutrons can lead to either smoothing or

sharpening of the scattered beam anisotropy depending on the polarization of

the primary beam and the nuclear and magnetic contrasts of the scatterers. The

presented theory has been implemented in the data-fitting program SASProFit

suitable for both the modelling of multiple scattering effects and the analysis of

experimental data.

1. Introduction

Multiple small-angle scattering (MSAS) leads, together with instru-

mental smearing, to partial loss of structural information contained in

measured scattering curves. In many cases, this effect can be made

negligible by measuring thin samples, using short neutron wave-

lengths or by dilution of the scatterers. However, there are situations

when multiple scattering cannot be avoided, e.g. in high-resolution

measurements focused on large inhomogeneities or in time-resolved

experiments necessitating high count rates. In such cases, one has to

take multiple scattering into account in the course of data analysis.

In the small-angle approximation, multiple scattering is described

by Molière’s theory, which can be derived from the transport equa-

tion for radiation particles passing through a scattering medium

(Bethe, 1953). The theory is valid for any form of differential single-

scattering cross section, provided that the scattering is limited to

small angles and the mean free path of the particles is large compared

to the size of the scatterers or, more generally, to the correlation

length of the scattering medium. Schelten & Schmatz (1980) arrived

at Molière’s expressions using a multiconvolution approach, which

turns out to be equivalent to Bethe’s solution of the transport

equation. They assumed the diffractive regime of neutron and X-ray

scattering, in which scattering by a single particle is kinematical

(described by the Born approximation). Their result was derived for

azimuthally isotropic scattering functions, although Molière’s theory

also permits the treatment of anisotropic scattering or the calculation

of scattering curves for infinite-slit geometry (Snyder & Scott, 1949).

A full dynamical description of scattering by a spheroid particle has

been used in the work of Berk & Hardman-Rhyne (1985, 1988) and

Allen & Berk (1994) to calculate multiple scattering in the general

case, including the refractive regime. This generalization permits the

study of systems with large high-contrast inhomogeneities, such as

microporous silica or plasma-sprayed ceramics coatings (Hardman-

Rhyne & Berk, 1985; Hardman-Rhyne et al., 1986; Long & Krueger,

1989; Allen et al., 2002). Multiple magnetic scattering has been

considered before in the calculations of polarized neutron beam

transmission through ferromagnets (Halpern & Holstein, 1941;

Hiismaki, 1983) and in the interpretation of critical scattering in

ferromagnets (Toperverg et al., 1979).

For a complete description of multiple scattering by magnetic

inhomogeneities, one has to distinguish different components of the

scattering cross section with respect to the initial and final spin states

of the neutrons. In this work, Molière’s theory is adapted so that the

spin dependence of the scattering cross section as well as spin flips

caused by subsequent scattering events are taken into account. In x2,

the MSAS theory for nuclear scattering is reviewed in a form suitable

for evaluation of two-dimensional anisotropic scattering curves and

for further generalization to the case of magnetic scattering of

polarized neutrons, which is introduced in x3. Examples of MSAS

calculated for magnetic systems, particularly those showing anom-

alous intensity and polarization distributions due to multiple scat-

tering, are presented and discussed in x4.

2. Nuclear multiple scattering

The formulae for MSAS of neutrons by nonmagnetic materials

obtained by Schelten & Schmatz (1980) for isotropic systems can be

expressed more generally in a vector form, which permits the inclu-

sion of anisotropic scattering as well as an easy transition to the case

of infinite-slit geometry. Let us start with the single-scattering

differential cross section, d�/d�(q), which is related to the auto-

correlation function of the medium by the pair of Fourier transfor-

mations



d�

d�
qð Þ ¼ ��2

Z
g rð Þ cos q � rð Þ d2r; ð1aÞ

gðrÞ ¼ k�2

Z
d�

d�
ðqÞ cos q � rð Þ d2q; ð1bÞ

where k = 2�/� is the magnitude of the neutron wavevector. Here we

assume that, in the small-angle approximation of elastic scattering,

the scattering vector q has only two components qx and qy in the

detector plane, while qz = 0. The function g(r) is then the three-

dimensional autocorrelation function of the medium, �(r, z),

projected along the beam axis (z),

gðrÞ � �2
R1
�1

� r; zð Þ dz: ð2Þ

The factor �2 and the square of the scattering contrast have been

included in the definition of g(r) in order to simplify following

expressions. The total scattering cross section is then �T = g(0), as

follows from equation (1a) by integration over d� = k�2 d2q. The

beam profile W(q, t) as a function of apparent scattering vector q and

depth in the sample t is given by the transport equation (Bethe, 1953)

@W q; tð Þ

@t
¼ k�2

Z
W q0; tð Þ

d�

d�
q� q0ð Þ dq0 ��TW q; tð Þ: ð3Þ

Let us proceed from W(q, t) to its Fourier image,

H r; tð Þ ¼ k�2
R

W q; tð Þ cos q � rð Þ d2q: ð4Þ

Equation (3) then transforms to

@H r; tð Þ

@t
¼ g rð Þ � g 0ð Þ½ �H r; tð Þ; ð5Þ

which for the boundary condition W(q, 0) = k2�(q) has a simple

solution,

H r; tð Þ ¼ exp g rð Þ � g 0ð Þ½ �t
� �

: ð6Þ

It is easy to show that the solution for infinite-slit geometry, where the

scattering is integrated along qy/k, has the same form. One only needs

to set y = 0 and replace r with the x coordinate in the equations (5)

and (6).

3. Multiple scattering including magnetic interactions

When dealing with scattering of polarized neutrons by magnetic

inhomogeneities, we need to distinguish four components of the

scattering cross section for all the combinations of initial and final

neutron spin states (Moon et al., 1969),

d���

d�
qð Þ ¼ SN qð Þ þ SM qð Þ � SNM qð Þ; ð7aÞ

d���

d�
qð Þ ¼ SSF qð Þ; ð7bÞ

where the indices N, M, NM and SF denote the nuclear, magnetic,

nuclear–magnetic interference and spin-flip terms, respectively.

Generally, there is also a spin-dependent spin-flip term which is zero

for simple ferromagnets and therefore omitted in equation (7b). The

partial cross sections Si(q) (i = N, M, NM, SF) have to be calculated

for a given microstructural model, which may include the simple

model of aligned ferromagnetic particles in a nonmagnetic matrix

considered later in this work as well as a more elaborated micro-

magnetics model (Weissmüller et al., 2001; Löffler et al., 2005). The

particular form of the single-scattering cross section is irrelevant for

the following considerations regarding multiple scattering. For each

of the Si(q) terms, equation (1b) defines the corresponding correla-

tion function gi(r) and the total scattering cross section �i = gi(0). In

addition, we have to introduce the total cross sections for absorption

and large-angle scattering, �A, and depolarization of the transmitted

beam, �D. The latter may include, for example, spin rotations in large

ferromagnetic domains with misaligned magnetization, for which the

scattering angle is negligibly small. On the other hand, the small-

angle-scattering spin-flip cross section is already included in the term

�SF. In analogy to equation (5), we can now construct transport

equations for neutron beams in the two spin states (+, �),

@Hþ

@t
¼ gN þ gM � gNMð ÞHþ þ gSFH�

� �T ��NM þ�Dð ÞHþ þ�DH�; ð8aÞ

@H�

@t
¼ gN þ gM þ gNMð ÞH� þ gSFHþ

� �T þ�NM þ�Dð ÞH� þ�DHþ; ð8bÞ

where �T = �A + �N + �M + �SF. Note that the explicit notation of

the independent variables r and t at the functions H(r, t) and gi(r) is

omitted. The first two terms on the right-hand side describe small-

angle scattering for the given spin state as expressed by equations (7),

while the other terms represent the attenuation of the neutron beam

due to all kinds of scattering and absorption. This pair of equations

actually describes a random walk of neutrons in given spin state

through the scattering medium, where the mean free paths and q-step

distributions for the four spin transitions are given by �i
�1 and Si(q)

from equations (7). An analytical solution of these equations can thus

be directly compared to Monte Carlo simulations of such a random

walk, as we show later in this paper. For practical reasons, it is more

convenient to solve the transport equations for H � Hþ þH� and

Pf � Hþ �H�, which describe the total intensity as measured

without polarization analysis and final polarization of the scattered

neutron beam, respectively. Equations (8) then transform to

@H

@t
¼ gN þ gM þ gSF

� �
H � gNMPf ��TH þ�NMPf; ð9aÞ

@Pf

@t
¼ gN þ gM � gSF

� �
Pf � gNMH � �T þ 2�Dð ÞPf þ�NMH: ð9bÞ

At the sample entry surface, we assume W(q) = k2�(q) and polar-

ization Pi, hence the boundary condition is H = 1 and Pf = Pi for t = 0.

Equations (9) then have a solution in the form

H ¼ expð�tÞ
�

coshð�tÞ

þ ��1 gSF þ�D � Pi gNM ��NMð Þ
� �

sinhð�tÞ
�

ð10aÞ

Pf ¼ exp �tð Þ
�

Pi cosh �tð Þ

� ��1 gNM ��NM þ Pi gSF þ�D

� �� �
sinh �tð Þ

�
; ð10bÞ

where � � gN þ gM ��T ��D and � � ½ðgNM ��NMÞ
2
þ ðgSF +

�DÞ
2
�
1=2.

It is usually possible to calculate the nuclear component of the

correlation function, gN(r) directly from a real-space model repre-

sented by the nuclear scattering length density, �N(r). On the other

hand, the magnetic components have to include the q-dependence of

the scattering amplitude in the form of the Halpern–Johnson vector,

M? qð Þ ¼ jqj�2q� lðqÞ � q½ �; ð11Þ

where l(q) is the Fourier image of the magnetization. A prescription

for the calculation of the beam distribution, W(q, t), therefore

involves calculation of single-scattering cross sections for the given

structural model, then the correlation functions gi(r) are obtained by
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the Fourier transformation [equation (1b)] and converted to H(r, t)

using equations (10). Finally, W(q, t) is calculated by the inverse of

the Fourier transformation [equation (4)]. A similar procedure can be

used for the q-dependence of the final polarization.

By definition, the functions H(r, t) and W(q, t) also contain the

transmitted (unscattered) part of the beam. The intensity and

polarization of the transmitted beam can therefore be calculated

from equations (10) by setting gi = 0 (or equivalently r =1), so that

� � ð�2
NM þ�2

DÞ
1=2 and

H 1; tð Þ ¼ exp �ð�T þ�DÞt
� �

� cosh �tð Þ þ ��1 �D þ Pi�NMð Þ sinh �tð Þ
� �

ð12aÞ

Pf 1; tð Þ ¼ exp � �T þ�Dð Þt
� �

� Pi cosh �tð Þ þ ��1 �NM � Pi�Dð Þ sinh �tð Þ
� �

: ð12bÞ

This is actually identical with the result obtained by Halpern &

Holstein (1941) for transmission of neutrons through an incompletely

saturated polycrystalline ferromagnet.

As a special case, let us consider purely magnetic scattering, for

which gNM = 0, and equation (10a) yields

H ¼ exp �þ �ð Þt½ �: ð13Þ

We may see that, without the nuclear–magnetic interference term,

there is no substantial difference in the treatment of multiple scat-

tering with respect to the result obtained by Schelten & Schmatz

(1980). Obviously, it is the nuclear–magnetic interference term which

is responsible for partial polarization of the scattered neutron beam

and may lead, in combination with multiple scattering, to an anom-

alous shape of scattered beam profiles. This is demonstrated with

several examples of model calculations in the following section.

4. Model calculations

The following model calculations are based on a simple structural

model consisting of spherical ferromagnetic particles embedded in a

nonmagnetic matrix with a log-normal distribution of sphere radii,

df ðRÞ

dR
¼

f0

ð2�Þ1=2�R
exp �0:5��2 lnðRÞ � lnðR0Þ þ 0:5�2

� �2
n o

; ð14Þ

characterized by the total volume fraction, f0, mean radius, R0 and

distribution width, �. We assume perfect alignment of the particles

magnetization in an external magnetic field oriented perpendicularly

to the neutron beam, along the x axis. In such a case, the partial

scattering cross sections entering in equations (7) can be expressed in

polar coordinates as

Siðq; ’Þ ¼ ai ’ð ÞF qð Þ2; ð15Þ

where q = |q| and F(q)2 is the square of the particle form factor

averaged over the size distribution. In the small-angle approximation,

the factors ai(’) are

aN ¼ �
2
N; aM ’ð Þ ¼ �2

M sin ’ð Þ4;

aNM ’ð Þ ¼ 2�N�M sin ’ð Þ2; aSF ’ð Þ ¼ �
2
M sin ’ð Þ2cos ’ð Þ2;

ð16Þ

where ’ is the angle between the magnetization and scattering

vectors and �N and �M are the nuclear and magnetic scattering length

contrasts, respectively. The calculations were made on a grid of 128�

128 pixels with the help of the data-fitting program SASProFit

(Saroun, 2000, http://omega.ujf.cas.cz/SAS), which implements the

above formalism together with other tools for SAS data analysis. We

neglect instrumental smearing and interparticle interference in order

to assess the multiple scattering effects only. However, the structure

factor can be included in Si(q) when necessary, thus allowing the

study of dense correlated systems. Appropriate instrumental

smearing can be applied to W(q, t) in the usual way.

4.1. Polarization of the scattered beam

In the first example, polarization of the scattered beam was

calculated in the single and multiple scattering regimes with total

scattering probabilities p = 0.05 and 0.77, respectively, adjusted by

the corresponding volume fractions of the spheres. The values of the

model parameters were: �M = 4.97 � 1010 cm�2, �N/�M = 0.5, R0 =

100 nm and � = 0.3. The volume fraction and sample thickness were

adjusted to yield the scattering probabilities given above. The results

for an unpolarized initial beam (Fig. 1) show that multiple scattering

introduces significant dependence of polarization on the magnitude

of the scattering vector, while in the single-scattering case the

polarization depends only on the azimuth angle as sin(’)2.
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Figure 1
Polarization of scattered neutrons for (a) multiple scattering (p = 0.77) and (b)
single scattering (p = 0.05). The initial beam was unpolarized.

Figure 2
Analytical calculations (lines) and Monte Carlo simulations (gray-scale maps) of
the scattering intensity, assuming a perfectly polarized incident beam with spin-
flipper switched either OFF (left, Pi = 1) or ON (right, Pi =�1). Multiple scattering
with scattering probability p = 0.77 (a) is compared to the single scattering case (b).



4.2. Distribution of scattering intensity, comparison with Monte

Carlo simulations

In the next example, we have calculated multiple scattering for the

same model as in the previous case, assuming an ideally polarized

initial beam with Pi = 1 (spin flipper off) or Pi = �1 (flipper on). The

ratio �N/�M = 0.5 was selected because it yields azimuthally isotropic

single scattering for Pi = 1 and the effect of spin transitions in the

multiple scattering process is clearly revealed (see Fig. 2). As

mentioned above, the transport equations (8) describe a random walk

accompanied by the exchange between spin states of neutrons

passing through the sample. Such a random walk process was simu-

lated by the Monte Carlo method using the model single-scattering

cross section as the distribution function for walk steps in q and t. The

result is compared with the analytically calculated beam profiles in

Fig. 2. This example clearly demonstrates that multiple scattering

changes the sin(’)2 modulation expected for single scattering to a

more complex one with fourfold symmetry at small q. Obviously, this

effect arises from the difference between scattering cross sections for

the two spin states due to the nuclear–magnetic interference term.

After the first scattering event, the initially polarized beam (Pi = 1) is

partly depolarized by spin-flip scattering with sin(2’)2 dependence.

Neutrons with their spin flipped to the (�) state undergo secondary

scattering with higher probability compared to those in the (+) state.

Consequently, the (�) neutrons are partly removed from the central

part of the neutron beam, leaving there an ‘imprint’ modulated as

sin(2’)2 (see Fig. 3). Multiple scattering may thus lead either to

smoothing or sharpening of the scattered beam anisotropy,

depending on the polarization of the primary beam and the ratio of

the magnetic and nuclear scattering contrasts.

In any case, multiple scattering changes the ’ dependence of the

scattered beam distribution and the methods commonly used to

separate magnetic and nuclear scattering components may become

inappropriate. The next example illustrates this problem on the

evaluation of �M/�N from the flipping ratio.

4.3. Flipping ratio

The last example uses similar model parameters as the previous

ones, but the scattering contrast and size range were set to approach a

real system of magnetite particles in glassy ceramics studied earlier by

Lembke et al. (1999). The corresponding model parameters were thus

�M = 1.36 � 1010 cm�2, �N/�M = 1.6, R0 = 10 nm, � = 0.3 and f = 20%.

The sample thickness was set to 0.2, 1 and 5 mm resulting in the

scattering probabilities of 1.8, 9 and 37%, respectively, at Pi = �1.

Scattering curves were calculated for two detector distances, 1 and

4 m, in order to cover a broader q range and to reduce the smearing

effect near the beam center caused by the finite pixel size. From the

scattering curves obtained for the two final spin states, W�(q), the

ratio �M/�N was calculated as (Wiedenmann, 2000)

�M

�N

qð Þ ¼
1

2

W� q?ð Þ �Wþ q?ð Þ

W� qjj
� �
þWþ qjj

� � ; ð17Þ

where q? and q|| are the q values measured along the directions

perpendicular and parallel to the applied magnetic field, respectively.

The ratio �M/�N should be constant for our simple model.

However, multiple scattering causes an apparent q dependence as

shown in Fig. 4. Consequently, multiple scattering may lead to a

significant bias of structural parameters evaluated from SANS

measurements with polarized neutrons even for a moderate scat-

tering probability of p ’ 10%. Unfortunately, the q dependence of

the �M/�N ratio shown in Fig. 4 is not a characteristic feature of

multiple scattering, since a very similar effect can also be observed in

the single-scattering regime, e.g. for a core–shell model of magnetic

particles with varying magnetic and nuclear contrasts (Wiedenmann,

2000).

5. Concluding remarks

The main result of this work is represented by the pair of equations

(10), which permit the calculation of the intensity and polarization of

multiple small-angle scattering by magnetic and nuclear inhomo-

geneities. They are valid under the same conditions as Molière’s

theory of multiple scattering, i.e. the neutrons’ mean free path has to

be large compared to the sizes of the inhomogeneities. Both analy-

tical calculations and Monte Carlo simulations predict anomalous

modulation of the scattering at small q with respect to the angle ’
between magnetization and scattering vector in the case when the

nuclear–magnetic interference part of the scattering cross section can

not be neglected. Generally, multiple scattering changes the aniso-

tropy of the scattered beam intensity and polarization. Care should

therefore be taken when employing the sin(’)2 dependence of

magnetic scattering in data analysis, unless multiple scattering can a

priori be ruled out. While multiple scattering can probably be

avoided when studying small nanoparticles like in ferrofluids, its

significance increases rapidly with the size of the inhomogeneities

studied. The results presented here might therefore be useful for

analyzing experimental data on composite materials containing

ferromagnetic grains or ferromagnets with coarse nonmagnetic
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Figure 3
Profiles of a neutron beam scattered at q = 0.038 nm�1 corresponding to the two-
dimensional patterns shown in Fig. 2, normalized to W = 1 at ’ = 0. The profiles
were fitted to the function W(’) = A + Bsin(’)2 + Csin(2’)2 (lines).

Figure 4
The apparent ratio of the magnetic and nuclear scattering contrast evaluated from
the calculated MSAS curves with polarized neutrons.



precipitates or pores. Equations (10) may then serve as a theoretical

basis for two-dimensional data analysis involving multiple scattering

corrections. They have been implemented in the data-fitting program

SASProFit (Saroun, 2000), which permits both the calculation of

model scattering curves including multiple scattering and data fitting.
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