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Single-chain dynamics in semidilute polymer solutions is Zimm-like on short

time scales and Rouse-like on long time scales. The crossover is due to time-

dependent screening of hydrodynamic interactions. We present a generalized

Zimm theory for polymer dynamics in an elastic polymer network. We show that

the coupled equations of motion of the polymer network–fluid system lead to a

generalized Oseen tensor with a time-dependent hydrodynamic screening

length. The time correlation function of the Rouse modes, monomer mean-

square displacements and the single-chain dynamical structure factor are

calculated.

1. Introduction

The dynamics of flexible polymers are usually discussed in the

framework of the Zimm–Rouse models (Doi & Edwards, 1986;

Grosberg & Khokhlov, 1994; de Gennes, 1993; Teraoka, 2002): the

polymer is represented as a Gaussian chain of beads and the

dynamics are given by the Langevin equation for the beads. In the

Rouse model (Doi & Edwards, 1986) the solvent is not flowing.

Hydrodynamic interactions are taken into account in the Zimm

model (Doi & Edwards, 1986). The disturbance of the solvent velocity

field due to motion of the polymer chain is investigated with the help

of the linearized stationary hydrodynamic equation for an incom-

pressible fluid. This is a Stokes approximation and it provides a way

of calculating hydrodynamic interactions in suspensions and polymer

solutions. In the dilute limit, it is usually sufficient to restrict oneself

to the leading-order pair interaction, which decays inversely

proportional to the interparticle distance r. In this case the tensor,

which relates the velocity of the fluid to acting forces, is called the

Oseen tensor.

While the Zimm model correctly describes the chain dynamics in

dilute solution, the Rouse model applies to concentrated polymer

solutions and melts where hydrodynamic interactions are screened,

i.e. where hydrodynamic interactions become negligible between

segments whose spatial distance apart is larger than hydrodynamic

screening length �H.

Recent computer simulations (Ahlrichs et al., 2001) of single-chain

motion in semidilute polymer solutions have provided evidence for a

more complex dynamical scenario. In particular, the single-chain

dynamic structure factor (DSF) was found to display Zimm-like

behaviours for short time scales, regardless of wavenumber. The

crossover to Rouse-like behaviours occurred only at later times. To

arrive at a coherent theory for polymer dynamics in semidilute

solutions, it is necessary to treat hydrodynamic screening as a

dynamic, time-dependent phenomenon.

There are quite a number of works (Doi & Edwards, 1986; Gros-

berg & Khokhlov, 1994; Richter et al., 1984) based on the Zimm–

Rouse models. However, the precise regime of applicability of these

phenomenological models is not clear. The crossover regime from

one model to another needs more detailed research.

Inadequacy of the assumption of complete hydrodynamic

screening was discussed by Richter et al. (1984), where they proposed

the model of incomplete hydrodynamic screening owing to the resi-

dual viscosity of the solution, and they investigated the single-chain

dynamics of linear polymers in solution over the full concentration

range. The model introduced by Richter et al. (1984) suffers from

fundamental problems: the obstacles are the mobile polymer chains

themselves, whereas they are fixed in this model. Moreover, the

incomplete screening model assumes that the hydrodynamic inter-

action should cross over to a second r�1 regime on very large scales,

with the overall viscosity as a prefactor. For the short-time behaviour

of a single chain, this model also predicts Rouse-like motion, while on

larger time scales there is an additional Zimm regime. Thus, the

model of incomplete screening cannot give the correct picture for all

times.

In the work of Lisy et al. (2004), the dynamics of polymers in dilute

solution was investigated for the single chain taking into account

hydrodynamic memory. Another way of looking at the single-chain

dynamics in polymer solutions for different time scales was to

investigate the polymer dynamics in a porous medium with

frequency-dependent permeability (Tchesskaya, 2003, 2005). This

simple phenomenological model for polymer dynamics has led to a

generalization of the Debye–Bueche–Brinkman equation resulting in

an Oseen tensor with a time-dependent hydrodynamic screening

length.

In this work we propose a new generalized Zimm theory for

polymer dynamics, improving the model proposed by Tchesskaya

(2003, 2005). The polymer solution is modelled as an elastic polymer

network immersed in the solvent. The model equations of motion are

based on the equations for polymer gels (Bacri & Rajaonarison, 1979;

Marqusee & Deutch, 1981; Johnson, 1982) with some simplifications.

These coupled equations lead to a generalized Oseen tensor with a

time-dependent hydrodynamic screening length as given in the model

(Tchesskaya, 2005) and allow the crossover from Zimm-like to

Rouse-like behaviour to be described not only in the spatial domain,

but also in the time domain. We calculate the mean-square displa-

cement of the single polymer chain and the DSF. We show that the

introduced relaxation time of the medium has a strong influence on

single-chain dynamics.



2. Generalized Zimm theory: the network–fluid model of
polymer solutions

2.1. The network–fluid model

Following on the works studying the dynamics of gels [an ample

review was given by Johnson (1982)], we model the polymer solution

as an elastic polymer network immersed in solvent. In our model we

take into account the mobility of polymer chains in the solvent

relative to themselves, using a system of connected elastic and

hydrodynamic equations. In the usual condition of Brownian motion,

the relevant hydrodynamic equation of motion is that of low

Reynolds number hydrodynamics, which assumes an incompressible

fluid and negligibly small inertia of the fluid. It is correct for our

problem. The coupling effect of the elastic waves of the network with

the fluid motion in this two-phase system is small for the weakly

perturbed and nearly incompressible fluid and network, and we only

need take into account the exchange of momentum between the fluid

and the network (e.g. Bacri & Rajaonarison, 1979). The polymer

network displacements s due to interaction with the solvent are

described by the stationary linearized equation of motion of the

elastic medium with an additional term describing the frictional

damping, which arises from the fluid flow through the polymer

network

0 ¼ ��sþ �þ �ð Þr r � sð Þ � f
@s

@t
� v

� �
: ð1Þ

Here � and � are the Lamé coefficients of the elastic network, v is the

solvent fluid velocity, and f describes the exchange of momentum

between the fluid and the network.

The flow of the incompressible fluid is described by the stationary

linearized Navier–Stokes equation taking into account the frictional

damping as in the equation of elasticity [equation (1)] and an external

force u, acting on the solvent near each polymer segment

0 ¼ �rpþ ��v� f v�
@s

@t

� �
þ u; r � v ¼ 0: ð2Þ

The coefficients f in equations (1) and (2) are identical as required by

symmetry (Marqusee & Deutch, 1981).

It is simpler to solve the Fourier transformed coupled equations (1)

and (2), to give

v!k
� ¼

1

�k2
����

k�k�

k2

� �
’!k
�

(
1þ

f

�

����þ½�þ�þið�þ2�Þ�k�k�=k2

���ð�k2�fi!Þþð�þ�Þk�k�

)�1

ð3Þ

Hence

v!� ðrÞ ¼

Z
dr0H!

�� r� r0ð Þ’!� r0ð Þ; ð4Þ

with the Fourier transformed mobility tensor with components

�; � ¼ x; y; z given by

H!
�� rð Þ ¼ A!��� þ B!

r�r�

r2
: ð5Þ

The scalars A! and B! are determined from the equations

H!
�� ¼ 3A!

þ B!; H!
��

r�r�

r2
¼ A!

þ B!: ð6Þ

The results obtained here will be applied in the next section.

2.2. A generalization of the Zimm model

We start from the Zimm model and, first of all, give a short

description of this model. The equation of motion of the nth polymer

segment (bead) is written in the form without inertia effects, which

are unnecessary for usual thermal motion

0 ¼ f ch
n þ f fr

n þ f r
n; ð7Þ

where f ch
n ¼ �@u=@xn is the force from the neighbouring beads

along the chain, xn is the position vector of the nth chain segment.

The interaction energy between the chain segments is u =

3kBT=ð2a2Þ
PN�1

n¼1 xnþ1 � xn

� �2
, where a is the mean-square distance

between the neighbouring beads, f fr
n is the friction force acting on the

bead during its motion in the solvent. In the Zimm model

f fr
n ¼ ��

@xn

@t
� v xnð Þ

� �
ð8Þ

with the solvent velocity v xnð Þ at the location of the nth segment. The

friction coefficient for a spherical bead of radius b is � ¼ 6��b, where

� is the solvent viscosity. The random force is denoted by f r
n.

The external force u per unit volume, acting on the solvent near xn

is given by

u x; tð Þ ¼
X

n

�
@u

@xn

þ f r
n

� �
� x� xnð Þ: ð9Þ

The equation of motion of the nth polymer segment [equation (7)]

can be rewritten taking into account equations (8) and (4). After this,

in the continuum limit, equation (7) has a Zimm-like form, and in

Fourier representation we have

�i!x!� ðnÞ ¼

ZN

0

dm H!
��nm

3kBT

a2

@2x!� ðmÞ

@m2
þ f!� ðnÞ

� �
: ð10Þ

Here H!
��nm ¼ H!

�� xn � xmð Þ for m 6¼ n, and H!
��nm ¼ ���=� for

m ¼ n.

Because of the dependence H!
��nm on r, i.e. on xn � xm, equation

(10) is nonlinear, and to solve it we preaverage (Doi & Edwards,

1986) the mobility tensor. The preaveraging of H!
��nm over the

equilibrium distance distribution function yields

H!
�� xm � xnð Þ

� �
0
¼

3

2�a2 m� nj j

� �3=2Z
dr exp �

3

2a2

r2

m� nj j

� �

� A!
ðrÞ��� þ B!

ðrÞ
r�r�

r2

h i
¼

���
6��

1

1� i!tm

1

r
exp �r=�Hð Þ � i!tm

	 
� �
0

: ð11Þ

Equation (11) defines the hydrodynamic screening length

�H ¼ �
0
H 1� i!tmð Þ

�1=2, tm ¼ 3�=L is the relaxation time of the elastic

network, and L ¼ 4�þ �þ i 2�þ �ð Þ. In the case tm ¼ 0, �H reduces

to the rigid medium limit �0
H ¼ fðf=nÞ½L=ð4�þ �Þ�g�1=2. Note, that

equations (5) and (6) reduce to the Oseen tensor (Doi & Edwards,

1986) for the special case �H !1.

Further, for ease of calculation we will examine an incompressible

medium. In this case we obtain L = 4� + �, and parameters depen-

dent on L are reduced to �0
H ¼ ð�=f Þ1=2, tm ¼ 3�=ð2�Þ.

The solution of equation (10) can be found in the form of a

superposition of Rouse modes

x!n ¼ y!0 þ 2
P1
p¼1

y!p cos �pn
N ;

y!p ¼
1
N

RN
0

dn cos �pn
N x!n ; p ¼ 0; 1; 2 . . . :

ð12Þ

Hence, equation (10) simplifies to
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�i!y!p� ¼
X1
q¼0

h!��pq �
6�2kBTq2

Na2
y!q� þ f!q�

� �
; ð13Þ

where the mobility tensor expressed in Rouse modes is

h!��pq ¼
1

N2

ZN

0

dn

ZN

0

dm cos
�pn

N
cos

�qm

N
H!
��nm

� �
0
: ð14Þ

The mobility tensor [equation (11)] is diagonal over Cartesian indices

�,� after averaging and is only dependent on n�mj j. It is easy to

show that the interactions between the beads disappear according to

the law h n�mð Þ / n�mj j
�1=2, as in Grosberg & Khokhlov (1994),

for the Zimm model. The matrix h!��pq is diagonal dominant in indices

p,q, i.e. ~�pq. Consequently, we neglect the off-diagonal components

and approximate the mobility tensor by

h!��pq ¼
����pq

�!p
; ðp 6¼ 0Þ; ð15Þ

1

�!p
¼ 	

�0
H

�a2�N

1

1� i�
m

1þ ~		

1þ 1þ ~		ð Þ
2
� i�


m

2

� �
: ð16Þ

Here ~		 ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i�
m

p
is a dimensionless function of �H and the

Rouse index p. The prefactor 	 ¼ ða=�0
HÞðN=3�pÞ1=2 is the reduced

wavelength of the pth Rouse mode, because the local motion of N/p

Rouse chain segments corresponds to the motion with a length-scale

of the order of aðN=pÞ1=2. 
 ¼ t=tc is the time normalized to the

characteristic polymer time tc ¼ 3��ð�0
HÞ

3=ð2kBTÞ, which specifies the

single-chain polymer dynamics in a rigid medium. As evident from

the expression, tc is defined by medium properties; � ¼ !tc is the

dimensionless frequency, 
m = tm=tc is the normalized relaxation time

of the elastic network.

Rouse modes are orthogonal and related to the acting force by the

relations

y!p� ¼ �pð!Þf
!
p�; �pð!Þ ¼

1

�i!�!p þ �p

; �p ¼
6�2kBT

Na2
p2; ð17Þ

where �pð!Þ is the generalized susceptibility of a system.

Now we have derived all necessary results in order to calculate

measurable observables.

3. The mean-square displacement and the dynamical
structure factor

In the following, we calculate observables which characterize the

chain dynamics: Rouse-mode time-correlation functions, monomer

mean-square displacements and the dynamic structure factor. In all

cases, we will be interested in the time and length-scale dependence

of the cross over from Zimm to Rouse-like behaviour.

From the fluctuation–dissipation theorem (Landau & Lifshits,

1980), which relates the susceptibility of a system to the action of a

perturbing force with the fluctuations of the quantity, we can obtain

the time correlation function of the amplitudes of the pth Rouse

mode yp tð Þ

 p tð Þ ¼ yp tð Þyp 0ð Þ
� �

¼
kBT

�

Z1
�1

d!

!
expð�i!tÞIm

1

�i!�!p þ �p

; ð18Þ

and, after the replacement of p by 	 and normalization  	ð0Þ ¼ 1,

 	ð
Þ ¼
1

�

Z1
�1

d�

�
expð�i�
Þ Im

(
� i�	3

ð1� i�
mÞ�

h
2= 2 ð1þ ~		Þ=½1þ ð1þ ~		Þ2�

� �
� i�
m

� �
þ 1

i)�1

: ð19Þ

The exact solution of equation (19) is complicated to find, and

therefore, we present limiting cases of equation (19) known from the

literature. In the case 
m = 0, equation (19) reduces to the rigid

medium limit expð�t=
	Þ with the relaxation time 
	 of the internal

modes (p> 0)


	 ¼ tc	
3 1þ 1þ 	ð Þ

2

1þ 	
: ð20Þ

For �0
H ! 1, 
	 becomes the Zimm relaxation time

ð�a3N3=2Þ=½ð3�Þ1=2
kBTp3=2�. The relaxation time 
	 reduces to the

Rouse relaxation time ðN2a2�Þ=ð3�2kBTp2Þ in the case of

�min
H ¼ a2=12b.

The mean-square displacement of the nth segment can be calcu-

lated from equation (12) as

xðt; nÞ � xð0; nÞ½ �
2

� �
¼ y0ðtÞ � y0ð0Þ

	 
2
D E
þ 4

X1
p¼1

cos2 �pn

N

� �
ypðtÞ � ypð0Þ
	 
2
D E

: ð21Þ

In the following, we do not consider the diffusion of the centre of

mass of polymer chains, instead, we concentrate on the mean-square

displacement of a single segment for times less than the longest

Rouse relaxation time, 
R
1 ¼ �N

2a2=ð3�2kBTÞ. In this case the

normalized mean-square displacement of the segment can be calcu-

lated in the continuum limit of relaxation modes (Grosberg &

Khokhlov, 1994).

With the knowledge of the correlation function of normal coor-

dinates it is possible to find the mean-square displacement, which is

defined for each mode as �y2
pðtÞ

� �
¼ 2  pð0Þ �  pðtÞ

	 

. Thus, the

normalized mean-square displacement of the segment is calculated

by the expression

�X2
� �

¼ �

Z1
0

d	 	  	ð0Þ �  	ð
Þ
	 


: ð22Þ

The integral sum is cut off at 	maxð
Þ, and its behaviour changes from

the Zimm to Rouse-like, when 	maxð
Þ ¼ 	crossoverð
Þ, i.e. the length

scale goes down to hydrodynamic screening and affects the modes.

The results of the numerical evaluation of equation (22) are

represented in Fig. 1 for different relaxation times (
m) of the

network–fluid system. In all of the cases there is a crossover from

Zimm to Rouse-like behaviour, but the shape of the curves is strongly

affected. The crossover comes later for the ‘softer medium’ (higher


m). It is possible to identify two regimes in the time scale for the

mean-square displacement of the polymer segment: a Zimm-like

behaviour on time scales a2�=�� t � tm; 

R
1 and a Rouse-like

behaviour on scales a2�=�; tm � t � 
R
1 . From Fig. 1, we can observe

that the crossover time t� of the mean-square displacement is directly

proportional to 
m. In our model, 
m = 0 implies that the crossover

from Rouse-like motion to Zimm-like motion for the monomer

mean-square displacement can be obtained only in the limit 
! 0.

Therefore, the time of crossover is determined by the relaxation time

of the medium.

The results obtained are in qualitative agreement with computer

simulations (Ahlrichs et al., 2001).
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Further, we consider the DSF, which is defined as

S q; tð Þ �
1

N

X
n;m

exp iq xnðtÞ � xmð0Þ
	 
� �� �

’
1

N

X
n;m

exp �
q2

6
xnðtÞ � xmð0Þ
	 
2
D E� �

; ð23Þ

where q is the scattering vector of modulus q. Second equation (23) is

derived assuming Gaussian distribution.

For the large wavevector regime, when q2Na2 	 1, we can restrict

our consideration to the time region t � 
R
1 , since Sðq; tÞ becomes

very small for t 	 
R
1 . In this regime we can neglect the diffusive

motion of the chain as a whole, and look only at the internal modes of

the polymer chain.

In this case, following the same procedures like those given in Doi

& Edwards (1986) and using solutions of the network–fluid model, we

obtain for the DSF

SðQ; 
Þ=SðQ; 0Þ ¼

Z1
0

du exp

(
�u�

2

�
Q2

Z1
0

d	½ 	ð0Þ

�  	ð
Þ�	 cos
2u

Q2	2

� �)
; ð24Þ

where Q ¼ q�0
H, u ¼ q2 n�mj ja2=6.

In the limit 
m = 0, equation (24) simplifies to

SðQ; tÞ=SðQ; tÞ ¼

Z1
0

du exp �u�
2

�
Q2

Z1
0

d	 	

8<
:

� cos
2u

Q2	2

� �
½1� expð�t=
	Þ�

�
; ð25Þ

which corresponds to the DSF for the rigid model (Richter et al.,

1984).

Equation (24) leads to the Zimm result for short time scales and to

the Rouse limit result of the rigid medium (Richter et al., 1984) for

long time scales in the same way as for the discussed mean-square

displacement due to the mobility of the polymer medium.

It follows from Equation (25), partly a Zimm regime for the rigid

model, that when the wavelength is smaller than the static screening

length �0
H 	 q�1, so the wavevector is larger than the characteristic

distance between obstacles. In the opposite case, when �0
H � q�1, the

Rouse regime is obtainable for the model of Richter et al. (1984). In

the rigid model, the condition q�0
H � 1 defines the regime of Rouse-

like behaviour for all times and the condition q�0
H 	 1 defines the

regime of Zimm-like behaviour for short times and the Rouse-like

one for large times. Thus, the rigid model does not produce correct

results in the time domain. Our screening length, �H, is a time-

dependent parameter in contrast to the rigid model, the crossover

from the Zimm motion to the Rouse-like one is present both for

different length scales and for different time scales in cases of non-

rigid network–fluid media.

Calculation results of the DSF for different values of Q from

equation (24) are presented in Fig. 2. The time of crossover region

widens with a decrease of Q. As shown in the figure, there is only the

Rouse-like regime for the rigid model on length scales beyond the

hydrodynamic screening length, while our model gives the crossover

between the Zimm and Rouse regimes under changes of time over all

length scales.

Comparison of theoretical and experimental results over the full

time range presents difficulties. Experimental data (Richter et al.,

1984) for the DSF were limited to within 10�9–10�8 s both for Zimm

and Rouse results, because the aim of that research was to investigate

the single-chain polymer dynamics over the full concentration range,

but on the same time scale. Meanwhile, the crossover from the Zimm-

to Rouse-like dynamics is stretched in time for one degree at least. As

mentioned above, a Zimm-like behaviour takes place in the range

a2�=�� t � tm; 

R
1 . For a = 6, b = 3 Å, � = 0.29 cP, T = 373 K, N =

1000 and � 
 1 g cm�3 the evaluation of left and right limits of this

range gives a2�=� 
 10�12 s and 
R
1 ’ 4 � 10�6 s, correspondingly.

A Rouse-like behaviour is present for times in the range

a2�=�; tm � t � 
R
1 . Our assessed value of the crossover time is tm ’

8 � 10�9 s. It is consistent with tc and is situated within the bounds of

the Zimm- and Rouse-like ranges. For estimated tm and � = 0.29 cP

we obtain � = 5.4 N cm�2 which is over a range of experimental data

for 5% polymer gels (Tanaka et al., 1973), and is one order of

magnitude greater than for the cylindrical polymer gel (Sasaki, 2004).

For calculated results 0.5 < Q < 1 with q = 0.053 Å�1, we have 9.4 <

�0
H < 18.9 Å, which is in good agreement for experimental data for an

18% polymer solution (Richter et al., 1984). But the friction coeffi-

cient calculated from �0
H gives f 
 106 N s cm�4 which corresponds to

5% polymer gels (Tanaka et al., 1973) and the cylindrical polymer gel

(Sasaki, 2004). Although it is essential to consider the difference

between investigated media in these three experimental works. In

fact, the room temperature shear modulus of polymers in solutions
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Figure 2
Solid lines are the time dependence S(Q, 
)/S(Q, 0) for 
m = 1. Lines 1–4
correspond to Q = 0.5, 1, 5, 10. Dotted and dashed lines denote the Zimm-like and
the rigid model behaviour, respectively.

Figure 1
Time dependence of the normalized mean-square displacement. Lines 1–5
correspond to 
m = 0 (rigid medium), 1, 101, 102, and 103, respectively. The dashed
line denotes Zimm-like behaviour.



and the friction constant are highly concentration dependent and,

therefore, it is probably not correct to compare these parameters with

experimental results because the concentration dependence is not

discussed in the present work.

4. Conclusions

This work presents a phenomenological theory for the single-chain

dynamics in semidilute and concentrated polymer solutions based on

the description of the solution as the network–fluid model with strong

friction between the fluid motion and polymer network. Our aim is to

obtain an improved description of the crossover from the Zimm-like

to the Rouse-like chain dynamics, taking into account the movability

of the polymer network–fluid system, which describes the mobile

chain segments relative to each other, and allows us to describe the

crossover from Zimm to Rouse-like behaviour on time scales.

At the beginning, we expanded the phenomenological theory of

single-chain dynamics of semidilute and concentrated polymer solu-

tion by considering the model of the polymer solution system which

represents the mobile polymer chains themselves. We followed the

logic of the Zimm model of single-chain dynamics of a polymer

solution, but took into account the screening of the hydrodynamic

interaction by using the elastic network–fluid system, which includes

the influence of the fluid on the network and vice versa. Inclusion of

the polymer medium mobility gave rise to the time dependence of the

mobility tensor and, as a consequence, the time-dependent hydro-

dynamic screening length.

Our model allowed us to describe the crossover from Zimm-like to

Rouse-like behaviour not only in spatial domain, but also in time

domain. The last case cannot be captured by the rigid model (Richter

et al., 1984). The introduced relaxation time of the network–fluid

system was associated with the crossover time in our model.

In the second part of our paper we calculated the mean-square

displacement. This showed that Zimm motion is present on all length

scales up to the crossover time, and goes to Rouse-like motion after

screening of hydrodynamic interactions. The DSF is described by the

Zimm model for short times and by the Rouse model for large times,

regardless of the wavenumber. This result agrees with the simulation

study (Ahlrichs et al., 2001). Whereas the rigid medium model

(Richter et al., 1984) leads to Zimm-like motion on short length and

time scales, and to Rouse-like motion on length scales beyond

hydrodynamic screening length for all times.

In accordance with previous results (Ahlrichs et al., 2001; de

Gennes, 1976), the generalized phenomenological theory presented

of the single-chain polymer dynamics shows that the principal

mechanism for hydrodynamic screening is a dynamic phenomenon.

The author is grateful to Dr R. Everaers for illuminating discus-

sions.
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