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The first-order long period L1, the second-order long period L2 and lamellar

crystal thickness lc of isotactic polybutene-1 have been investigated for

crystallization in the melt over a wide range (313.2 to 363.2 K) of crystallization

temperatures by small-angle X-ray scattering experiments and density

measurements. The long period L1 shows a single linear dependence on inverse

supercooling. The crystal thickness lc, however, demonstrates two linear

dependences on inverse supercooling and a transition from one dependence

to the other has been observed around 338.2 K, where lc becomes comparable

with the radius of gyration Rg of the samples.

1. Introduction

In the crystallization of polymers, polymer chains in the form of

random coils develop into double layer structures composed of

folded chain crystals and amorphous layers. The nucleation theory by

Hoffman et al. (Hoffman et al., 1976; Hoffman & Miller, 1997)

explains that the crystal thickness of polymers is determined kineti-

cally, and gives the observed dependence of lamellar thickness lc on

supercooling �T = Tm
0
�T (Tm

0 is the equilibrium melting

temperature, T is the crystallization temperature) by the following

equation (lc shows a single linear dependence on inverse super-

cooling, 1/�T):

lc ¼
A

�T
þ �l � l�c þ �l; ð1Þ

where A and �l are constants. According to the theory, A is expressed

as

A ¼
2�eT0

m

�hf

; ð2Þ

Here, �e is the end-surface free energy per unit area of polymer

crystals and �hf the heat of fusion per unit volume of the crystal

phase. The first term lc* = 2�eTm
0/�hf�T in equation (1) represents

the minimum lamellar thickness to keep the crystal thermo-

dynamically stable and the second term corresponds to the driving

force of crystallization. Hence, long period structures and crystal

thicknesses of semicrystalline polymers reflect the processes of their

structure formation.

Recently, Fu et al. (2001) observed a deviation from the nucleation

theory in the temperature dependence of the crystal thickness of

isotactic polybutene-1 (it-PB1) determined from electron density

correlation analysis of small-angle X-ray scattering (SAXS) profiles.

They observed that two different relationships exist between crystal

thickness lc and crystallization temperature T, and that a transition

from one relationship to the other occurs, i.e., lc increases discon-

tinuously accompanied by a morphological change of the crystals

when lc becomes comparable to the chain dimensions. They also

showed that crystals with two different kinds of thicknesses co-exist

around the transition temperatures.

To elucidate the influence of chain dimensions on the resultant

lamellar long period structure, we have reinvestigated this transition

in terms of more simple methods, using it-PB1 samples with a

different molecular weight distribution from that used in the study by

Fu et al. (2001). We have studied the temperature dependence of the

first- and second-order long periods and lamellar crystal thicknesses

of it-PB1 tetragonal crystals grown in the melt by SAXS experiments

and crystallinity measurements. it-PB1 is a semicrystalline polyolefin

with ethyl side groups. it-PB1 exhibits a stable trigonal form with 3/1

helical chains and a metastable tetragonal form with 11/3 helical

chains as the most common structures, as shown in Table 1. Crys-

tallization in the bulk melt under atmospheric pressure yields the

tetragonal form (Turner-Jones, 1963). Due to the metastability of the

tetragonal form, the solid–solid spontaneous transformation to the

stable trigonal form then takes place over several days after cooling

to room temperature (Natta et al., 1960).

In this study, we again confirmed the two different temperature

dependences of the crystal thickness lc. We observed two linearities in

the inverse supercooling dependence of lc, which indicates that each

of the two relationships still obeys the nucleation theory. We also

observed an abnormality in the supercooling dependence of the

second-order long period around 353.2 K. We are going to discuss

possible mechanisms for the transition.

2. Experimental

2.1. Lamellar crystal thickness

The it-PB1 used in this study was purchased from Scientific

Polymer Products. Weight- and number-averaged molecular weights

determined with gel permeation chromatography (GPC) calibrated

with polystyrene standard samples are Mw = 277 300 and Mn = 60 340,

respectively.

We measured the density � of samples by a float and sink method

using mixed solvents of water and ethanol at 298.2 K; the crystallinity

’ was determined from the density using

� ¼ �c’þ �að1� ’Þ; ð3Þ



where �c and �a are the densities of the crystalline and amorphous

phases, respectively, listed in Table 1.

SAXS photographs were taken with a SAXS camera (camera

length 414 mm) in vacuum to obtain lamellar long periods, using an

imaging plate system (Rigaku R-AXIS DSII). Nickel-filtered Cu K�
radiation was used, generated at 50 kV and 140 mA. After the

subtraction of the background intensity, isotropic two-dimensional

data were circularly averaged to obtain one-dimensional data and

corrected for the Lorentz factor. The first- and second-order reflec-

tions were separated by fitting SAXS profiles with Gaussian–

Lorentzian product functions. Application of Bragg’s law to the

scattering peak centers was used to calculate the first- and second-

order long periods, L1 and L2. The lamellar crystal thickness lc was

estimated using the equation lc = ’L1.

Films of it-PB1 of about 500 mm thickness were sandwiched

between aluminium foil and melted at 423.2 K for 3 min in an oven,

transferred quickly to a hot stage (Mettler FP82) and kept at a

crystallization temperature between 313.2 and 363.2 K. The films

crystallized were aged at room temperature for 10 d and used for

SAXS and density measurements. After 10 d of aging at room

temperature, the tetragonal crystals transform into the trigonal form

without changing their stacked lamellae structure and overall mass

degree of crystallinity. Since the crystal density of the trigonal form is

larger than that of the tetragonal form, the SAXS intensity is much

enhanced after 10 d. We determined lc of the aged samples, then

calculated lc of the as-crystallized tetragonal samples from the

observed values of lc of the aged samples assuming that lc(as-crys-

tallized) = lc(aged)/1.12. This assumption is based on the fact that the

tetragonal–trigonal transformation involves an extension of the 11/3

helical conformation (tetragonal form) into the 3/1 helix (trigonal

form). The ratio between the axial repeating units of this confor-

mation is 1.12.

2.2. Identification of crystal structures

Wide-angle X-ray scattering (WAXS) was performed to identify

crystal structures. Nickel-filtered Cu K� radiation was used, gener-

ated at 35 kV and 40 mA. The system and procedure used for data

acquisition and analysis were the same as those used for SAXS

experiments.

3. Results

3.1. Crystal structures from WAXS and TEM

We confirmed by WAXS measurements that samples immediately

after the crystallization are in the tetragonal form (Fig. 1). Hence the

observed crystallinity and lamellar crystal thickness reflect those of

tetragonal crystals. Samples stored at room temperature for 10 d

exhibited peaks characteristic of the trigonal form.
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Figure 1
WAXS profiles of it-PB1 crystallized at 313.2, 338.2 and 363.2 K plotted against the
modulus of the scattering vector Q. (Q = 4���1sin �, � is half the scattering angle, �
is the wavelength used.) The profiles for samples as crystallized and aged are
plotted. Peaks shown in the plots of as crystallized samples are indexed with the
200, 220, 213 reflections of the tetragonal form; peaks exhibited in the plots of the
aged samples are indexed with the 110, 300, 220 reflections of the trigonal form.

Figure 2
SAXS profiles for it-PB1 samples crystallized at temperatures from 313.2 to
363.2 K. The profiles have been shifted vertically for clarity.

Table 1
Physical properties of it-PB1.

Unit-cell parameters Stem parameters

a0

(Å)
b0

(Å)
c0

(Å)
�†
(g cm�3)

a
(Å)

b
(Å)

�hf‡
(J m�3)

T0
m‡

(K)
Space
group

Chain conformation
(monomers/turn)

Trigonal§ 17.7 17.7 6.5 0.96 5.1 8.85 1.35 � 108 397.2 �RR3c 3/1
Tetragonal} 14.6 14.6 21.2 0.888 7.3 7.3 1.09 � 108 409.2 �PP4b2 11/3
Amorphous 0.87

† Miller (1999). ‡ Leute & Dollhopf (1983). § Natta et al. (1960). } Tashiro et al. (1998).



3.2. Lamellar crystal thickness

Fig. 2 shows the Lorentz-corrected SAXS profiles of the samples.

First- and second-order reflections were observed in the wide range

of crystallization temperatures from 313.2 to 363.2 K. Table 2 lists the

results of SAXS and density measurements: crystallization

temperatures, the values of the first- and second-order long periods,

the ratios of the second-order long period to the first-order long

period, the degrees of crystallinity and the lamellar crystal thick-

nesses.

Fig. 3 shows the first-order long period L1 and second-order long

period L2 as a function of the inverse supercooling, 1/�T. (�T =

Tm
0
�T; the equilibrium melting temperature Tm

0 is 397.2 K for the it-

PB1 tetragonal phase, as given in Table 1.) The 1/�T dependence of

L1 demonstrates a single linearity over the whole temperature range

investigated. For the 1/�T dependence of L2, on the contrary, a

shoulder is observed around 1/�T = 0.0227, which corresponds to a

crystallization temperature T = 353.2 K.

Fig. 4 shows the lamellar crystal thickness lc plotted against 1/�T.

The dependence deviates from a single linearity. Two linear rela-

tionships between lc and 1/�T can be observed, one in the low �T

range (1/�T = 0.018�0.030 K�1; this corresponds to T = 363�343 K)

and the other in the high �T range (1/�T = 0.012�0.016 K�1; this

corresponds to T = 333�313 K). When 1/�T increases from the high

�T range to the low �T range, lc moves up from the lower line to the

upper line in Fig. 4. This is in agreement with the observation

reported by Fu et al. (2001). At 1/�T = 0.017, lc lies in the middle of

the two linearities, which suggests a transition state between the two

linear relationships. According to equations (1) and (2), the extra-

polation to 1/�T = 0 K�1 of the straight lines in Fig. 4 gives the values

of �lc to be 38.8� 8.4 Å for the low �T range and 44.3� 4.8 Å for the

high �T range. The slopes give the values of 2�eTm
0/�hf to be (4.90

� 0.39)� 103 Å K for the low �T range and (4.01� 0.35)� 103 Å K

for the high �T range; �e is estimated as (6.73 � 0.49) � 10�2 J m�2

for the low �T range and (5.51� 0.48)� 10�2 J m�2 for the high �T

range, using the values of �hf and Tm
0 given in Table 1. Chain folding

free energies q = 2ab�e (a and b represent the height and width of a

stem, respectively; the values are shown in Table 1) are calculated as

(7.17� 0.52)� 10�20 J stem�1 for the low �T range and (5.87� 0.51)

� 10�20 J stem�1 for the high �T range.

4. Discussion

First, we will discuss the temperature and crystallinity dependence of

L1 and L2. For simplicity, we consider strictly periodic two-phase

systems as reviewed by Strobl & Schneider (1980) and assume our

crystallized samples to be composed of ensembles of many different

strictly periodic structures with different long periods. A periodic

structure shows an electron density distribution h(z) as indicated in

Fig. 5(a). It can be described by specifying the long period L, the

crystal thickness lc and the electron density of the crystal and

amorphous phases, hc and ha. Here, and in the following, we choose a

crystallinity ’ = lc/L < 0.5.
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Table 2
Results of SAXS and crystallinity measurements.

Tc = crystallization temperature, L1 = the first-order long period, L2 = the second-order
long period, ’ = crystallinity, lc = lamellar crystal thickness. The lc data are estimated
values of as-crystallized samples before aging; they were derived assuming lc(as-
crystallized) = lc(aged)/1.12. (See the text.)

Tc (K) L1 (Å) L2 (Å) L2/L1 ’ (%) lc (Å)

313.2 222 125 0.563 46.7 92.7
323.2 237 130 0.547 46.1 97.6
328.2 247 133 0.538 46.6 102
333.2 258 136 0.526 46.7 106
338.2 267 141 0.530 49.2 117
343.2 281 146 0.521 51.7 130
348.2 297 158 0.530 51.7 137
353.2 319 170 0.534 54.2 154
358.2 334 171 0.511 54.2 162
363.2 368 182 0.495 55.9 184

Figure 3
The first-order long period L1 and the second-order long period L2 as a function of
the inverse supercooling, 1/�T.

Figure 4
Lamellar crystal thickness lc as a function of the inverse supercooling, 1/�T. The
broken line represents the radius of gyration Rg.

Figure 5
(a) Electron density distribution function h(z) and (b) the related correlation
function K(z) for a strictly periodic two phase system.



The correlation function K(z) is given by the following expressions:

KðzÞ ¼ KaðzÞ � ðhhi � haÞ
2

KaðzÞ ¼

Z �=2

��=2

hðz0Þ � ha

� �
hðz0 þ zÞ � ha

� �
dz0:

ð4Þ

Here � denotes the average range for z0. Ka(z) is calculated as

follows:

KaðzÞ ¼ ðhc � haÞ
2
ðd� zÞ=L if zj j <d

¼ 0 if d< zj j< L� dj j

Kaðzþ LÞ ¼ KaðzÞ:

ð5Þ

Equations (4) and (5) give the profile of K(z) as shown in Fig. 5(b).

The scattering intensity distribution function S(Q) is given as follows:

SðQÞ ¼
2

4�Q2
ð2�Þ2

Z 1
�1

expðiQzÞKðzÞdz: ð6Þ

In periodic systems with long period L, the first- and second-order

scattering is observed where the modulus of the scattering vector Q

takes values of 2�/L and 4�/L, respectively, referring to Bragg’s

equation � = 2dsin � (� is half the scattering angle). The Lorentz-

corrected first- and second-order scattering intensity is given as

4�Q2S(2�/L) and 4�Q2S(4�/L), respectively, and is readily calcu-

lated as follows:

S
2�

L

� �
/ 1� cos 2�

lc

L

� �
¼ 1� cos 2�’ � S1ð’Þ

S
4�

L

� �
/ 1� cos 4�

lc

L

� �
¼ 1� cos 4�’ � S2ð’Þ:

ð7Þ

For samples with ’ > 0.5, we can apply all the equations after making

the replacements of ’! 1� ’ and hc $ ha, and we obtain

S
2�

L

� �
/ 1� cos 2�

L� lc

L

� �
¼ 1� cos½2�ð1� ’Þ� � S1ð’Þ

S
4�

L

� �
/ 1� cos 4�

L� lc

L

� �
¼ 1� cos½4�ð1� ’Þ� � S2ð’Þ:

ð8Þ

This follows from Babinet’s reciprocity theorem. Fig. 6 shows the ’
dependences of S(2�/L) � S1 and S(4�/L) � S2. The S1 value

becomes a maximum at ’ = 0.5 while S2 takes a minimal value 0 at ’ =

0.5.

We then introduce a crystal thickness distribution function Fc(lc),

assuming la to be a fixed value at a given temperature. The distri-

bution function of the long period is given as FL(L) = Fc(L � la).

Fc(lc) is considered to possess an asymmetric profile as given in Fig.

7(a), since lc has a lower bound lc* = 2�eT0
mT/�hf�T for lamellar

crystals to keep themselves thermodynamically stable. We discuss

here the scattering intensity distribution in real space L instead of Q

space. The first- and second-order scattering intensity distribution

from ensembles of periodic structures with many different long

periods is given by S1(’)FL(L) and S2(’)FL(L), respectively. The

peak position L01 of S1(’)FL(L) corresponds to the first-order scat-

tering peak position in Q space. Hence, L01 is equal to L1. On the

other hand, if we put L02 to be the peak position of S2(’)FL(L), L02/2

corresponds to the second-order peak position in Q space. Hence, L2

is equal to L02/2. Around the range of observed ’, S1(’) can roughly

be taken to be constant and L1 is roughly equal to the peak position

of FL(L). On the contrary, S2(’) becomes close to 0 around ’ = 0.5,

i.e. L = 2la. Distribution of L far from L = 2la largely contributes to

the second-order scattering and contribution from the range around

2la is negligible.

At ’ slightly smaller than 0.5, the main part of the distribution

which lies around the FL(L) peak does not contribute to the second-

order scattering (Fig. 7b). Only the long distribution ‘tail’ which

locates in the range of L sufficiently larger than 2la > L1 contributes to

L2. Hence, the second-order scattering is weak and S2(’)FL(L) has a

peak around L02 > L01 = L1; L2/L1 becomes larger than 1/2. With

increasing crystallization temperature the crystallinity ’ increases,

and the distribution of L shifts to a larger value of L. The distribution,
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Figure 6
Crystallinity ’ dependences of the first- and second-order scattering intensity S1

and S2.

Figure 7
(a) Speculated profiles of the crystal thickness distribution function Fc(lc) at ’ ’
0.48, (b)–(e) long period distribution functions FL(L) (solid lines) and second-order
scattering intensity distribution functions S2(’)FL(L) (broken lines) at several
different crystallinity ’ values. The shapes of these asymmetric functions were
estimated from the function (lc � lc*)exp[�B(lc* + �l)/kT] defined in the range lc >
lc*. (B is a constant.) The first factor represents the driving force of crystallization
and the second factor represents the barrier for chain folding. The convergence of
distribution with increasing temperature can be accounted for by the second factor.



however, also converges to around L1 (Fig. 7c). The distribution tail

becomes shorter, which makes L2/L1 decrease almost monotonically

toward 0.5. Around ’ ’ 0.55 (Fig. 7d), the main part of the distri-

bution of L is considered to shift to the region L > 2la. A considerable

part of the distribution of L larger than L1 contributes to the second-

order scattering, which makes L2/L1 larger again. This can account for

the shoulder around 1/�T = 0.0227, which corresponds to T = 353 K.

At higher crystallization temperatures, the distribution is considered

to become much more converged around L1 (Fig. 7e). The distribu-

tion tail located at L > L1 becomes much smaller and L2/L1

approaches 1/2 again. To summarize, we can speculate that the

shoulder observed in the L2 vs 1/�T plot is caused by the asymmetric

distribution of L when it passes through 2la, converging on itself.

We next consider the transition observed in the lc vs 1/�T plot. We

observed two different dependences of lc on 1/�T and the transition

between them. This is consistent with the observation by Fu et al.

(2001). On the other hand, lc depends linearly on 1/�T in each of the

low and high supercooling ranges, which is in accordance with the

nucleation theory. The growth mechanisms described by the nuclea-

tion theory still seem to be working in each of the low and high

supercooling ranges. Below we are going to analyze the transition

according to the hypothesis proposed by Fu et al. and show that one

of the results obtained in this work can not be explained by their

model. Then we will present a simple model that can account for the

transition.

Polymer chains are elongated along the crystal-melt interface

before they become incorporated into the crystal phase. If the crystal

thickness is smaller than the chain dimensions in the melt, Fu et al.

(2001) assumed that crystallization does not necessary need a chain

disentangling; the entanglements can be shifted into the amorphous

regions, where they can be accumulated together with the other

noncrystallizable chain parts such as end groups and stereodefects.

An estimation of the chain dimensions in the melt is the radius of

gyration Rg. Then, the condition for crystallization without disen-

tangling can be obtained as follows:

lc � Rg: ð9Þ

If this condition is not satisfied, i.e. if the crystal thickness is larger

than Rg, they proposed that the chain needs to be disentangled to

crystallize.

For Gaussian chains, Rg and the mean-squared end-to-end distance

R0 are related by the following equation:

R2
g ¼

R2
0

6
: ð10Þ

R0 can be calculated using the characteristic ratio C1 as

R2
0 ¼ C1a2

bN: ð11Þ

Here, ab
2 represents the sum of squares of the lengths of the back-

bone bonds in one monomer unit and N is the degree of poly-

merization.

For it-PB1, C1 is given as 18.0 in the literature (Kurata &

Tsunashima, 1999); ab
2 is 4.74 Å2. The value N is calculated to be 1078

from the number-averaged molecular weight and Rg is determined to

be 124 Å. This value is roughly in agreement with the crystal thick-

ness 117 Å at T = 338.2 K (1/�T = 0.017), which is the temperature of

the crystal thickness transition observed in Fig. 4. The agreement

supports the observations by Fu et al. (2001). The hypothesis that

chain dimensions could influence the process of crystal growth seems

to be right.

However, the model by Fu et al. (2001) can not explain the change

in the slope of the lc vs 1/�T plot. The two linearities we observed in

the 1/�T dependence of lc also indicate that the dependences obey

the nucleation theory in each of the high and low �T ranges. The

slope of the lc vs 1/�T plot is proportional to the end surface free

energy �e of crystals, i.e. it reflects the free energy q = 2ab�e of a chain

folding. The q value determined from the low �T range is larger than

that determined from the high �T range by 1.30 � 10�20 J stem�1,

which amounts to 22% of the q value in the high �T range. The

difference can not be explained only by whether disentanglement of

chain molecules works or not, because disentanglement itself changes

neither the energy of chain folding nor the conformational entropy of

polymer chain. When chains are elongated beyond Rg the envelope of

the volume occupied by the chains can be elongated and deformed,

causing the loss of conformational entropy of the chains. The reduced

entropy, however, will be observed as the lateral surface free energy,

not the end surface free energy. This can be reasonably treated within

the nucleation theory (Hoffman & Miller, 1997).

Another candidate for the mechanisms causing the change of the

slope in the lc vs 1/�T plot is the change of chain folding manner

caused by kinetic roughening. it-PB1 tetragonal crystals have a

facetted morphology indicative of flat growth fronts on the molecular

scale at lower �T, while they present a rounded morphology with a

kinetically roughened growth front on the molecular scale (Yama-

shita et al., 2004, 2007). In facetted crystals of the tetragonal phase,

the chain folding direction is restricted to that parallel to the (100)

growth front within each (100) sector since step propagation occurs

along the (100) growth front during the crystallization process. A

chain can fold from one site in the lattice to its two adjacent sites

along the (100) plane. On the contrary, in kinetically roughened

crystals, the chain folding direction is no longer restricted to (100)

directions; a chain can fold into at least eight neighboring sites. With

increasing temperature, the growth front changes from rounded to

facetted morphology, which reduces the number of re-entrant sites

from eight to two. Reduced re-entrant sites cause the reduction of the

configurational entropy of the re-entrant sites and the conformational

entropy of a folded chain, and these factors could account for the

difference between the chain folding free energy values. The entropy

of chain re-entrant sites for facetted and kinetically roughened

growth fronts are estimated to be kln 2 stem�1 and kln 8 stem�1,

respectively; the reduction of chain re-entrant sites is calculated to be

2kln 2. This corresponds to the free energy difference of 6.47 �

10�21 J stem�1 at 338.2 K. This value is half the difference between

the q values, 13.0 � 10�21 J stem�1; if we assume the reduction of the

conformational entropy to have the same order of magnitude as that

of the configurational entropy of re-entrant sites, we can explain the

difference between the q values.

In our previous work, we determined the kinetic roughening

temperature to be around 358.2 K (Yamashita et al., 2004). This is not

in agreement with the observed temperature of the thickness tran-

sition, 338.2 K. However, we also observed (100) sector boundaries in

kinetically roughened crystals at 358.2 K. The existence of sector

boundaries indicates that the crystals have a considerable fraction of

(100) folding even in the kinetically roughened state. This is

considered to be due to the fact that the surface nucleation process is

still alive and step propagation along the (100) direction is working

on a kinetically roughened growth front, since the growth front is not

thermally roughened. If we assume that the fraction of (100) folding

undergoes a large decrease in the temperature range of 333.2–

343.2 K, we can account for the transition temperature in the 1/�T

dependence of lc. To confirm our hypothesis, we need to observe the

(100) sector boundaries disappearing in this temperature range.

Although the second model described above is rather trivial, it

seems more probable because it can explain the change in q without
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any large changes in the crystallization mechanisms. Experiments on

the crystallization behaviour are still insufficient to determine the

mechanisms of transition. In particular, a more precise investigation

of the crystallization kinetics and the morphology of growth shape in

the high �T range is deemed necessary.

5. Conclusion

We observed the two temperature dependences of lamellar crystal

thickness lc and the transition from one dependence to the other

reported by Fu et al. (2001) in the crystallization of the it-PB1

tetragonal phase with a different molecular weight by means of more

simple methods. We determined the first-order long period L1 and the

second-order long period L2 along with the lamellar crystal thickness

lc of tetragonal crystals of it-PB1 grown in the melt from SAXS

experiments and density measurements over a wide range of crys-

tallization temperatures T from 313.2 to 363.2 K. The 1/�T depen-

dence of L1 demonstrated a single linearity over the whole

temperature range investigated while that of L2 showed a shoulder

around 1/�T = 0.0227, which corresponds to T = 353.2 K. The

shoulder could be attributed to the asymmetric distribution of lc
converging with increasing temperature and the increase of crystal-

linity accompanied by increasing crystallization temperature. The

dependence of lc on 1/�T presented two linearities and the transition

from one dependence to the other was observed around T = 338.2 K,

where lc becomes roughly in agreement with the radius of gyration Rg

of the samples we used. Each of the two dependences obeys the

nucleation theory in the high and low �T ranges. The chain folding

free energy q determined from the low �T range is larger than that

determined from the high �T range by 1.30 � 10�20 J stem�1. The

model proposed by Fu et al. (2001) can not account for the change in

the difference between the q values, while it can roughly explain the

transition temperature. The difference can be roughly explained by

considering the change in chain folding directions caused by kinetic

roughening without any large change of crystallization mechanisms as

assumed by Fu et al. (2001).
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