
 

 

 
 

 

 

Supplementary Figure 1 The KinA2-2Sda structure used as test case. The KinA molecules 

are coloured blue, while the Sda molecules are coloured red. 



 

Supplementary Figure 2 Theoretical neutron scattering profiles generated from the KinA2-

2Sda complex (Supplementary Figure 1). The 0% 2H2O profile has units of 10-24 cm2, with each 

subsequent profile off-set by a factor of 50-n (n10% = 1, n20% = 2, n30% = 3, n40% = 4, n70% = 5, n80% = 6, 

n90% = 7, n100% = 8). 

 

 



 
Supplementary Figure 3 Theoretical neutron scattering profiles generated from the KinA2-

2Sda complex (Supplementary Figure 1), with normally distributed noise applied to the data, with a 

level approximately equal to experimental data collected at ~12 mg/mL. The 0% 2H2O profile has units 

of 10-24 cm2, with each subsequent profile off-set by a factor of 50-n (n10% = 1, n20% = 2, n40% = 3, n80% = 

4, n90% = 5, n100% = 6). 

 



 

 

 
Supplementary Figure 4 Composite scattering functions using the scattering profiles shown 

in Supplementary Figure 3; Top Four contrast points (0%, 20%, 80%, 100%); Middle Five contrast 

points (0%, 20%, 40%, 80%, 100%); Bottom Seven contrast points (0%, 10%, 20%, 40%, 80%, 90%, 

100%). 

 



 

 

 
Supplementary Figure 5 P(r) functions derived from the composite scattering functions 

(Supplementary Figure 4); Top IHH; Middle IHD; Bottom IDD. 

 



 
Supplementary Figure 6 Theoretical neutron scattering profiles generated from the KinA2-

2Sda complex (Supplementary Figure 1), with normally distributed noise applied to the data, with a 

level approximately equal to experimental data collected at ~4 mg/mL. The 0% 2H2O profile has units 

of 10-24 cm2, with each subsequent profile off-set by a factor of 50-n (n10% = 1, n20% = 2, n70% = 3, n80% = 

4, n90% = 5, n100% = 6). 



 
Supplementary Figure 7 Composite scattering functions using all the scattering profiles 

shown in Supplementary Figure 6 (0%, 10%, 20%, 40%, 80%, 90%, 100%). The effect of fewer 

contrast points is not test here, because the accuracy of the extraction is limited by the noise level in the 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 
Supplementary Figure 8 P(r) functions derived from the composite scattering functions 

(Supplementary Figure 7); Top IHH; Middle IHD; Bottom IDD. 



Supplementary Table 1 Comparison of the radii of gyration for the KinA:Sda complex 

obtained from various methods, using different combinations of contrast points. 

 RH (Å) RD (Å) D§ (Å) Rm (Å) 

     

Actual 

values†

25.74 - 

26.88 

20.54 - 

21.37 

29.37 – 

32.30 
27.54 

Low Noise 

(4 contrast 

points) 

    

Parallel 

Axis 
25.71(19) 18(5) 33(4) - 

Stuhrmann - - - 27.53(27) 

Extraction 25.52(27) 23.1 (12) - - 

Low Noise 

(5 contrast 

points) 

    

Parallel 

Axis 
25.64(6) 21.0(4) 31.0(7) - 

Stuhrmann - - - 27.4(12) 

Extraction 25.74(21) 22.6 (10) - - 

Low Noise 

(7 contrast 

points) 

    

Parallel 

Axis 
25.71(10) 21.0(5) 31.0(8) - 

Stuhrmann - - - 27.50(15) 

Extraction 25.64(20) 21.8 (12) - - 

High Noise 

(7 contrast 

points) 

    

Parallel 

Axis 
25.94(24) 17(7) 33(5) - 

Stuhrmann - - - 33(5) 

Extraction 25.90(25) 18 (4) - - 

 

 

 

 

 

 



 

Implementation of composite scattering function extraction 

 

The composite scattering functions are calculated via minimisation of a conventional 

weighted least-square residual: 
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where 2
,1 iiA ρΔ= , 

iiiB ,2,1 ρρ ΔΔ=  and 2
,2 iiC ρΔ= , q distinguishes between each resolution bin, and 

the subscript i represents each contrast variation data set. A minimum occurs when the 

derivative of the residual with respect to each variable, Vj, is equal to zero, 
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This leads to the set of linear equations 
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which can be expressed in the form 

 

qqq ΙPX = .  

 

This can be rearranged to give the composite scattering functions Iq, 

 

qqq XPI 1−= . 

 

The variance for each data point q, for each composite scattering function is then calculated 

via 
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Implementation of the parallel-axis theorem 

 

Parameters for the parallel-axis theorem are solved via minimisation of the least-squares 

residual 
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Again a minimum occurs when the derivative of the residual with respect to each variable, Vj, 

is equal to zero. A corresponding set of linear equations are solved, and the variances 

determined in an analogous fashion to the composite scattering functions. 

 

Implementation of the Stuhrmann analysis 

 

Parameters for the Stuhrmann plot are solved via minimisation of the least-squares residual 
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Again a minimum occurs when the derivative of the residual with respect to each variable, Vj, 

is equal to zero. A corresponding set of linear equations are solved, and the variances 

determined in an analogous fashion to the previous two examples.  

 


