Supplementary Material for Finding Crystal Structures From Few Diffraction Data by a Combination of a Random Search with Genetic Algorithms

by Attilio Immirzi*, Loredana Erra, and Consiglia Tedesco

Dipartimento di Chimica, Università di Salerno Fisciano (SA), I-84084, Italy

e-mail: aimmirzi@unisa.it

INDEX

- 1. The Building Symbolic Language for the presented structures 2
- **2.** Tables with *g*-space search parameters and related values 6

1. The Building Symbolic Language for the presented structures.

The commands for building the molecular structures considered in the article are given. In all cases the bond-lengths are kept fixed and indicated as numerical constants; bond-angles τ , torsion-angles ϑ , and bending-angles φ as symbols (gi), H atoms were always neglected. Info after exclamation mark ! is comment given for reader convenience. Commands obey to the syntax of the Building Symbolic Language (BSL) extensively described in the TRY manual. Note that the first 4-character string always denotes the kind of construction. Q-atoms are "pseudo-atoms" used in the building process, but not included in the structure. Q-atoms may also be other entities like vectors, scalars, etc. since they are also used to store the results of calculations, as an example the command iner K1 U2 n3 n4 refers the group of 23 atoms starting from C1 to its own inertial frame. The transformation matrix is loaded into Q50, Q51, Q52. The last digit is related to output options.

Sucr	rose								
chbe	C16	C15	C14		1.521	1.521	g1	!	begin from pyranose
setx	C16	C15	C14	C13	1.521	g2	g21	!	2 z-matrix + 1 flap
setx	C15	C14	C13	C12	1.521	g3	g22	!	are necessary
flap	C15	C16	C12	05	1.427	1.427	g23	!	close the ring
setx	C16	05	C12	01	1.427	g4	g24	!	O1 is the bridge to furanose
setx	C16	C15	C14	03	1.427	g5	g25	!	set side O3
setx	C13	C14	C15	04	1.427	g6	g26	!	set side O4
setx	C15	C14	C13	02	1.427	g7	g27	!	set side O2
setx	C14	C15	C16	C17	1.521	g8	g28	!	set side C17
setx	C15	C16	C17	06	1.427	g9	g29	!	set side O6
setx	C13	C12	01	C19	1.427	g10	g30	!	build furanose
setx	C12	01	C19	C20	1.521	g11	g31	!	3 z-matrix + 1 flap
setx	01	C19	C20	C21	1.521	g12	g32	!	are necessary
setx	C19	C20	C21	C22	1.521	g13	g33	!	
flap	C21	C22	C19	08	1.427	1.411	g34	!	close the ring
setx	08	C19	C20	09	1.427	g14	g35	!	set side O9
setx	C19	C20	C21	010	1.427	g15	g36	!	set side O10
setx	C19	08	C22	C23	1.521	g16	g37	!	set side C23
setx	08	C22	C23	011	1.427	g17	g38	!	set side O11
setx	C21	C20	C19	C18	1.521	g18	g39	!	set side C18
setx	C20	C19	C18	07	1.427	g19	g40	!	set side O7
! ne	ext co	ommnd	will	orier	nt the 2	-atom mol	lecule	re	efering it to its own
! in	nertia	al exe	es and	i plac	ing the	origin d	onto m	ole	ecular centre. This
! op	perati	ion, r	ion st	rictl	y neces	sary, is	usefu	l s	since it reduces the
! co	orrela	ations	amor	ıg rot	cation a	ngles in	LS re	fir	nement.
iner	C1	Q50	23	0	! refe	r the mol	lecule	t t	o its inertial frame
rtax	1	C1	23	g41	! rota	tion of t	the wh	ole	e molecule about x axis
rtax	2	C1	23	g42	! rota	tion of t	the wh	ole	e molecule about y axis
rtax	3	C1	23	g43	! rota	tion of t	the wh	ole	e molecule about z axis
ldat	Q60	g44	0	g45	! x,z=	coordn.	of th	le c	centre; z (=0) is origin fixing
shft	Q60	C1	23		! shif	ts the mo	olecul	e	
end					! end	building			

(+)-3,12-Dioxo-5 β -cholanic acid

! building the 19-atom moiety common to the two molecules of the asymmetric unit ! Ring I chbe C1 C3 C2 1.54 1.54 g1 ! begin from ring I (6 atoms) setx C1 C2 C3 C4 1.54 g2 gЗ ! set C4 by z-matrix g5 ! set C5 by z-matrix setx C2 C3 C4 C5 1.54 g4 C1 C5 C10 1.54 1.54 g6 ! set C10 by flap procedure flap C2 ! Ring II condensed g9 ! set C9 according to tetrahedral geometry tets C5 C10 C1 C9 1.54 g7 g8 ! set C8 by z-matrix setx C5 C10 C9 g10 g11 C8 1.54 ! set C7 by z-matrix setx C10 C9 C8 g12 g13 C7 1.54 flap C8 1.54 1.54 g14 ! set C6 by flap procedure C7 C5 C6 ! Ring III condensed g15 g16 g17 ! set C11 according to tetrahedral geometry tets C10 C9 C8 C11 1.54 setx C8 g18 g19 ! set C12 by z-matrix C9 C11 C12 1.54 g20 g21 setx C9 C11 C12 C13 1.54 ! set C13 by z-matrix flap C12 C13 C8 1.54 g22 ! set C14 by flap procedure C14 1.54 ! Ring IV consensed tets C12 C13 C14 C17 1.54 g23 g24 g25 ! set C17 according to tetrahedral geometry g26 g27 setx C12 C13 C17 C16 1.54 ! set C16 by z-matrix ! set C15 by flap procedure flap C13 C14 C16 C15 1.54 1.54 g28 tert C1 C10 C19 g59 ! setup C19 completing C10 valence C5 C9 tert C12 C14 C17 C13 C18 g59 ! setup C18 completing C13 valence iner C1 Q90 19 0 ! transpose the 19-atom model into inertial frame ! Copy the 19-atom moiety into the second set to create the second molecule copy C1 C29 18 ! complete A molecule g31 ! set C20 according to tetrahedral geometry tets C16 C17 C13 C20 1.54 g29 g30 g33 setx C16 C17 C20 C21 1.54 g32 ! set C21 by z-matrix tets C17 C20 C21 C22 1.54 g34 g35 g36 ! set C22 according to tetrahedral geometry setx C21 C20 C22 C23 1.54 g37 g38 ! set C23 by z-matrix C24 1.54 g39 setx C20 C22 C23 g40 ! set C24 by z-matrix setx C22 C23 C24 028 1.31 g41 g42 ! set 028 by z-matrix ! set O27 according to \mathtt{C}_{2v} symmetry trig C23 C24 028 027 1.22 0 trig C2 CЗ C4 025 1.22 0 ! set O25 according to C_{2v} symmetry trig C11 C12 C13 O26 1.20 0 ! set O26 according to C_{2v} symmetry ! roto-translation operation rtax 1 C1 28 g45 ! rotation of A molecule about x 28 g46 ! rotation of A molecule about y rtax 2 C1 28 g47 ! rotation of A molecule about z rtax 3 C1 g48 g49 g50 ! load in Q84 Tx, Ty, Tz ldat Q84 C1 28 ! translation of the molecule A shft Q84 ! complete B molecule g31 ! set C48 according to tetrahedral geometry tets C44 C45 C41 C48 1.54 g29 g30 setx C44 C45 C48 C49 1.54 g32 g57 ! set C49 by z-matrix g35 tets C45 C48 C49 C50 1.54 g34 g36 ! set C50 according to tetrahedral geometry setx C49 C48 C50 C51 1.54 g37 g58 ! set C51 by z-matrix g59 setx C48 C50 C51 C52 1.54 g39 ! set C52 by z-matrix setx C50 C51 C52 O56 1.32 g41 g60 ! set 056 by z-matrix trig C51 C52 056 055 1.22 0 ! set O55 according to C_{2v} symmetry trig C30 C31 C32 O53 1.22 O ! set O53 according to C $_{2v}$ symmetry trig C39 C40 C41 054 1.22 0 ! set O54 according to C_{2v} symmetry rtax 1 C29 28 g51 ! rotation of B molecule about x rtax 2 C29 28 g52 ! rotation of B molecule about y rtax 3 C29 28 g53 ! rotation of B molecule about z ldat Q134 g54 g55 g56 ! load in Q134 Tx, Ty, Tz shft Q134 C29 28 ! translation of the molecule B end ! end building

-				· · ·				
chbe	N1	C2	CЗ	1.49	91 1.5	05 g1	!	begin from proline ring
setx	N1	C2	CЗ	C4	1.452	g2 g3	!	set C4 by z-matrix
flap	C2	N1	C4	C5	1.455	1.490 g4	!	set C5 by flap procedure
tetr	N1	C2	CЗ	C6	1.521	g5 g6 −1	!	attach C6 tetrahedrally
setx	N1	C2	C6	N8	1.322	g7 g8	!	set N8 by Z-matrix
trig	C2	C6	N8	07	1.241	0	!	set O7 according to ${\tt C}_{2v}$ symmetry
setx	C2	C6	N8	C9	1.452	g9 g10	!	set C9 by z-matrix
setx	C6	N8	C9	C13	1.501	g11 g12	!	set C13 by z-matrix
tetr	N8	C9	C13	C10	1.555	g13 g14 1	!	attach C10 tetrahedrally
setx	C13	C9	C10	C11	1.515	g15 g16	!	set C11 by z-matrix
tetr	C9	C10	C11	012	1.389	1.085 1.131 -1	!	attach 012 tetrahedrally
setx	N8	C9	C13	N15	1.314	g17 g18	!	set N15 by z-matrix
trig	C9	C13	N15	014	1.241	0	!	set O14 according to C_{2v} symmetry
setx	C9	C13	N15	C16	1.484	g19 g20	!	set C16 by z-matrix
setx	C13	N15	C16	C19	1.530	g21 g22	!	set C19 by z-matrix
sc2v	N15	C16	C19	C17	1.535	g23	!	set C17 and C18 with local C_{2v} symmetry
setx	N15	C16	C19	N21	1.353	g24 g25	!	set N21 by z-matrix
trig	C16	C19	N21	020	1.244	0	!	set O20 according to C_{2v} geometry
setx	C16	C19	N21	C22	1.460	g26 g27	!	set C22 by z-matrix
setx	C19	N21	C22	C23	1.577	g28 g29	!	set C23 by z-matrix
setx	N21	C22	C23	C24	1.492	g30 g31	!	set C24 by z-matrix
phen	C23	C24	C22	1.40	00 g32		!	build-up a phenyl with D_{6d} simmetry
- setx	C19	N21	C22	C30	1.501	g33 g34	!	set C30 by z-matrix
setx	N21	C22	C30	C31	1.495	g35 g36	!	set C31 by z-matrix
setx	C22	C30	C31	N33	1.323	g37 g38	!	set N33 by z-matrix
trig	C30	C31	N33	032	1.256	0	!	set O32 according to C_{2v} symmetry
setx	C30	C31	N33	C34	1.438	g39 g40	!	set C34 by z-matrix
flap	N33	C34	N1	C37	1.512	1.341 g41	!	set C37 by flap procedure
setx	C31	N33	C34	C35	1.523	g42 g43	!	set C35 by z-matrix
setx	N33	C34	C35	C36	1.516	g44 g45	!	set C36 by z-matrix
trig	C34	C37	N1	038	1.255	0	!	set N1 according to C_{2v} symmetry
iner	N1	Q210	38	в 0	! tr	anspose the mole	cul	e into inertial frame
rtax	1	N1	38	g47	! ro	tation about x		
rtax	2	N1	38	g48	! ro	tation about y		
rtax	3	N1	38	g49	! ro	tation about z		
ldat	Q90	g50	g51	g52	! 10	ad in Q90 Tx, Ty	, Т	Z
shft	Q90	N1	38	2	! tr	aslation of the	mol	ecule
end					! en	d building		

c/-Pro-Thr-Aib-(S) β^3 -hPHe-Abu] cyclopeptide

4'-Acetylbenzo-15-crown-5 2-naphthyloxyacetylhydrazone 1.48 1.40 g8 ! begin from the crown ether ring chbe C22 C23 O3 setx C22 C23 O3 C8 1.40 g9 g30 ! set C8 by z-matrix phen 03 C8 C23 1.40 g31 ! build-up a phenyl with D_{6d} simmetry setx 03 C8 C13 04 1.40 1.2 0.0 ! set O4 by z-matrix setx C8 C13 O4 C14 1.40 g9 g33 ! set C14 by z-matrix setx C13 04 C14 C17 1.38 g8 g34 ! set C17 by z-matrix setx 04 C14 C17 O15 1.40 g8 g35 ! set 015 by z-matrix setx C14 C17 O15 C18 1.40 g9 g36 ! set C18 by z-matrix setx C17 O15 C18 C19 1.48 g8 g37 ! set C19 by z-matrix set 016 by z-matrix setx 015 C18 C19 016 g2 g38 ! g8 setx C18 C19 O16 C20 g2 g39 ! set C20 by z-matrix g9 setx C19 016 C20 C21 g1 g40 ! set C21 by z-matrix g8 flap C20 C21 C22 O5 g2 g41 ! set C5 by flap procedure g2 line C8 C11 C24 g1 ! set C24 aligned to C11 and C8 setx C10 C11 C24 N1 g4 g42 ! set N1 by z-matrix 1.2 trig C11 C24 N1 C25 g1 0 ! set C25 according to C_{2v} symmetry setx C11 C24 N1 N2 g5 g22 g43 ! set N2 by z-matrix

setx C24 N1 N2 C26 g6 g23 g44 ! set C26 by z-matrix setx N1 N2 C26 C27 g1 g24 g45 ! set C27 by z-matrix trig N2 C26 C27 O6 g7 O ! set O6 according to C $_{2v}$ symmetry ! set 00 according to C_{2v} symmetry ! set C28 by z-matrix ! build-up a phenyl with D_{6d} simmetry ! set C32 according to C_{2v} symmetry ! set C37 according to C_{2v} symmetry setx N2 C26 C27 07 g2 g25 g46 setx C26 C27 07 C28 g2 g9 g47 phen 07 C28 C27 1.40 g48 trig C30 C31 C32 C34 1.40 0 trig C31 C32 C33 C37 1.40 0 setx C30 C31 C34 C35 1.40 1.2 1.8 ! set C35 by z-matrix flap C34 C35 C37 C36 1.40 1.40 1.8 ! set C36 by flap procedure iner N1 Q99 37 0 ! transpose the molecule into inertial frame rtax 1 N1 37 g49 ! rotation about x rtax 2 N1 37 g50 ! rotation about y rtax 3 N1 37 g51 ! rotation about z ldat Q97 g52 g53 g54 ! load in Q97 Tx, Ty, Tzshft Q97 N1 37 ! translation of the moleculeend! end building

2. Tables with g-space search parameters and related values.

g_i	definition	m_k	δ_k	span interval
$\overline{\vartheta_{21}}$	C16-C15-C14-C13	3	2.8°	±11°
ϑ_{22}	C15-C14-C13-C12	3	2.8°	$\pm 11^{\circ}$
φ_{23}		3	2.8°	$\pm 11^{\circ}$
ϑ_{24}	C16-O5-C12-O1	3	2.8°	$\pm 11^{\circ}$
ϑ_{25}	C16-C15-C14-O3	3	2.8°	$\pm 11^{\circ}$
ϑ_{26}	C13-C14-C15-O4	3	2.8°	$\pm 11^{\circ}$
ϑ_{27}	C15-C14-C13-O2	3	2.8°	$\pm 11^{\circ}$
ϑ_{28}	C14-C15-C16-C17	4	2.8°	$\pm 22^{\circ}$
ϑ_{29}	C15-C16-C17-O6	4	2.8°	$\pm 22^{\circ}$
ϑ_{30}	C13-C12-O1-C19	7	2.8°	$\pm 180^{\circ}$
ϑ_{31}	C12-O1-C19-C20	7	2.8°	$\pm 180^{\circ}$
ϑ_{32}	O1-C19-C20-C21	7	2.8°	$\pm 180^{\circ}$
ϑ_{33}	C19-C20-C21-C22	3	2.8°	$\pm 11^{\circ}$
φ_{34}		3	2.8°	$\pm 11^{\circ}$
ϑ_{35}	O8-C19-C20-O9	4	2.8°	$\pm 22^{\circ}$
ϑ_{36}	C19-C20-C21-O10	4	2.8°	$\pm 22^{\circ}$
ϑ_{37}	C19-O8-C22-C23	4	2.8°	$\pm 22^{\circ}$
ϑ_{38}	O8-C22-C23-O11	4	2.8°	$\pm 22^{\circ}$
ϑ_{39}	C21-C20-C19-C18	4	2.8°	$\pm 22^{\circ}$
ϑ_{40}	C20-C19-C18-O7	4	2.8°	$\pm 22^{\circ}$
g_{41} (R_x)		7	2.8°	$\pm 180^{\circ}$
$g_{42} \ (R_y)$		7	2.8°	$\pm 180^{\circ}$
$g_{43} \ (R_z)$		7	2.8°	$\pm 180^{\circ}$
g_{44} (T_x)		5	0.170	± 2.7 Å
$g_{45} (T_z)$		4	0.272	± 2.2 Å

g_i	definition	m_k	δ_k	span interval
ϑ_{33}	C16-C17-C20-C21	5	2.8°	$\pm 45^{\circ}$
ϑ_{38}	C21-C20-C22-C23	5	2.8°	$\pm 45^{\circ}$
ϑ_{40}	C20-C22-C23-C24	5	2.8°	$\pm 45^{\circ}$
ϑ_{42}	C22-C23-C24-O28	5	2.8°	$\pm 45^{\circ}$
ϑ_{57}	C44-C45-C48-C49	5	2.8°	$\pm 45^{\circ}$
ϑ_{58}	C49-C48-C50-C51	5	2.8°	$\pm 45^{\circ}$
ϑ_{59}	C48-C50-C51-C52	5	2.8°	$\pm 45^{\circ}$
ϑ_{60}	C50-C51-C52-C56	5	2.8°	$\pm 45^{\circ}$
$g_{45} (R_{xA})$		6	1.4°	$\pm 45^{\circ}$
$g_{46} (R_{yA})$		6	1.4°	$\pm 45^{\circ}$
$g_{47} (R_{zA})$		6	1.4°	$\pm 45^{\circ}$
$g_{48} (T_{xA})$		5	0.20 Å	$\pm 3.2 \mathrm{\AA}$
$g_{50} (T_{zA})$		6	0.18 Å	$\pm 5.8 \text{\AA}$
$g_{51} (R_{xB})$		6	1.4°	$\pm 45^{\circ}$
$g_{52} \ (R_{yB})$		6	1.4°	$\pm 45^{\circ}$
$g_{53} (R_{zB})$		6	1.4°	$\pm 45^{\circ}$
$g_{54} (T_{xB})$		5	0.20 Å	$\pm 3.2 \text{\AA}$
$g_{55} (T_{yB})$		4	0.22 Å	± 1.8 Å
$g_{56} (T_{zB})$		6	0.18 Å	± 5.8 Å

Table S2.Data for cholanic acid

g_i	definition	m_k	δ_k	span interval
ϑ_3	N1-C2-C3-C4	3	2.0°	$\pm 8^{\circ}$
$arphi_4$	C2-N1-C4-C5	5	2.0°	$\pm 32^{\circ}$
ϑ_8	N1-C2-C6-N8	6	2.0°	$\pm 64^{\circ}$
ϑ_{10}	C2-C6-N8-O7	4	2.0°	$\pm 16^{\circ}$
ϑ_{12}	C6-N8-C9-C13	6	2.0°	$\pm 64^{\circ}$
ϑ_{16}	C13-C9-C10-C11	6	2.0°	$\pm 64^{\circ}$
ϑ_{18}	N8-C9-C13-N15	6	2.0°	$\pm 64^{\circ}$
ϑ_{20}	C9-C13-N15-C16	6	2.0°	$\pm 64^{\circ}$
ϑ_{22}	C13-N15-C16-C19	6	2.0°	$\pm 64^{\circ}$
ϑ_{25}	N15-C16-C19-N21	6	2.0°	$\pm 64^{\circ}$
ϑ_{27}	C16-C19-N21-C22	4	2.0°	$\pm 16^{\circ}$
ϑ_{29}	C19-N21-C22-C23	6	2.0°	$\pm 64^{\circ}$
ϑ_{31}	N21-C22-C23-C24	6	2.0°	$\pm 64^{\circ}$
ϑ_{32}	C22-C23-C24-C25	6	1.4°	$\pm 90^{\circ}$
ϑ_{34}	C19-C21-C22-C30	6	2.0°	$\pm 64^{\circ}$
ϑ_{36}	N21-C22-C23-C24	6	2.0°	$\pm 64^{\circ}$
ϑ_{38}	C22-C30-C31-N33	6	2.0°	$\pm 64^{\circ}$
ϑ_{40}	C30-C31-N33-C34	4	2.0°	$\pm 16^{\circ}$
ϑ_{41}	N33-C34-N1-C37	7	2.0°	$\pm 128^{\circ}$
ϑ_{43}	C31-N33-C34-C35	6	2.0°	$\pm 64^{\circ}$
ϑ_{45}	N33-C34-C35-C36	6	2.0°	$\pm 64^{\circ}$
$g_{47} \ (R_x)$		7	1.4°	$\pm 90^{\circ}$
$g_{48}\ (R_y)$		7	1.4°	$\pm 90^{\circ}$
$g_{49}\ (R_z)$		7	1.4°	$\pm 90^{\circ}$
$g_{50} \ (T_x)$		5	0.15\AA	± 2.4 Å
$g_{51} (T_y)$		5	0.15\AA	$\pm 2.4 \text{\AA}$
$g_{53} \left(x_w ight)$		5	0.10\AA	$\pm 0.16 \text{\AA}$
$g_{54} \left(y_w ight)$		5	0.10\AA	$\pm 0.16 \text{\AA}$
$g_{55} \ (z_w)$		5	0.10\AA	$\pm 0.16 \text{\AA}$

Table S3. Data for c[-Pro-Thr-Aib-(S) β^3 -hPHe-Abu]

g_i	definition	m_k	δ_k	span interval
ϑ_{30}	C22-C23-O3-C8	7	2.0°	$\pm 128^{\circ}$
ϑ_{31}	phenyl	7	2.0°	$\pm 128^{\circ}$
ϑ_{33}	C8-C13-O4-C14	7	2.0°	$\pm 128^{\circ}$
ϑ_{34}	C13-O4-C14-C17	7	2.0°	$\pm 128^{\circ}$
ϑ_{35}	O4-C14-C17-O15	7	2.8°	$\pm 128^{\circ}$
ϑ_{36}	C14-C17-O15-C18	7	2.8°	$\pm 128^{\circ}$
ϑ_{37}	C17-O15-C18-C19	7	2.8°	$\pm 128^{\circ}$
ϑ_{38}	O15-C18-C19-O16	7	2.8°	$\pm 128^{\circ}$
ϑ_{39}	C18-C19-O16-C20	7	2.8°	$\pm 128^{\circ}$
ϑ_{40}	C19-O16-C20-C21	7	2.8°	$\pm 128^{\circ}$
φ_{41}	C20-C21-C22-O5	4	1.0°	$\pm 8^{\circ}$
ϑ_{42}	C10 C11 C24 N1	5	2.0°	$\pm 32^{\circ}$
ϑ_{43}	C11-C24-N1-N2	7	2.0°	$\pm 128^{\circ}$
ϑ_{44}	C24-N1-N2-C26	7	2.0°	$\pm 128^{\circ}$
ϑ_{45}	N1-N2-C26-C27	5	2.0°	$\pm 32^{\circ}$
ϑ_{46}	N2-C26-C27-O7	5	2.0°	$\pm 32^{\circ}$
ϑ_{47}	C26-C27-O7-C28	5	2.0°	$\pm 32^{\circ}$
ϑ_{48}	phenyl	6	2.0°	$\pm 64^{\circ}$
$g_{49}~(R_x)$		7	2.0°	$\pm 128^{\circ}$
$g_{50} \ (R_y)$		7	2.0°	$\pm 128^{\circ}$
$g_{51} \ (R_z)$		7	2.0°	$\pm 128^{\circ}$
g_{52} (T_x)		5	$0.137 \mathrm{\AA}$	± 2.2 Å
$g_{53} (T_y)$		6	$0.250 \mathrm{\AA}$	± 8.0 Å
$g_{54} (T_z)$		5	0.187\AA	± 3.0 Å

 ${\bf Table \ S4.} \quad {\rm Data \ for \ 4'-Acetylbenzo-15-crown-5} \ 2-naphthyloxyacetylhydrazone$