Appendix A. A general outline of the comprehensive course for chemistry undergraduates of the Novosibirsk State University "Introduction into solid-state chemistry" (available on-line as Supplementary Material only)

Lectures (54 academic hours)	Practicals (54 academic hours)	
Introduction into crystal structures		
1. Structures of elements. Interrelation between the electronic structure of an element and the crystal structure.	Interactive work with the ICSD, CSDB, PDB databases using Mercury, Diamond, and PowderCell, CrystMet: retrieving structures, visualizing the structures,	
2. Structures of compounds. How often do we deal with "inorganic molecules"?	interactions, describing structures as close packings, as a	
3. Structures of organic crystals. Chemical bonds and non-covalent interactions.	set of polyhedra, in terms of hydrogen-bonded motifs (organic);	
4. Chains, layers and 3D-networks in inorganic and organic structures. Framework structures.	Discussion of structure-properties relations using selected examples.	
Symmetry and basic crystallographic concepts		
5. Symmetry operations in crystals: translations, point symmetry operations (inversion, rotations, inverse rotations, mirror reflection), open operations (glide, screw rotations). Translation groups, point groups, space groups. Asymmetric unit. Marices, graphical symbols.	Interactive work with models of crystal structures and with crystallographic software: finding symmetry elements, unit cells, finding space and point groups, crystal systems and crystal families for the selected crystal structures.	
 6. Systematics of Bravais lattices, point groups, space groups. Crystal systems and crystal families. Nomenclature. Standard and non-standard settings. International Tables for Crystallography. 	Deriving space groups from generators, Finding special and general positions, presenting them graphically and via a set of matrices. Finding sub-groups and super- groups. Analyzing the possible effect of introducing /	
7. Non-crystalline solids. Commensurately and incommensurately modulated structures. Quasicrystals.	Interactive work with International Tables for Crystallography, and with the materials at Bilbao Server. Transitions from one crystallographic setting to another. CIF generation.	
Symmetry as a tool to predict properties		
 8. A physical property. Scalars, vectors, tensors of higher ranks. Curie and Neumann's principles. 9. Structure response to variations in temperature, pressure, magnetic and electric fields, light 10. Structure-properties relationships. Examples of important materials. Interrelation between the anisotropy of properties and chemical interactions in inorganic and organic solids. 11. Symmetry of crystals and their electronic structure. Crystal orbitals. Energy bands. Metals, dielectrics, semiconductors. Pierls distortion. Energy gap tuning. Crystallographic symmetry and coordination chemistry. Modern materials. 	Training on the application of Neumann's principle. Prediction of point groups which are not compatible with a particular property. Prediction of the allowed anisotropy of structure response to a particular external action for crystal structures belonging to various crystal systems. Interactive work with the crystal structures of important materials, in order to correlate the structures with properties. Training with model 1D and 2D examples: crystal orbitals, Bloch functions, E(k) diagrams, COOP functions, band filling. Peierls instability. Effects of doubling the unit cell. Effects of distorting symmetry. Interpretation of the energy band diagrams for selected 3D crystal structures. Calculating the wavelength of light absorbed / emitted by a solid with a known energy band. Pradicting conductivity and its temperature. dependence	
X-ray diffraction		
12. A historical survey of studying crystal structures: before and after the X-rays have been discovered. Nobel prizes related to solution of crystal structures and	Exercises on reciprocal lattice. Exercises on calculating and refining cell parameters and	
developing the instruments and the calculation	finding crystal system and space symmetry group from	
algorithms. 13. X-ray diffraction. A comparison with optical	diffraction patterns. Calculation of strain tensors from the variable-temperature / variable-pressure diffraction	

diffraction. Location of the centres of diffraction maxima (reflections). Laue conditions. Reciprocal lattice. Ewald illustration. Bragg equation. Finding cell	data; discussion of the results in relation to a) the Neumann's rule, b) the bonds and interactions in the crystal structure.
14. Form-factor. Structural amplitude. Analysis of space group symmetry. Systematically absent reflections. Indexing of single-crystal and powder diffraction patterns. Absorption of X-rays by the sample. Intensity of reflections. Shape of reflections.	Indexing of powder diffraction patterns for the cubic system (manual). Indexing of powder diffraction patterns for lower-symmetry crystal systems (using software). The effect on the indices of a change in the crystallographic setting.
15. Calculating a diffraction patter for known structure. Refinement of crystal structures. Validation of the quality of structure solution and refinement. Origin of possible errors. Indications at possible errors. Solution	Absorption of X-rays by the sample. Calculating the absorption correction for a single crystal (using software).
of the unknown crystal structures. A general introduction into the direct methods. Origin of possible errors.	Calculating a diffraction patter for known structure using software. Predicting changes in the pattern resulting from: a) structure distortion, b) substitution of some species in the structure for the other c) freezing /
Samples. Radiation sources. Sample environment. The	unfreezing of disorder.
Equipment. Powder diffraction databases.	Suggesting an optimum strategy for sample preparation and data collection, aimed at solving a particular problem. Validation of the results of structure solution and refinement.
	Qualitative and quantitative analysis of the powder samples (individual phases and multiphase systems) using PDF database from the ICDD.
Real crystals – diffe	erent types of defects
 17. Classification of defects. Equilibrium and non- equilibrium defects. Point defects. Linear defects. 2D and 3D defects. Impurities homogeneous / 	Solving problems on calculating the concentrations of point defects under different conditions.
heterogeneous. Origin of defects in crystals. Quenching and annealing. Point defects. Kröger symbols. Quasi- chemical equations Effect of impurities on the	Solving problems on the conductivity of semi- conductors.
concentration of point defects. Non-stoichiometry. Point defects in semi-conductors and their properties.	Solving problems on the interrelation between the concentration of point defects, impurities and non-stoichiometry.
 Diffusion. Fick's laws. Einstein equation. Diffusion in the gradient of concentration, in the electric field, in the mechanical stress field. Ionic conductivity. 	Calculating diffusion paths from diffusion coefficients. Solving problems on diffusion in the mechanical stress field.
determined from conductivity measurements.	Calculating the free energy of defects formation, defects mobility and concentration from the results of the electrophysical measurements.
19. Fast ionic conductors. Materials for batteries, fuel	Analysis of the crystal structures of ionic conductors in
ionic conductivity. Conductivity of heterogeneous nanocomposites.	
20. Clusters of point defects. F-centers. Optical properties of solids and point defects. Non-stoichiometry and "shear structures".	Analysis of clusters of point defects in relation to the crystal structures.
21. Dislocations. Disclinations. Stacking faults. External and internal surfaces. Mechanical properties of solids.	Analysis of dislocations and mechanical properties in relation to crystal structures.
22. Size effects in solid-state chemistry. Nanomaterials.	
24. Experimental techniques for studying size	Calculation of the coherent scattering domains from an
distribution of particles in a polycrystalline sample, strain, and extended defects. The methods of studying	experimental powder diffraction pattern. A comparison with the data on the particle size distribution in the same
surfaces and extended defects in solids: diffraction, optical microscopy, electron microscopy, AFM.	sample from microscopy data. Analysis of extended defects in a sample from powder diffraction data and electron microscopy data.

General overview (reactivity of solids)	
25. Reactivity of solids. Reactions within a solid;	A general discussion of selected solid-state properties
thermal decomposition.	and processes in as many aspects as possible.
26. Reactivity of solids. Solid + solid, solid + liquid,	
solid + gas reactions.	Refereeing published papers on "hot topics".
27. Concluding remarks. What is special with structures,	
properties, chemical reactions of solids? Properties	
depending on a) ideal structure, b) defects, c) the size /	
shape of a single crystal, d) the meso-structure (of the	
surface or of the bulk of the sample).	