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In single-crystal superconductors in the mixed state, flux-line structures may

have a lower symmetry than the host crystal. In this case, multiple degenerate

flux lattice domains may be present simultaneously and give rise to complicated

small-angle diffraction patterns. The interpretation of these patterns in terms of

the flux lattice structure in a single domain is discussed, with particular reference

to recently reported spontaneous symmetry-breaking flux-line lattice phases

in niobium.

1. Introduction

When a sufficiently large magnetic field is applied to a type II

superconductor, the field enters the superconductor in the form of

quantized flux lines, each surrounded by a vortex of super-current,

and each carrying one quantum of magnetic flux, �0 ¼ h=2e. In the

absence of pinning, these lines arrange themselves in the form of a

two-dimensional flux-line lattice. In the simplest possible isotropic

case, the flux lattice has a regular hexagonal structure, and all

orientations of this flux lattice relative to the underlying crystal lattice

of the superconductor have the same energy. In practice in real

crystals, the flux lattice structure may well be in a distorted or non-

hexagonal coordination and is generally aligned with its basis vectors

in a definite relationship to those of the crystal. The cause of this

alignment is as follows: to lowest order there is degeneracy with

respect to flux lattice orientation; thus, any additional interaction,

however small, will be able to cause alignment. This may be due to

intrinsic causes, such as crystalline anisotropy, or extrinsic ones, such

as pinning by twin planes in high-Tc superconductors, or alignment

with the external faces of a crystal. Furthermore, it is known that in

the isotropic case the hexagonal and square flux lattice structures

only differ in free energy by a few percent, so that quite weak sources

of anisotropy may lead to a severe distortion of the flux lattice

structure away from undistorted simple hexagonal structure.

However, unless the flux lattice has the same symmetry about the

field axis as the underlying crystal, there will be several flux lattice

domain orientations with identical energies. If randomly nucleated,

these different domains will be present in approximately equal

proportions, and a resulting small-angle neutron scattering (SANS)

diffraction pattern will be a superposition of the patterns due to the

individual domains. This paper is about simple techniques to interpret

these patterns in terms of the contributions of individual flux lattice

domain orientations. Once the flux lattice structure of one domain is

known, we may attempt to interpret its structure and distortion in

terms of anisotropy of Fermi surface, or of the superconducting

energy gap, or in terms of extrinsic effects.

2. Methods of interpretation of flux lattice diffraction
patterns

For achievable fields and neutron wavelengths, the flux lattice spacing

is much larger than the neutron wavelength so scattering angles are

small and SANS is the appropriate technique. In the usual (but not

the only possible) SANS geometry for investigating a flux-line lattice

(FLL), the magnetic field is approximately parallel to the incoming

neutron beam. If the sample and field are rocked together by small

angles about a horizontal or vertical axis perpendicular to the

neutron beam, various FLL Bragg planes will be brought into the

diffracting condition and each will give rise to a diffraction spot on a

two-dimensional multi-detector. A sum of the intensities over all

rocking angles will give a diffraction pattern that is an image of the

(planar) reciprocal lattice of the FLL, and all diffraction spots will

appear at positions given by (sums of) the reciprocal lattice vectors of

any particular FLL domain present in the sample. Because of its two-

dimensional nature, the real-space FLL has exactly the same shape as

the reciprocal lattice, but rotated by 90� about the field axis, and

scaled. In Fig. 1 are shown schematic diffraction patterns (a) from a

single square FLL which is aligned with the crystal axes, typically seen

in a high-Tc superconductor at high fields (e.g. Brown et al., 2004); (b)

from a pair of FLL domains, such as would be obtained in niobium at

low fields and high temperatures (Laver et al., 2006), and (c) from a

single domain contributing to the pattern in (b). It will be noted that

the total diffraction pattern in case (b) has the same symmetry about

the field axis as the crystal, even though the individual FLL domains

giving rise to it do not.

2.1. Removal of degeneracy

The simplest technique to isolate individual flux lattice domains is

to remove the degeneracy between them by rotating the sample

relative to the field, so that the different domains are distinct in

energy. In a typical neutron scattering cryostat, rotation of the sample

stick about a vertical axis is easily performed. In the case shown in

Fig. 1(b), a rotation of ~5� is sufficient to completely remove half the

spots when the flux lattice is reformed by cooling through Tc, and the

resulting pattern is shown in Fig. 1(c). It represents a distorted

hexagonal lattice, with the half unit cell an isosceles triangle whose

base is approximately equal to its height. The base is parallel to a

<100> direction in niobium. It is clear that the symmetry-related

domain with the FLL rotated by 90� about the field axis will be

degenerate if the field is exactly along [001], and that equally popu-

lated domains will give the symmetrical pattern shown in Fig. 1(b).



In Fig. 2(a) is shown experimental data obtained in niobium cooled

to 2 K with a field of 0.16 T applied along the [001] direction [a lower

temperature than the case represented in Fig. 1(b)]. In these results,

the crystal <100> axes were oriented at ~9� to the horizontal and

vertical directions in the figure. Rotation by 5� about the vertical axis

was sufficient to remove some of the FLL domains, but the spots away

from the crystal axes were still double. It required a rotation of 15� to

remove sufficiently the remaining degeneracy and give the almost

single-domain pattern seen in Fig. 2(c). (Note that the misalignment

of the crystal axes by 9� relative to the vertical rotation axis was

necessary to permit the rotation to remove the remaining degen-

eracy.) We now see clearly that the basic FLL domain has a half unit

cell that is scalene-triangular, i.e. the lowest possible symmetry 2d

Bravais lattice, despite the fact that it is formed within an underlying

crystal possessing fourfold rotation symmetry and two mirror planes.

It should be noted that there is no symmetry requirement for one pair

of the diffraction spots to lie along a <100> direction, although this is

the case within experimental resolution. However, at higher fields, we

have sufficient resolution to observe that these spots move steadily

away from the symmetry directions (see Laver et al., 2006). It is quite

remarkable that the FLL structure spontaneously and so compre-

hensively breaks the underlying crystal symmetry, although once

again we observe that the total diffraction pattern from all four FLL

domains has the square symmetry of the underlying crystal. It is

therefore important to disentangle the domain effects to be certain of

the FLL symmetry.

One final remark may be appropriate here: random domain

nucleation or slight experimental misalignments may cause different

volume fractions of otherwise equivalent domains. It may therefore

be possible by careful measurements of integrated intensities to

associate certain diffraction spots together and to deduce the struc-

ture of a single domain without the need for sample rotation. This

approach may be combined with those described in the following

sections.

2.2. Use of Bravais lattice properties

Except at very low fields in layered superconductors (where direct

imaging reveals complicated and sometimes disordered structures),

all FLLs observed so far form simple Bravais lattices, with only one

vortex per unit cell. Hence, the positions of all the diffraction spots

from a single FLL domain may be expressed as linear combinations

of two basis vectors of the FLL reciprocal lattice with no systematic

absences. This fact may be used to select spots belonging to a single

domain, from a diffraction pattern containing contributions from

several domains. Consider the spots labelled by their reciprocal

lattice vectors q1 and q2 in Fig. 3. If they belong to the same FLL

domain, then there should also be a diffraction spot at q3 = q2 � q1.

The absence of such a spot indicates that q1 and q2 do not belong to

the same domain. However, q3 and q4 imply the existence of q5, which

does exist, and belongs to the same domain. In this way, the picture of

Fig. 1(c) may be confirmed. Similar techniques may be used to

confirm the identification of the FLL domains contributing to the

diffraction patterns in Fig. 2. A confirmation of the chosen domain

structures is given by the observation that the two FLL structures

contributing to Fig. 1(c) [or the four to Fig. 2(a)] have exactly the

same shape as each other and the same relationship to the underlying

crystal structure. This would be expected, since they are all present

because they are degenerate with each other.

One minor caveat should be added here: with strong scatterers like

niobium, multiple scattering between two different FLL domains can

occur and give rise to spots that satisfy the conditions above. The four

very weak spots in the corners of the square pattern in Fig. 2(a) are

due to this cause.

2.3. Use of flux quantization

Any FLL structure with one flux line per unit cell will have its

unit cell area A necessarily related to the average induction B by

A ¼ �0=B. In reciprocal space, this translates to an area

Aq ¼ 4�2B=�0, which is, for instance, the area contained within the

parallelogram subtended by q4 and q5. Hence, by careful measure-

ments of spot positions, the value of flux density implied by an FLL

structure may be obtained. In many cases the value of the average
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Figure 1
Schematic diffraction patterns: (a) for a single-domain square FLL, with first and
second order spots; (b) for a two-domain distorted hexagonal FLL (first order spots
only); (c) for one of the domains contributing to (b). The central spot represents the
main neutron beam. In (a) the horizontal and vertical lines would lie along the
<110> directions for the high-Tc material YBa2Cu3O7 at high fields. In (b) these
lines lie along the [100] and [010] directions for niobium with the magnetic field
applied along the fourfold [001] direction.



induction will be known. If the FLL is prepared by cooling in a field

through Tc, then the induction will be closely equal to that applied,

either if the field is well above Hc1, or if pinning is strong. In such a

case, even the value of q may be sufficient to distinguish between a

square and a hexagonal FLL in cases where the intensity is low and

the domain arrangement is sufficiently disordered that it is difficult to

identify individual spots [see for example Gilardi et al. (2004)]. In

other cases, the average induction may be known from magnetization

measurements, or alternatively, diffraction measurements may be

used to derive the average induction in an FLL domain, and even

show that not all the crystal is occupied by an FLL in the intermediate

mixed state in niobium (Christen et al., 1977; Laver et al., 2006)

3. Theoretical considerations about FLL structures

Two simple theories of FLL structure, are the Ginzburg–Landau

(GL) theory, originally used by Abrikosov to predict the existence of

the flux lattice, and the London theory, in which the vortex cores are

ignored [see, for example, Tinkham (1996), for an account of these

theories]. GL theory is strictly valid only near the critical temperature

Tc, but gives a qualitatively useful picture of the FLL at lower

temperatures. London theory is simpler and is applicable at all

temperatures, but is only reliable at inductions well below the upper

critical field Bc2 where the vortex cores overlap. In both these

theories, the anisotropy of the superconducting electrons in a crystal

is essentially that of the electron effective mass, which may be

represented by a second-rank tensor. Within any crystal plane with

four- or sixfold rotation symmetry, the effective mass is independent

of angle, and in a cubic crystal such as niobium, the effective mass,

like the resistivity, is completely isotropic. If the field is applied

parallel to a principal axis in a lower symmetry, such as orthorhombic,

these theories may be reduced to the isotropic case by a scale

transformation (see e.g. Campbell et al., 1988). Hence, under these

circumstances, and at this level of explanation, no alignment of the

FLL with the crystal axes is expected. Also, the FLL should have a

regular hexagonal structure, only distorted by a scale transformation

if appropriate. These considerations are likely to be particularly

applicable at low inductions in strongly type-II superconductors, in
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Figure 3
The two-domain schematic diffraction pattern of Fig. 1(b), used to demonstrate
how the Bravais property of the FLL may be used to select which spots belong to
which domain (for details see text).

Figure 2
Diffraction patterns obtained from the FLL in niobium at low temperature (a) with
the field along [001]; (b) with the crystal [001] direction rotated by 5� about the
vertical axis away from the field direction; (c) with 15� rotation about the same axis.
In (a) four FLL domains are present; in (b) two of them have been removed, and in
(c) the dominant contributions are from a single FLL domain.



which the flux-lines cores are well separated; in such cases, the

external faces of a crystal may be the cause of the FLL alignment.

3.1. Effects of Fermi surface and gap anisotropy

Extensions have been proposed to the GL theory (De Wilde et al.,

1997) and London theory (Kogan et al., 1997) that allow the inter-

action between the spatial variation of the superconducting order

parameter and the Fermi surface anisotropy to be taken into account.

Of equal importance is the anisotropy of the superconducting energy

gap, particularly in d-wave superconductors having nodes in the gap

(see, for example Berlinsky et al., 1995; Shiraishi et al., 1999) and first-

principles calculations have been performed of these effects

combined (Nakai et al., 2002). Essentially, the finite size and shape of

the Cooper pairs are included, which allows the anisotropy of a 4th-

rank tensor to appear. This can naturally give rise to distorted-

triangular or square FLLs, such as those represented in Figs. 1(a) and

1(c), and also observed in the tetragonal borocarbide super-

conductors (see e.g. Kogan et al., 1997; Paul et al., 1998). However, it

should be noted that all the FLL structures predicted by such theories

are aligned with the crystal axes, unlike the FLLs with scalene-

triangular coordination that give rise to the patterns in Fig. 2. Just as

intriguing are square FLLs observed in niobium with the field along a

fourfold direction (Laver et al., 2006) which are not aligned with the

crystal axes. These FLL structures therefore break the mirror

symmetry of the crystal while retaining the rotational symmetry. A

qualitative understanding of this may be obtained by assuming that

there exists an interaction between flux lines that contains terms

varying both as cosð4�Þ and cosð8�Þ, where � is the angle about the

fourfold axis. Both these terms satisfy crystal symmetry, but their sum

may have extrema at non-symmetry-determined values of �. It may

be that considerations such as this can give an account of both the

rotated-square and scalene-triangular FLLs, but even so, the task

remains to relate such qualitative ideas to the underlying Fermi

surface and superconducting energy gap anisotropy, which are

presumably the cause of these effects.

4. Summary and conclusions

Flux lattice structures can be reliably extracted from small-angle

diffraction patterns, even when multiple FLL domains are present.

The structures in pure crystals can tell us about the nature of the

underlying superconducting state and the interactions between flux

lines. Recent results obtained in niobium with the field parallel to a

fourfold axis (Laver et al., 2006) reveal flux lattice structures that

spontaneously and comprehensively break the crystal symmetry and

present challenges for our understanding of the superconductivity in

this supposedly ‘conventional’ superconductor.
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