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An analytical method is presented for deriving the thermomechanical properties

of polycrystalline materials under high-pressure (P) and high-temperature (T)

conditions. This method deals with non-uniform stress among heterogeneous

crystal grains and surface strain in nanocrystalline materials by examining peak-

width variation under different P–T conditions. Because the method deals

directly with lattice d spacing and local deformation caused by stress, it can be

applied to process any diffraction profile, independent of detection mode. In

addition, a correction routine is developed using diffraction elastic ratios to deal

with severe surface strain and/or strain anisotropy effects related to nano-scale

grain sizes, so that significant data scatter can be reduced in a physically

meaningful way. Graphical illustration of the resultant microstrain analysis can

identify micro/local yields at the grain-to-grain interactions resulting from high

stress concentration, and macro/bulk yield of the plastic deformation over the

entire sample. This simple and straightforward approach is capable of revealing

the corresponding micro and/or macro yield stresses, grain crushing or growth,

work hardening or softening, and thermal relaxation under high-P–T conditions,

as well as the intrinsic residual strain and/or surface strain in the polycrystalline

bulk. In addition, this approach allows the instrumental contribution to be

illustrated and subtracted in a straightforward manner, thus avoiding the

potential complexities and errors resulting from instrument correction.

Applications of the method are demonstrated by studies of �-SiC (6H,

moissanite) and of micro- and nanocrystalline nickel by synchrotron X-ray and

time-of-flight neutron diffraction.

1. Diffraction analysis of crystalline deformation

Stress–strain measurement to derive yield strength is a

conventional practice for engineering materials. Recent

advancements in diffraction techniques with high-intensity

synchrotron X-ray and time-of-flight neutron radiation allow

deformation studies for bulk samples at the atomic level

(Weidner et al., 1994; Zhao et al., 1994, 2007; Zhang et al., 2002;

Brown et al., 2003; Chen et al., 2005; Qian et al., 2005; Zhao &

Zhang, 2007; Wang et al., 2007). By applying a stress field to a

crystalline sample and monitoring the shift of the diffraction

peak positions in a compressive test, one can derive the overall

strain data (macrostrain) and thus the constitutive equations

of the sample materials. The crystal lattice responds elastically

to the applied stress field before the plastic yield, and signifi-

cant stress heterogeneity occurs within the polycrystalline

sample. The local stress varies from grain to grain, owing to

different crystalline orientations relative to the loading

direction, and also because of stress concentration at grain

contacts during powder compaction. Correspondingly, the

local strain (microstrain) at the contact points between crystal

grains can span a very wide range and, as a result, the

diffraction peaks broaden significantly. Detailed peak-width

analysis can reveal micro/local yields at the high stress

concentration portion of the grain contacts. At this stage, the

bulk sample still performs within the elastic regime with

significant nonlinear components. Consistent with the classical

definition, the microstrains determined in this work before the

bulk yield are elastic, whereas deviation from the linear

variation of microstrain marks the onset of plastic deforma-

tion, in the sense that the bulk material can no longer support

further differential or shear stress in an elastic sense. Corre-

spondingly, the diffraction peak widths after the bulk yield

would either remain at a constant level or broaden or sharpen

to a certain extent, depending on the yield strength of the

material as a function of high-P–T conditions. In this article,

we deal only with microscopic strain and stress derived from

diffraction peak-width changes during loading, unloading and

heating.

The diffraction profile is a convolution function of instru-

ment response, grain-size distribution and crystal lattice

deformations along the diffraction vector. In high-tempera-
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ture annealing experiments at atmospheric pressure, the

diffraction peak width narrows with increasing temperature,

reflecting the relaxation of residual strain or, in the case of

nanocrystalline materials, demonstrating both the surface

strain relaxation and grain growth. During a high-pressure

compression experiment, the widths of the diffraction peaks

broaden and approach the maximum as (i) the grain-size

reduction through the crushing process reaches its minimum;

and (ii) the deviatoric stress approaches the ultimate yield

stress and the sample material deforms in the manner of

plastic flow. All diffraction techniques observe the d spacing

and intensity of various crystallographic planes with Miller

indices hkl to derive the atomic settings of the crystal lattice,

regardless of the detection mode (energy dispersive, angular

dispersive and/or time-of-flight). We can thus plot the

diffraction peak profile in terms of the lattice d spacing (in

ångströms), which is a universal length scale that is indepen-

dent of the detection mode.

We conducted a high-P–T experiment on moissanite (6H-

SiC) using energy-dispersive synchrotron X-ray diffraction

and a Kawai-type T-Cup high-pressure system (Vaughan et al.,

1998). T-Cup is a 6–8 double-stage multi-anvil high-pressure

module, with a truncation edge length of 2 mm on eight

tungsten carbide cubes and a capability of generating high

pressures up to 20 GPa. The powder moissanite sample was

packed into a cylindrical boron epoxy sample chamber of

1 mm diameter and 1 mm length, which was then loaded into

an octahedral boron epoxy pressure medium of 8 mm edge-

length. Two rhenium strips were placed on the top and bottom

of the sample to provide resistive heating. The loading

conditions and diffraction geometry for the multi-anvil presses

used in this study have been described previously (Weidner et

al., 1994; Chen et al., 2005). Briefly, the incident X-ray beam

for diffraction is perpendicular to both the loading direction

and the maximum stress vector �1 (i.e. the vertical axis in the

laboratory coordinate system). Assuming cylindrical

symmetry of the stress field in our multi-anvil cell, we have

�1 6¼ �2 = �3 (where �2 or �3 is the minimum stress vector),

indicating that, on top of a hydrostatic stress field, our loading

system generates a statistically uniform differential stress

throughout the sample. Although the loading force from the

hydraulic ram is uniaxial, the simultaneous movement of the

first-stage anvils toward the center of an octahedral or cubic

high-pressure cell would result in triaxial compression of the

sample. The moissanite powders were first compressed to

18.6 GPa at room temperature using a hydraulic ram and then

heated to a maximum temperature of 1473 K. Along this P–T

path, X-ray diffraction data were collected at selected pres-

sures and temperatures. Both the peak position (d spacing)

and the full width at half-maximum (FWHM) were deter-

mined using a Gaussian fit of the diffracted intensity. For all

high-pressure data reported in this paper, the pressures were

determined using the Decker (1971) scale for NaCl.

A number of diffraction profiles at ambient, high-P and

high-P–T conditions are plotted in Fig. 1 for moissanite to

show peak-width changes. The broadening and narrowing of

the diffraction peaks indicate the increase and decrease of the

stress level applied to the crystalline grains. During the

compression portion of the cycle, the diffraction lines broaden

asymmetrically before the macro/bulk yield, with the larger-d-

spacing side of the peak remaining unchanged (black and

green patterns in Fig. 1, insert). This unsymmetrical broad-

ening suggests that quite a large proportion of the grains do

not experience much stress and only a certain proportion of

the grains support the applied loading force, which is a typical

phenomenon for hard materials during high-P compaction

(Weidner et al., 1994; Qian et al., 2005). After the macro/bulk

yield, however, both sides of the diffraction peaks move to

smaller d-spacing values (dark-blue and purple patterns in

Fig. 1, insert). The diffraction peaks become sharpened in the

high-P–T plastic flow stages.

The diffraction profile can be expressed in Gaussian form in

terms of the lattice d spacing (Å), giving a universal expression

that is independent of the detection mode:

Intðd Þ / exp � ðd� dhklÞ=s
� �2

n o
; ð1Þ

where Int(d) denotes the diffraction peak intensity as a

function of d spacing and s is a statistical scale parameter to

define the diffraction peak width, which is correlated to the

often-used FWHM by FWHM ¼ 2sðln 2Þ1=2. The s in equation

(1) is more conventionally defined as the standard deviation �
for a Gaussian distribution, and the relationship between

FWHM and � is FWHM ¼ 2ð2 ln 2Þ1=2�. In this study, we
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Figure 1
The diffraction patterns of moissanite (�-6H-SiC) under selected
pressure and temperature conditions. The peak intensities of the hkl
diffractions at high P–T are normalized relative to that of (102) under
ambient conditions for width-comparison purposes. The insert shows an
enlargement of the (101), (102) and (103) diffraction lines.



denote the observed FWHM as �dobs = ðd2 � d2Þ
1=2 =

�d(FWHM), reflecting the lattice d-spacing span around the

mean d of a particular diffraction peak (for simplicity, we use d

to denote d throughout this paper). The profiles of the

observed diffraction peaks are the results of convoluted

functions with multiple effects of instrument response, grain

size and microstrain (lattice deformation) as a result of stress

heterogeneity and dislocation density at high P–T. Thereafter,

the integrated width of the diffraction peak can be de-

convoluted through Fourier transformation, i.e.

�d2
obs ¼ �d2

ins þ�d2
size þ�d2

": ð2Þ

Here, �d" and �dsize are, respectively, the microstrain and

grain size contributions to the observed peak width

�dobs(FWHM) under any P–T conditions, and �dins is the

peak width at a stress-free state, usually referring to the

instrument contribution. The strain, " = �d/d, directly reveals

the deformation of the crystal lattice from dhkl + �d to dhkl � �d
for the specific dhkl plane at a certain stress level. For the high-

P–T diffraction experiment, both macrostrain (deviatoric shift

of the diffraction lines, also referred to as the uniform strain)

and microstrain (as manifested by the broadening of the

diffraction peaks, also referred to as the non-uniform strain)

effects can superimpose upon the hydrostatic pressure

compression, in addition to the P–V–T equation-of-state

(EOS) response of the crystal lattice. The diffraction peak

widths reach a maximum as the deviatoric stress approaches

the ultimate yield stress or as the micro/local yields eventually

develop into a macro/bulk yield. Plastic or viscous flow occurs

when the deviatoric component (relative to the hydrostatic

component) exceeds the high-P–T yield strength, �� � �y,

which is actually a simplified Von Mises (octahedral shear

stress) criterion. Strictly speaking, equation (2) is only true if

all of the convoluted functions are Gaussian. As a result, the

diffraction profile analyses throughout this work were based

on a simplification of a Gaussian expression for a diffraction

peak. The non-Gaussian components typically exist because of

complicated contributions to a peak profile, which could

introduce errors in the peak-width determination. However,

the standard deviations of the peak-width determination

based on a Gaussian fit are generally within 5% for all

examples presented in this work. In addition, some errors

associated with the non-Gaussian contributions would be

smeared out owing to the relative nature of the graphical

approach (subtraction) for the stress determination, as

discussed below.

We consider the straightforward strain expression " = �d/d,

and thus derive the microstrain using the universal length

scale of the d spacing. By rewriting equation (2), we obtain

�d2
obs ��d2

ins

� �
¼ �d2

size þ "
2d2; ð3Þ

where d is the d spacing of an hkl lattice plane at any P–T

conditions. Equation (3) is a typical y = a + bx plot, a being the

ordinate intercept and b the plot slope. This approach modifies

the Williamson–Hall (Williamson & Hall, 1953) plot (referred

to as WH, see also discussion below) to cover all diffraction

detection modes. Supposedly, the ordinate intercepts �d2
size of

the {�d2
obs ��d2

ins} versus d2ðP;TÞ plot for a number of hkl

diffraction indices should provide information on the average

grain size L. However, this interception usually presents a

rather large error and does not work well for grains larger than

micrometre size. Also, in some cases (see later discussion), it

becomes negative and is therefore physically meaningless.

Nevertheless, the microstrain can be derived from the slope "2

of the {�d2
obs ��d2

ins} versus d2ðP;TÞ plot, or, in a more

straightforward way, it can also be readily derived from the

slope " of the simplified ð�d2
obs ��d2

insÞ
1=2 versus d(P, T) plot

for a number of hkl diffraction indices, i.e.

" ¼ �d"=d ¼ ð�d2
obs ��d2

insÞ
1=2=dðP;TÞ: ð4Þ

The microstrain " thus derived neglects the effect of grain size

and subtracts the instrumental contribution observed under

ambient stress-free conditions, i.e. " = 0 at P = 0 (we will

discuss the residual strain situation further below). Therefore,

the determined strain is the ‘applied strain’, represented as the

ratio of peak width to peak position, "= �d/d. The microstrain

is the dominant factor for peak-width broadening in micro-

crystalline materials under severe deviatoric stress conditions

in high-pressure experiments.

Equation (4) is applied to re-analyze the high-P–T energy-

dispersive X-ray diffraction data on microcrystalline

moissanite (�-6H SiC) (Zhang et al., 2002), as plotted in Fig. 1.

During the compression portion of the loading cycle, the

diffraction lines broaden asymmetrically up to 11.8 GPa, with

the larger d-spacing side of the peak remaining unchanged.

The obvious tails on the small d-spacing sides suggest that

quite a large proportion of the grains do not experience much

stress and only a certain proportion of the grains have been

deformed. After moissanite yields at higher pressures (P =

13.7–18.6 GPa), both sides of the diffraction peaks move to

smaller d-spacing values (Fig. 1, insert), indicating homo-

geneous compression over all of the moissanite grains. The

diffraction peaks become symmetric as well as narrowed in the

plastic flow stage, as shown by the data collected during the

high-P–T heating cycle. We plot six sets of hkl data in Fig. 2 to

illustrate the strain (slope) changes associated with P–T

variations, with the data corresponding to the Fig. 1 diffraction

profiles. Increasing pressure also makes the strain data

gradually scattered, but they can still be fitted to straight lines

very well. The microstrains of moissanite under different P–T

conditions are thus derived from the slopes of the linear plots.

The deviatoric stresses are derived through a stress–strain

relationship of � = E", where E is Young’s modulus. We

applied an aggregate Young’s modulus, E = 447 GPa, for

moissanite (Feng et al., 1996) with the bulk modulus equal to

220 GPa and the shear modulus to 193 GPa, and the derived

stresses under all experimental conditions are plotted as a

function of pressure and temperature in Fig. 3 to show the

high-P–T yield process of moissanite. In the present triaxial

high-pressure compression experiments, the diffraction optics

detect the deformation of the lattice planes under the

maximum loading stress (�1). The yield stress thus derived is

the maximum deviatoric stress that the crystalline moissanite

sample can support under the given high-P–T conditions.
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From the Fig. 3 plots, one can clearly identify a bend (kink)

near 3.0 GPa in the elastic stage, as well as plastic yield of the

moissanite sample around 12.0 GPa under high-pressure

loading. We consider that the bending at P = 3.0 GPa repre-

sents a micro/local yield, i.e. plastic deformation at grain-to-

grain contacts because of the high stress concentration. The

yield point that represents macro/bulk plastic deformation of

the entire sample can be derived from the intersection of the

elastic loading stage in the range 3.0–12.0 GPa and the ductile

flowing stage at P > 12 GPa. The onset pressure for the yield is

P = 12 GPa and the corresponding high-P yield stress is

derived as �y ’ 13.5 GPa (Fig. 3, left). In the pressure range

12.0–18.6 GPa, the yield stress maintains a nearly constant

value with minor work softening. As the temperature

increases to above T = 700 K, the yield stress of moissanite

decreases at a rate of d�y/dT = �1.34 � 10�2 GPa K�1 for the

temperature range 700 < T < 1500 K (Fig. 3, right). The

thermally induced relaxation rates of the yield stress should be

a function of pressure, and we expect the d�y/dT rate to have a

much higher absolute value under atmospheric pressure

conditions. There are still applied stresses in the moissanite

sample at the highest temperature of 1500 K, indicating its

superb high-T strength. Further heating to higher tempera-

tures (at T > 2000 K, as projected by the strength reduction

slope) is needed to have total relaxation of the applied stress,

where the instrument baseline to the initial residual stress

states under ambient conditions may be reached.

�-SiC (6H) has previously been studied under shock

conditions (Feng et al., 1998). At a stress approximately twice

the Hugoniot elastic limit (23 GPa), the maximum shear stress

(�) that can be supported by moissanite was found to be

7.0 GPa. This is equivalent to a differential stress of 14.0 GPa

based on Hook’s relation � = 2�, which is in good agreement

with the yield stress of 13.5 GPa derived using equation (4) in

this study. A similarly excellent match of the differential stress

(derived from the peak broadening) and the doubled shear

stress (derived from pure-shear spontaneous strain) can also

be found in the high-P–T diffraction study by Zhao et al.

(1994).

2. Cyclic loading loop and energy dissipation

We apply a comparative approach for microstrain analysis

between sample pairs to illustrate the differences between

nanocrystalline and microcrystalline Ni (referred to herein-

after as nano-Ni and micron-Ni, respectively) at room

temperature. The micron-Ni powders were obtained

commercially and were 99.8% pure with a grain-size distri-

bution of 3–7 mm. The nano-Ni powders used in this study

were prepared by ball-milling, starting from coarse-grained

powders of Ni (< 840 mm, 99.999%). The powder (5 g) was

ball-milled for 30 h using a SPEX 8000 mill, hardened-steel

vials and 30 1 g hardened steel balls. The SPEX mill was

operated inside an argon-filled glove box containing less than

1 p.p.m. oxygen. Based on peak-width analysis of X-ray

diffraction under ambient conditions, the nano-Ni powders

have an average grain size of 12–13 nm. Synchrotron X-ray

diffraction experiments were conducted using a mixture of

amorphous boron and epoxy resin as the pressure-transmit-

ting medium. The nano-Ni and micron-Ni powders were

studied at room temperature in both loading and unloading

cycles using a DIA-type cubic anvil apparatus (Weidner et al.,

1992). The two samples were symmetrically loaded into a

research papers

1098 Zhao and Zhang � Microstrain and grain-size analysis J. Appl. Cryst. (2008). 41, 1095–1108

Figure 3
Applied stresses for moissanite as functions of pressure and temperature.
The errors plotted here are those of the least-squares fit of the data in
Fig. 2 (multiplied by Young’s modulus); the uncertainties in
ð�d2

obs ��d2
insÞ

1=2 were not included for error estimation. The lines
drawn here are a guide to the eye and are not the result of a model fit. See
text for detailed discussion.

Figure 2
A plot of ð�d2

obs ��d2
insÞ

1=2 versus d(P, T) for moissanite, according to
equation (4). The straight lines show the linear regression results and the
slopes provide microstrain information at the various indicated P–T.
Each of the six data sets plotted here was obtained from the
corresponding diffraction profile shown in Fig. 1. The errors in
ð�d2

obs ��d2
insÞ

1=2 are smaller than or comparable to the size of the
plotted symbols.



cylindrical boron nitride (BN) capsule, separated by a layer of

NaCl; they thus experience identical P–T conditions. We have

determined the applied strains from two separate measure-

ments to maximum pressures of 1.4 and 6.0 GPa, and with

much smaller pressure step intervals, because nickel (metal) is

much softer than moissanite (hard ceramic). Our results show

that the absolute values of the applied strain for nano-Ni at

the maximum pressure are three to four times higher than

those for micron-Ni. To make comparisons easier, we

normalize the observed strain relative to the maximum strain

at the highest pressure:

"norm
hkl ¼ ð�d=dÞhkl=ð�d=dÞmax P

hkl : ð5Þ

Our analysis shows that the individual lattice planes have

different strains upon loading (Zhao et al., 2007) for both

nano-Ni and micron-Ni, and this behavior will be discussed in

more detail in a later section of this paper. Plotted in Fig. 4 are

the average values of four different lattice planes of the two

experiments, Pmax = 1.4 GPa (left) and Pmax = 6.0 GPa (right),

using the strain normalization approach [equation (5)]. It is

important to note that, although the overall deformation

during the experiments is quasi-hydrostatic, individual powder

particles experience a very heterogeneous deformation

because of point contacts between the particles. Inspection of

Fig. 4 reveals two obvious yield (kink bending) points for

micron-Ni at Py1 = 0.4 GPa and Py2 = 1.6 GPa and the

corresponding normalized strains at "1
norm = 0.7 and "2

norm = 1.0,

respectively. The first yield represents micro/local grain-to-

grain interactions that deform plastically because of high

stress concentration during powder compaction. The second

yield represents the macro/bulk plastic deformation of the

entire sample, which is the true meaning of yield in classical

mechanics.

The two-stage yield phenomenon is not as obvious in nano-

Ni because it exhibits pronounced nonlinear ductility. Local

plastic deformation is expected to take place at pressures

much lower than 0.4 GPa, which is difficult to determine with

our experimental techniques. On the other hand, work hard-

ening to higher strain is clearly observed for nano-Ni. Nano-Ni

also recovers a much larger fraction of the incurred strain

upon unloading, 83–84% depending on maximum pressure,

whereas micron-Ni only recovers 49–52%. The occurrence of

unrecoverable strain can be caused by intergranular (e.g.

elastic and plastic anisotropy) and/or intragranular (e.g.

heterogeneous stress distribution and dislocation density)

mechanisms. Previous studies (Budrovic et al., 2004) have

shown that nano-Ni shows full recovery of dislocation density

when loaded in uniaxial tension. Interestingly, we observe that

the recoverability for the nickel samples remains at about the

same level for the unloading before and/or after the bulk yield.

This, and the combination of almost full recovery for nano-Ni

and less recovery for micron-Ni in our triaxial stress experi-

ments, suggests that the unrecoverability of the plastic strain in

nano-Ni is due to intergranular strain (elastic and plastic

anisotropy), but it is mainly intragranular strain (dislocation

density) in the micron-Ni.

The loading–unloading hysteresis loop illustrated in Fig. 4 is

more significant for the after-yield samples (right-hand panel)

than the before-yield samples (left-hand panel), despite

comparable recoverability for both samples. Similar strain

recoverability before and after yield indicates that the dislo-

cation densities in the nickel samples become saturated in the

elastic loading stage and that there is no further development

in the plastic or ductile flow stage. The much larger hysteresis

loop for micron-Ni after yield suggests that the high-P work

on micron-Ni is dissipated as heat, as we have often experi-

enced in the fatigue failure of nail

bending. The dissipation loop is much

smaller for the nano-Ni sample, indi-

cating significantly reduced energy loss

in its work-hardening plasticity defor-

mation stage. The reduced level of

energy dissipation for nano-Ni during

the loading–unloading cycle indicates

that nanostructured materials more

readily endure greater mechanical

fatigue in cyclic load-path changes.

This is a significant discovery of nano-

mechanics.

3. Severe strains in nanocrystals
and DER2 corrections

We present a correction routine using

diffraction elastic ratios (DERs) so

that the significant data scatter in

nanocrystalline materials can be

reduced in a physically meaningful

way. To reach the nanoscale, we must

take into account the peak broadening
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Figure 4
The normalized applied strain �"" ap

hkl ¼ �d=dð Þhkl= �d=dð Þ
max P
hkl , plotted as a function of pressure for

nano-Ni (red lines) and micron-Ni (blue lines) during loading (solid lines) and unloading (dashed
lines). For both panels, the plotted lines represent the averaged strains �"" derived from four different
lattice planes, (111), (200), (220) and (311). The average strains at the highest pressures, Pmax, are
listed in the inserts.



contribution from the crystal size. The Scherrer (1918)

formula describes grain size in diffraction as

L ¼ k�=�ð2�Þsize cos �; ð6Þ

where k is the Scherrer constant and �(2�)size is the FWHM in

2� at a constant wavelength �, in angular dispersive mode. By

differentiating Bragg’s diffraction equation, � = 2dsin�, with

respect to d and 2�, respectively, it becomes �ð2�Þ ¼
�2ð�d=dÞ tan �. We thus rewrite the Scherrer formula in

terms of the d spacing,

L ¼ kd2=�dsize; ð7Þ

which is independent of the detection mode. We substitute

�dsize ¼ kd2=L into the Gaussian expression for the decon-

voluted peak width and normalize the formula to a general

definition of overall strain �d/d, thus giving

�d2
obs=d2

¼ "2
þ�d2

ins=d2
� �

þ k=Lð Þ
2
d2 P;Tð Þ: ð8Þ

The ordinate intercept of the �d2
obs=d2 versus d2ðP;TÞ plot for

a number of hkl diffraction indices presents the observed

strain "2
apparent ¼ "2 þ�d2

ins=d2
� �

, which includes the applied

strain as well as the instrument contribution (i.e. the intrinsic

peak width caused by instrument characteristics). It

normalizes the peak-width span (lattice deformation) �d2
obs

with respect to d2, and the uncertainties associated with

instrument calibrations, residual stresses and initial grain sizes

are practically minimized. The grain size, L, is inversely

proportional to the peak width and it can be derived from the

slope (k/L)2 of the �d2
obs=d2 versus d2ðP;TÞ plot. We have

demonstrated that the peak-width approach works well to

derive high-P induced microstrain and particle-size reduction

(grain crushing under loading) for hard and brittle ceramics

and minerals in our recent high-P–T synchrotron X-ray

diffraction studies (Zhang et al., 2002; Chen et al., 2005; Qian et

al., 2005).

Equation (8) can also be rewritten as �d2
obs ��d2

ins

� �
=d2 ¼

"2 þ k=Lð Þ
2
d2, which seems to make sense in deriving applied

strain and grain size under the given P–T conditions. However,

one needs further to consider the illustration of residual

stresses in comparative studies for the sample pair under

ambient conditions (initial state, as well as the recovered state)

and also to make straightforward graphical distinctions

between the different parts of the contributions (instrument,

grain size, and residual or recovered strains) to the observed

peak-width changes. We recommend keeping equation (8) as a

graphical deconvolution of diffraction profiles to better derive

the thermomechanics of the sample materials.

We also performed a comparative high-P–T X-ray diffrac-

tion experiment on nano-Ni and micron-Ni. The high-pressure

cell used is the same as that described in x2, except that

amorphous carbon was used as the resistance heating material

surrounding the boron nitride sample container. Plotted in

Fig. 5 are normalized peak widths (or the observed strains)

�d2
obs=d2 against d2ðP;TÞ for nano-Ni at selected pressures

and temperatures. Noticeably, the observed raw data (open

black circles) scatter significantly, and this scatter is

augmented as the pressure increases. Such large data scatter is

not observed in our micron-Ni sample or other micrometre-

scale-based experiments on ceramics

and minerals. The increase in pressure

also makes the micron-Ni data scatter

gradually, although not to the level of

the nano-Ni. We determine apparent

variations in lattice strains according to

different (hkl) diffraction planes and

one cannot draw a simple straight line

through the raw data to derive the

microstrain and grain size from the plot.

The fact that the (111) planes are not

strained as much as the (200) planes

reflects the lower elastic compliance of

(111) when comparing the details of the

lattice deformation.

Hooke’s law relates the stress and

strain tensors by "ij ¼ sijmn�mn, where

sijmn is the elastic compliance tensor.

The stress components in our high-

pressure experiments are close to quasi-

isotropic, i.e. " ¼ 1� 2�ð Þ=E½ ��, where

� is Poisson’s ratio and E is Young’s

modulus. The diffraction elastic

compliances S1 and S2 of the individual

(hkl) planes for nickel metal are derived

using single-crystal elastic constants for

nickel (Simmons & Wang, 1971) and the

mean field approach of Gnäupel-
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Figure 5
A plot of �d2

obs=d2 versus d2ðP;TÞ for nano-Ni, according to equation (8). In both panels, the highly
scattered raw data are shown as open black circles. The data corrected by DER2 = (Ehkl/E200)2 are
shown as solid blue symbols for the room-temperature data (left-hand panel) and as solid red
symbols for the high-T data (right-hand panel). The straight lines show the linear regression results
of the DER2 corrected data, with the ordinate intercepts providing apparent strains and the plot
slopes providing gain-size information. The errors in the uncorrected �d2

obs=d2 are smaller than or
comparable to the size of the plotted symbols.



Herold et al. (1998). We further derive Young’s modulus,

Ehkl ¼ 1= S1 þ S2=2ð Þ; ð9Þ

for different lattice planes based on the elastic compliance

data and then normalize them to an Ehkl/E200 ratio, obtaining

E111/E200 = 1.331, E200/E200 = 1.000, E220/E200 = 1.229 and E311/

E200 = 1.132. By multiplying the square of the diffraction

elasticity ratio,

DER2
¼ ðEhkl=E200Þ

2; ð10Þ

by the observed raw data (in the Gaussian expression), we

correct the strain differences on individual lattice planes. By

choosing the most compliant planes as our reference, the (200)

peaks, we effectively obtain the upper bound for the apparent

strain. For comparison, we show below the corrected strains

using the least compliant plane, (111), for DER2 = (Ehkl/E111)2,

which would provide the lower bounds for the apparent

strains. The corrected data (solid blue circles) can be readily

fitted to a straight line in the �d2
obs=d2 versus d2ðP;TÞ plot and

allow us to derive the apparent strain and grain-size infor-

mation unambiguously (see Fig. 5). By applying the DER2

correction, we effectively eliminate or minimize the possible

effects of changes in diffraction elasticity associated with the

nanoscale and with P–T effects on individual elastic moduli.

Under ambient conditions, the derived apparent initial strain

is 1.86% for nano-Ni and 0.71% for micron-Ni. At P =

7.4 GPa, the apparent strain for nano-Ni almost doubles to

3.69% because of the applied stress. The corresponding high-P

strain for micron-Ni has an increase of ~50%. Such differences

in strain development reflect the fact

that the deformation at interactions at

grain corners and edges is more severe

in the grain compaction of a nano-

powder under high pressure.

The large scatter in the observed

strains (raw data) is due to the different

hkl elastic compliances of the crystal

lattice and also reflects the high surface

energy of the nanoscale particles.

Compared with the grain core, the

surface strain, also referred to as grain-

boundary strain, of the nanocrystal

shell is in a tensile mode for nano-Ni,

based on Palosz’s ‘core–shell’ model

for nanocrystalline grains with an

expanded surface layer (Palosz et al.,

2002, 2004). The correction using the

ratio of diffraction elastic constants is

applicable to nano-Ni but not to

micron-Ni, because the surface strain

becomes severe as the surface-to-core

volume ratio increases dramatically in

a nanocrystal. Therefore, the magni-

tude of the elastic correction may be

deemed a good indication of the

corresponding surface strain of the

nanocrystalline grains. We have also

demonstrated that in a Couchy expression of diffraction, i.e.

without the square in equation (1), a DER correction is

sufficient to reduce the data scatter, i.e. without the square in

equation (10). Plotted in the right-hand panel of Fig. 5 are

three selected data sets observed on high-temperature heating

at P = 7.4 GPa. It is clear that the degree of data scatter

decreases as the temperature increases and eventually, at T �

893 K, all the raw data line up quite nicely as the stress level

again becomes very low and the Ni crystal grains grow with

increasing temperature.

4. Graphical derivation of thermomechanics

Apparent strains have been derived for nano-Ni and micron-

Ni samples under all experimental conditions. The strains are

then converted to stresses through � = E", using the Young’s

modulus of E = 180 GPa for nano-Ni and E = 200 GPa for

micron-Ni. This difference is because of an observed 10%

reduction in the elastic modulus derivation from our recent

EOS study of nano-Ni (Zhang et al., 2007). The pressure and

temperature derivatives on the elastic modulus are still

ignored, but this should not affect the observation for the

overall trend. The apparent stresses are plotted as a function

of pressure and temperature in Fig. 6 to show thermo-

mechanics comparisons between nano-Ni and micron-Ni. The

initial difference between nano-Ni and micron-Ni is due to

residual stress, surface strain and grain-size effects. As the

pressure increases, the grain-to-grain contact stresses enhance

at a much greater rate in nano-Ni during the elastic-to-plastic
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Figure 6
Apparent stresses for nano-Ni and micron-Ni, plotted as functions of pressure and temperature. The
yield points are derived by the intersections of the elastic loading and plastic work-hardening or
-softening stages. The corresponding high-P yield stresses are the stress differences �� between the
initial and yield states. The residual stresses of the samples should be read from the instrument
baseline to the initial stress states under ambient conditions. The purple open square symbol is used
to mark the recovered samples, which come back completely to the initial state of micron-Ni in terms
of stress, strain and grain sizes. The errors in the strain determinations range from 0.05 � 10�2 to 0.1
� 10�2, corresponding to errors of 0.1–0.2 GPa for the calculated apparent stress, which are smaller
than or comparable to the size of the plotted symbols.



transition region, i.e. in the stage from micro/local to macro/

bulk yield. As the entire sample starts to loose its strength to

support differential or shear stress, it is subjected to macro/

bulk yield, and plastic deformation and/or viscous flow begins.

Correspondingly, the diffraction peak widths do not vary as

much after the bulk yield, indicating that the dislocation

density in the crystalline sample reaches a certain saturation.

The derived yield stress of high-P triaxial compression is

��nm
yield ’ 2.35 GPa for nano-Ni (the ultimate yield �y minus

the initial �o), which is about the same as the uniaxial tensile

strength of 2.25 GPa determined by Budrovic et al. (2004). The

corresponding bulk yield stress (compression) of micron-Ni is

��mm
yield ’ 0.75 GPa, about a factor of three smaller than for

nano-Ni. These observations are consistent with the classical

Hall–Petch law (Hall, 1951; Petch, 1953), which indicates a

significant increase in material strength as grain size decreases

to the nanometre scale. The onset pressure for bulk yield in

micron-Ni at P
mm
yield ’ 1.6 GPa is also smaller than that for

nano-Ni at Pnm
yield ’ 2.4 GPa (Fig. 6, left). In the plastic stage,

continuous peak broadening indicates strain hardening,

whereas peak sharpening indicates strain softening under

certain high-P–T conditions. There is an evident work hard-

ening for nano-Ni, where the sample can still sustain higher

differential or shear stress after the yield, and another ��nm’

1.0 GPa is further loaded as the pressure increases to P =

7.4 GPa. However, the micron-Ni sample experiences a minor

work softening at higher pressure.

It is well known that nano-metals have much less work

hardening than the corresponding micro-metals in uniaxial

tensile loading. Budrovic et al. (2004) observed very limited

strain hardening in nano-Ni because of the suppressed accu-

mulation of dislocations after plastic yield. Our triaxial

compression data show the opposite phenomenon, which may

be because of pressure effects. It is unlikely to arise from the

artifacts resulting from the plot of "ap versus P (rather than the

conventional � versus "), because the work hardening and

work softening were observed in a comparative sense for the

nano-Ni and micron-Ni samples under identical stress condi-

tions.

As the temperature increases, the stress variation in nano-

Ni exhibits two bending points, one at 600 K and the other

near 1000 K (Fig. 6, right), dividing the stress–temperature

variation into three different stages. Based on the grain-size

analysis, which will be discussed in a later part of this paper,

the stress reduction at T = 300–600 K largely reflects the

relaxation of both the applied (differential) stresses and the

surface strains in the Ni nanocrystals, whereas at T = 600–

1000 K it is predominantly controlled by the grain growth. At

T > 1000 K, the determined apparent stress does not show

variation with increasing temperature, i.e. it reaches a flat

trough in stress–temperature space. At these temperatures,

the samples are defined to be in a stress-free state. Therefore,

the initial surface or residual strain for nano-Ni can be

graphically determined, as illustrated in the right-hand panel

of Fig. 6, as 1.25 � 10�2, which is in excellent agreement with

the surface strain derived from neutron diffraction data at

atmospheric pressure (see later discussion). This indicates the

total removal of surface or residual strain and annealing of

applied stress of about ��nm
res ’ 2.5 GPa at high temperatures

in the range 550 < T < 1150 K. For micron-Ni, the relaxation of

apparent stress is not as vigorous as in nano-Ni and a true

stress-free state is reached at T� 800 K. Similarly, the residual

stress exerted upon the starting micron-Ni crystals (i.e. under

initial ambient conditions) can be graphically derived and is

about ��mm
res ’ 0.35 GPa.

The high-temperature data in the final portion of the

experiment at T > 1100 K show a complete merging of nano-

Ni and micron-Ni in terms of stress or strain levels, recon-

firming the true stress-free states defined in the preceding

paragraph. Therefore, the corresponding apparent strain is

due to the instrument resolution, i.e. "2
ap ¼ �d2

ins=d2, and there

are no effects of microstrain and grain size at this stage. Our

graphical approach using equation (8) demonstrates that the

instrument contribution to the Bragg peak broadening (in

units of �d and further in strain and stress) can only be

quantified with the sample itself when a true stress-free state is

obtained through high-temperature annealing of a poly-

crystalline material. The true instrument contribution is

usually difficult to characterize, particularly in energy-disper-

sive diffraction, because of the complexities of diffraction

optics and instrument calibration. On the other hand, the

residual strain and crystal defects such as dislocations further

complicate the deconvolution of diffraction profiles. Fig. 6 is a

graphical deconvolution of all types of contribution to the

apparent stress, and a complete high-T annealing to a true

stress-free state provides the instrument baseline for

thermomechanical characterization. The graphical derivation

using equation (8) is important not only for a comprehensive

understanding of constituent behaviors, but also for the

correct application of the peak-profile analysis method.

5. High-T grain growth and the annealing of nanostrain

Nanocrystalline crystallites are generally viewed as consisting

of two structurally distinct components (see, for example,

Gleiter, 1989; Palosz et al., 2002, 2004), namely a single-crystal

grain core and a surface shell layer characterized by a signif-

icant fraction of atoms at the strained surface. The fact that the

diffraction peaks of nanocrystalline Ni under ambient condi-

tions are significantly broader than those of microcrystalline

Ni reflects the effects of both surface strain and grain-size

reduction. To characterize their behavior at elevated

temperatures with no external stress, and to practice our

methodology further, we studied nano-Ni with time-of-flight

(TOF) neutron diffraction in the temperature range 318–

1073 K at atmospheric pressure. The nano-Ni sample is the

same as the one we used in the high-P–T synchrotron X-ray

diffraction experiments, and the measurements were carried

out at the High-Pressure Preferred Orientation (HIPPO)

beamline (Wenk et al., 2003) of the Manuel Lujan Jr Neutron

Scattering Center, Los Alamos National Laboratory, USA.

For these measurements, the Ni powders were loaded into a

quarter-inch-diameter vanadium can and heated in a stepwise

increase of temperature in vacuo. The acquisition time for
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each diffraction pattern was 2 h. Plotted in Fig. 7 are the

diffraction patterns at selected temperatures. Because of the

large coverage of neutrons in Q space (Q = 2�/d), additional

Bragg peaks at a small d spacing were observed compared

with X-ray diffraction, of which the 422 peak can be used for

strain derivation, therefore improving the peak-profile

analysis for strain and grain size.

The peak positions (d) and FWHM (�d) of the neutron

diffraction data were determined by a single peak fitting of the

diffracted intensity using the neutron TOF peak profile

function No. 1 of the General Structure Analysis System

(GSAS) package (Larson & Von Dreele, 2004). These data

were then analyzed using equation (8), and the results at

selected temperatures are plotted in Fig. 8. As observed in

X-ray diffraction, Fig. 8 shows that the degree of data scatter

decreases with increasing temperature and diminishes at

temperatures above 873 K. In addition to the DER2 correction

with reference to soft E200, we also applied the DER2

correction relative to stiffer E111, which would also provide

lower bounds for strains and upper bounds for grain sizes. The

Ehkl/E111 ratios applied (Simmons & Wang, 1971; Gnäupel-

Herold et al., 1998) are E111/E111 = 1.000, E200/E111 = 0.750,

E220/E111 = 0.923, E311/E111 = 0.850 and E422/E111 = 0.918. For

both routines, the corrected data line up nicely in a linear

fashion, which can be readily fit to equation (8) for the deri-

vation of the surface strain (from ordinate interception) and

grain size (from the slope of the regression line). Fig. 8 also

reveals a peculiar behavior, in the sense that the slopes

become negative for both the raw and the corrected data at T

� 873 K (see bottom panel) and grain-size information can no

longer be extracted from equation (8). We consider this

phenomenon as an indication of the growth of nanocrystals

approaching or into the micrometre size region, therefore

representing the limit of the present approach for grain-size

analysis.

The grain sizes derived using equation (8) at all experi-

mental temperatures are plotted in Fig. 9. The Ni nanocrystals

do not show any growth at T� 573 K, but they grow from 13.5

to 36.8 nm (with the E200 correction) or from 18.1 to 49.3 nm

(with the E111 correction) in the temperature range 573–773 K.

This growth process is accelerated at T� 823 K, with the grain

size quickly approaching or entering the micrometre region.

Also plotted in Fig. 9 is the grain-size information derived

from the high-temperature X-ray data at 7.4 GPa (i.e. the

same diffraction data as used for the right-hand panel of

Fig. 6). It is clear that the rate of grain growth at higher

temperatures is considerably less at 7.4 GPa than at atmo-
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Figure 8
Plots of �d2

obs=d2 versus d2ðP;TÞ for neutron diffraction data on nano-Ni.
The errors in the uncorrected �d2

obs=d2 are smaller than or comparable to
the size of the plotted symbols.

Figure 7
The time-of-flight neutron diffraction patterns for nano-Ni under
atmospheric pressure and selected temperatures. The peak intensities
of the hkl diffractions are normalized relative to that of (111) at T =
1073 K for width-comparison purposes. The insert shows an enlargement
of a comparison of the (111) peak between T = 318 K and T = 1073 K,
with the vertical axis being the measured neutron intensity.



spheric pressure. These observations indicate that pressure is

an effective thermodynamic parameter that controls the

crystallization process. Because the grain growth is typically

accompanied by long-range atomic rearrangements, it would

be kinetically hindered and/or suppressed at high pressures.

The observations of Fig. 9 support our recent conclusion that

pressure is a key controlling parameter for the synthesis of

nanostructured ceramic materials (Zhao et al., 2002, 2004).

Grain-size determination using equation (8) should be

exercised with some caution. Powder diffraction peak profiles

are usually not a pure Gaussian function, which is assumed in

the present method. In the case of monochromatic diffraction,

diffraction profiles depend on the mosaicity of the mono-

chromator, beam collimation, beam divergence, energy half-

width and aperture of the detector. In other words, they are

significantly affected by instrumental contributions. Also, the

conversion from scattering angle to d spacing would induce

some distortion of the peak profiles. Taking into account all of

these factors, the present method can be best applied to study

variations of grain size with pressure and temperature, but it

should be exercised with caution for the determination of the

absolute value of grain size. Instrument effects on strain

measurements should be less severe, owing to the relative

nature of our graphical approach (subtraction), as illustrated

in Fig. 6.

The apparent strains derived from neutron diffraction data

are plotted as a function of temperature in Fig. 10. Clearly, the

thermomechanical behavior of nano-Ni at atmospheric pres-

sure shows the same trends as observed at 7.4 GPa (right-hand

panel of Fig. 6), with two kinks (or two bending

points) on the strain–temperature curves, one

at 573 K and the other at 1023–1073 K. From

Fig. 9, it is evident that the strain reduction in

this high-temperature range is largely

controlled by grain growth. Fig. 10 also reveals

that a stress-free state is reached in Ni crystals

at 1023–1073 K, making it graphically simple to

quantify the instrumental baseline, which is

"ins = 0.4–0.5 � 10�2 for the HIPPO neutron

diffractometer, as obtained from the (Ehkl/

E111)2 and (Ehkl/E200)2 corrected data. This

graphical approach also makes it straightfor-

ward to determine the surface strain in nano-Ni

by the subtraction of this baseline of instrument

contribution. At T = 318 K, for example, the

determined surface strain is 1.20–1.6 �10�2,

which is in good agreement with the residual

strain of 1.25 � 10�2 derived graphically from

the high-P–T nano-Ni data (Fig. 6).

6. Comparison with previous analytical
techniques

A variety of diffraction peak-width analyses

have been proposed to characterize the devel-

opment of grain size and crystal strain,

primarily based on the well known Scherrer

formula and the WH method or its modifications (Gerward et

al., 1976; Westwood et al., 1995; Weidner, 1998; Ungár & Tichy,

1999). In all these approaches, the peak breadths are typically
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Figure 10
Variation of the apparent strains for nano-Ni as a function of temperature
at atmospheric pressure (neutron diffraction). The plotted apparent
strains include both the surface strains of the Ni nanocrystals and the
instrument contribution. The plot also reveals similar thermomechanics
behavior to that observed at high P–T (Fig. 6).

Figure 9
Variation of grain sizes for nano-Ni as a function of temperature at atmospheric pressure
(neutron data) and at a high pressure of 7.4 GPa (X-ray data). For neutron data, the grain
sizes derived from the (Ehkl/E111)2 and (Ehkl/E200)2 corrections are marked as (111) and
(200), respectively, and are shown by solid green and blue triangles. Solid red diamonds
denote the grain sizes derived from high-P–T X-ray data corresponding to Fig. 6. The insert
plots the grain-size variation on a logarithmic scale and over a wider temperature range,
showing the rapid growth of Ni nanocrystals approaching or entering the micrometre
region.



expressed in units of the Bragg diffraction angle or X-ray

photon energy. Because all diffraction techniques, including

energy dispersive (keV), angular dispersive (2�) and time-of-

flight (ms), observe the d spacing of various hkl lattice planes,

we plot the diffraction peak profile on a length scale (Å) that is

a universal expression of the peak breadth, and is thus inde-

pendent of the detection mode, using the lattice d spacing. Our

graphical deconvolution method, equation (8) and the

�d2
obs=d2 versus d2ðP;TÞ plot, has a significant advantage over

the previous methods of peak-profile analysis for strain and

grain size. Also, because the instrument contribution to the

diffraction peak profile is quite complex, as shown in this

study, one cannot simply subtract it before the least-squares

fits. We have learned from the current study that measure-

ments on a reference material, either a standard material or

the sample itself under ambient conditions, may not provide

an accurate baseline for the instrumentation correction. The

complex convolution of the diffraction profile may be misre-

presented in these simple subtractions of peak broadening.

6.1. The classical Williamson–Hall approach

The WH approach is a popular method for the analysis of

diffraction line broadening caused by strain and small crystal

size. The general expression for this analysis is given as (Klug

& Alexander, 1974; Warren, 1989)

	2
o � 	

2
i ¼ 	

2
L þ 	

2
S; ð11Þ

where 	2
o is the observed peak breath, 	2

i is the instrumental

contribution, 	2
L is the grain size broadening and 	2

S is the

strain broadening. In angular-dispersive diffraction, 	L = k/L,

and 	S = 2"K, where k is the Scherrer constant, L the average

crystal size, " the average strain and K = 2sin�/� (� and � are

the Bragg angle and X-ray wavelength, respectively). For

energy-dispersive diffraction (Gerward et al., 1976), 	L = k(hc/

2)/(Lsin�) and 	S = 2"E, where h is Planck’s constant, c the

velocity of light and E the X-ray photon energy. The instru-

mental broadening is typically measured using a micro-

crystalline material that is assumed to be strain-free. Once this

component is subtracted from the observed profiles, a simple

WH plot of 	2
o � 	

2
i versus K2 or E2 for a number of different

diffraction peaks would provide estimated values of L and "
from the intercept and slope, respectively.

As discussed in x1, the classical WH formulation can be re-

written using the universal length scale of the d spacing, as

given by equation (3). To perform the WH analysis on nano-Ni

data (Fig. 7), we also collected neutron diffraction patterns for

micrometre-size (3–7 mm) polycrystalline Ni to obtain the

instrumental broadening of the Bragg peaks. Using equation

(3), along with our DER2 correction routines, we analyzed the

neutron diffraction data for nano-Ni, and selected results are

shown in Fig. 11. As expected, the corrected data for both

E(111) and E(200) line up nicely for linear regression.

However, at all temperatures up to 823 K, the least-squares

fits give rise to negative intercepts, making it impossible to

determine the grain sizes. The problem, as discussed earlier,

primarily comes from the instrumental contribution to the

peak broadening, which is usually not easy to characterize in

view of the complexity of polycrystalline materials; issues such

as the existence of residual strain and line defects must be

considered. On the other hand, our graphical approach (Figs. 6

and 10) does not need the comparative studies used in the

sample-pair subtraction technique for the instrument correc-

tion. The high-T measurements eventually reach the true

stress-free state, and the instrument baseline for strain (not

peak width) can be subtracted in a straightforward manner.

6.2. Modified WH method – the Ungár approach

A limitation of the classical WH method is that strain

anisotropy effects are not taken into account. For materials

(particularly nanocrystalline materials) containing massive

dislocations, WH plots usually present considerable scatters

that are beyond the experimental uncertainties (see, for

example, Shen et al., 2005), as also demonstrated for nano-Ni
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Figure 11
Classical Williamson–Hall plots using the length scale of the d spacing for
the Bragg peak width. The data plotted here are from TOF neutron
diffraction for nano-Ni at 318 K (upper panel) and 773 K (lower panel),
which are derived from the same diffraction data as used for Figs. 8 and 9.
The instrument contribution of �dins is derived from the sample pair of
micron-Ni data under ambient conditions. The errors in the uncorrected
�d2

obs=d2 are smaller than or comparable to the size of the plotted
symbols.



in this work. In recent years, Ungár and coworkers proposed a

modified WH formula to account for diffraction peak broad-

ening as a result of line defects (Révész et al., 1996; Ungár &

Tichy, 1999; Ungár et al., 1999). In this approach, dislocations

are assumed to be the main contributors to the residual strain

and, correspondingly, the scatter in the WH plot is attributed

to the anisotropy of the dislocation strain field. In the Ungár

approach, the modified WH formula is given by

ð�KÞ
2
¼

�
0:9

L

�2

þ

�
�b2


2A

�
K2C; ð12Þ

where �K = 	o� 	i, b is the modulus of the Burgers vector of

dislocations, 
 is the dislocation density, A is a constant [~10

for a wide range of dislocation distribution; see Ungár et al.

(1999)] and C is the contrast factor of dislocations for Bragg

reflection hkl. The value of Chkl can be calculated from the

contrast factor for Bragg reflection (h00), according to

Chkl ¼ Ch00ð1� qH2
Þ; ð13Þ

where H2 = (h2k2 + h2l2 + k2l2)/(h2 + k2 + l2)2 for a cubic crystal

system, and q is a constant deduced from a forced fit to the

data. For cubic materials, the contrast factor C depends on the

elastic anisotropy S [= 2C44/(C11 � C12)] and the ratio C12/C44,

where C11, C12 and C44 are the elastic constants (Révész et al.,

1996). More detailed procedures for data analysis using

equation (12) were presented in the work of Shen et al. (2005).

Because K = 2sin�/� = 1/d, one can also rewrite equation

(12) using the universal length scale of the d spacing, giving

(Shen et al., 2007)

�
�d

d2

�2

¼

�
0:9

L

�2

þ

�
�b2


2A

��
C

d2

�
; ð14Þ

where �d is the FWHM of the neutron diffraction peaks with

the instrumental broadening already subtracted. Shen et al.

(2007) applied equation (14) to derive the dislocation density

and grain size for all high-temperature neutron data on nano-

Ni, and their results are reproduced in Fig. 12. For comparison

with our approach [equation (8)], we take the average values

of the two DER2 correction routines for grain size and strain

(Figs. 9 and 10) and also plot them in Fig. 12. It is evident that

the two methods give rise to comparable results for grain-size

analysis, in both absolute values and their variation with

temperature. The dislocation densities derived from the Ungár

method also show the same trends of variation with

temperature as the surface strains we derived from equation

(8). Specifically, there is a bending point near 573 K where the

rate of reduction in dislocation density or surface strain

coincides with grain growth in Ni nanocrystals. Following

Ashby (1970) and Ashby & Jones (1986), dislocations in

plastically deformed crystals can be separated into ‘geome-

trically necessary’ dislocations (those associated with the

existence of grain boundaries) and ‘statistically stored’ dislo-

cations (glissile dislocations participating in the plastic defor-

mation). In Ni nanocrystals, these two different types of

dislocations are found to correlate with the grain-size varia-

tion, as discussed in detail by Shen et al. (2007). Note that in

the Ungár method the dislocation density is a parameter that

characterizes the surface or residual strains caused by crys-

talline dislocations. Therefore, although it is not para-

metrically equivalent to the surface strain we determined,

both of them describe similar physical performance of nano-

crystals. Also, the dislocation density of the Ungár approach

and the surface or residual strain of our study show similar

trends of variation. As high-T annealing becomes more

effective at T > 900 K, the surface strain approaches the

instrument baseline of "ins = 0.005 for our derivation and the

dislocation density approaches zero, because

the Ungár approach has already subtracted the

instrumental contribution to the peak broad-

ening in advance. The minor deviation of the

two approaches as the temperature changes

may come from the two different elastic

corrections employed in the DER2 correction

routine (this study) and in Chkl (Ungár’s

approach).

It is worthwhile to mention that recent

developments using submicrometre X-ray

beams (Yang et al., 2004; Ice et al., 2005; Levine

et al., 2006) make it possible to predict the

evolution of dislocation distributions and the

resulting local stresses. These measurements

provide a critical means for validating and

guiding the development of detailed disloca-

tion-based simulations and models. We expect

such quantitative and spatially resolved

measurements down to dislocation-cell level to

be of particular relevance to microstructural

studies using the Ungár approach for the

analysis of diffraction line profiles.
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Figure 12
High-T annealing and grain growth of nanocrystalline nickel. Comparison of the results of
the peak-profile analysis between our approach (equation 8; this study) and the Ungár
approach (equation 14; Shen et al., 2007).



7. Conclusion

Starting from a general definition of overall strain �d/d in the

Gaussian expression for diffraction peak profiles, and also on

the basis of the Williamson–Hall method and the Scherrer

formula, we have developed an analytical method to derive

the thermomechanical properties of loading stress, yield stress,

work hardening, work softening and thermal relaxation under

high-pressure and/or high-temperature conditions. This

method deals with non-uniform stress among heterogeneous

crystal grains, as well as surface strain in nanocrystalline

materials, by examining the peak-width variation under

different P–T conditions. Because the method is based directly

on the lattice d spacing and the local stress-induced lattice

deformation �d, it can be applied to any diffraction profile,

independent of the detection mode. We have also developed a

correction routine, DER2, using diffraction elastic ratios to

process the severe surface or residual strain data and/or strain

anisotropy effects related to nano-scale grain sizes, so that the

significant data scatter can be reduced in a physically mean-

ingful way. The graphical derivation of microstrain under high-

P–T conditions allows the instrumental contribution to be

illustrated and subtracted in a straightforward manner, thus

avoiding the potential complexities and errors caused by the

instrument correction.

Yield strength (�y) is an important constitutive property of

materials to define the onset of plastic deformation and

viscous flow. The yield strengths of crystalline materials as a

function of pressure and temperature have been documented

previously, although infrequently. Through case studies of

hard ceramic materials (6H-SiC) and soft metals (nano-Ni and

micron-Ni) using energy-dispersive X-ray and time-of-flight

neutron diffraction, our analytical method can clearly identify

micro/local yield at grain-to-grain contacts resulting from high

stress concentration, and macro/bulk yield for plastic defor-

mation over an entire sample. This simple and straightforward

graphical approach for microstrain analysis can also reveal the

corresponding yield stress, grain crushing and grain growth,

work hardening and work softening, and thermal relaxation

under high-P–T conditions, as well as the intrinsic residual or

surface strain in the polycrystalline bulk. We strongly recom-

mend that a thorough deformation study of plasticity should

include high-temperature annealing to reach a true stress-free

state. This is important not only for a comprehensive under-

standing of thermomechanical behavior but also for the

correct application of the peak-profile analysis method.

We are grateful to two anonymous referees for pointing out

the errors in correlating FWHM and s in equation (1), and for

other comments that helped to improve the manuscript. This

research was supported by Los Alamos National Laboratory,

which is operated by Los Alamos National Security LLC

under the Department of Energy, contract No. DE-AC52-

06NA25396. The high-temperature neutron experiments were

performed on the HIPPO beamline of the Lujan Neutron

Scattering Center at LANSCE, which is funded by the

Department of Energy’s Office of Basic Energy Sciences. The

high-P–T X-ray diffraction experiments were carried out on

the X17B2 beamline of the National Synchrotron Light

Source, Brookhaven National Laboratory, which is supported

by the Consortium for Materials Properties Research in Earth

Sciences (COMPRES) under the National Science Founda-

tion Cooperative Agreement EAR 01-35554.

References

Ashby, M. F. (1970). Philos. Mag. 21, 399–424.
Ashby, M. F. & Jones, D. R. (1986). Engineering Materials 2: An

Introduction to Microstructures, Processing and Design, p. 369.
Oxford: Pergamon Press.

Brown, D. W., Bourke, M. A. M., Clausen, B., Holden, T. M., Tome,
C. N. & Varma, R. A. (2003). Metall. Mater. Trans. A, 34, 1439–
1449.

Budrovic, Z., Van Swygenhoven, H., Derlet, P. M., Van Petegem, S. &
Schmitt, B. (2004). Science, 304, 273–276.

Chen, J., Schmidt, N., Chen, J. H., Zhang, J., Wang, L. & Weidner, D. J.
(2005). J. Mater. Sci. 40, 5763–5766.

Decker, D. L. (1971). J. Appl. Phys. 42, 3239–3244.
Feng, R., Raiser, G. F. & Gupta, Y. M. (1996). J. Appl. Phys. 79, 1378–

1387.
Feng, R., Raiser, G. F. & Gupta, Y. M. (1998). J. Appl. Phys. 83, 79–86.
Gerward, L., Morup, S. & Topsoe, H. (1976). J. Appl. Phys. 47, 822–

825.
Gleiter, H. (1989). Prog. Mater. Sci. 33, 223–315.
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