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The fundamental theory of crystal twinning has been long established, leading to

a significant advance in understanding the nature of this physical phenomenon.

However, there remains a substantial gap between the elaborate theory and the

practical determination of twinning elements. This paper proposes a direct and

simple method – valid for any crystal structure and based on the minimum shear

criterion – to calculate various twinning elements from the experimentally

determined twinning plane for Type I twins or the twinning direction for Type II

twins. Without additional efforts, it is generally applicable to identify and predict

possible twinning modes occurring in a variety of crystalline solids. Therefore,

the present method is a promising tool to characterize twinning elements,

especially for those materials with complex crystal structure.

1. Introduction

Crystal twins are commonly observed during solidification,

deformation, solid-state phase transformation and recrys-

tallization in a variety of crystalline solids with low stacking

fault energy. Often, these features occur on the nanometre to

micrometre scale, and they represent a particularly symmetric

kind of grain boundary, giving rise to a much lower level of

interfacial energy than general grain boundaries. As an

underlying mechanism for microstructural changes, crystal

twinning has acquired great importance in fields such as

metallography, mineralogy, crystallography and physics.

Early efforts to define crystal twins were based on the study

of deformation twinning. By convention, a deformation twin is

a region of a crystal that has undergone a homogeneous shape

deformation (simple shear) in such a way that the resulting

structure is identical to that of the parent (matrix), but

differently oriented. A twinning mode is fully characterized by

six elements: (1) K1 – the twinning or composition plane that is

the invariant (unrotated and undistorted) plane of the simple

shear; (2) �1 – the twinning direction or the direction of shear

lying in K1; (3) K2 – the reciprocal or conjugate twinning

plane, the second undistorted but rotated plane of the simple

shear; (4) �2 – the reciprocal or conjugate twinning direction

lying in K2; (5) P – the plane of shear that is perpendicular to

K1 and K2 and intersects K1 and K2 in the directions �1 and �2,

respectively; (6) � – the magnitude of shear. Moreover, the

orientation relationship between two twin-related crystals can

be specified by simple crystallographic operations: a reflection

across K1 or a 180� rotation about the direction normal to K1;

or a 180� rotation about �1 or a reflection across the plane

normal to �1. According to the rationality of the Miller indices

of K1, K2, �1 and �2 with respect to the parent lattice, crystal

twins are usually classified into three categories: Type I twin

(K1 and �2 are rational), Type II twin (K2 and �1 are rational)

and compound twin (K1, K2, �1 and �2 are all rational).

The classical definition and description of deformation

twinning have been further extended to describe other twin-

ning processes associated with phase transformation and

recrystallization. Notably, the concept of transformation

twinning is widely adopted for the elucidation of structural

changes during martensitic transformation. Although the

formation of twinned martensitic variants is driven by a

deformation from the parent phase and may not have any

relation to the simple shear deformation defined by the

twinning shear, the detwinning process can be well predicted

by these elements, especially for the newly developed ferro-

magnetic shape memory alloys (Gaitzsch et al., 2009; Wang et

al., 2006; Li et al., 2010). In such a case, the twinned martensitic

variants always form regular arrays of alternate lamellae with

fixed thickness and the twin boundaries are highly glissile,

where the detwinning shear determines the shape memory

performance.

For many years, constant attempts have been made to

determine twinning elements of crystalline materials from the

knowledge of crystal structure, because of their importance

for insight into possible twinning modes and resultant orien-

tation relationships of twinned crystals in the context of

microstructural manipulation. A systematic theory was

developed by Kiho (1954, 1958) and Jaswon & Dove (1956,

1957, 1960) based on the minimum shear criterion, and later

completed by Bilby & Crocker (1965) and Bevis & Crocker

(1968, 1969). It provides the general expressions – valid for all

crystal structures – to predict the twinning elements for both

Type I and Type II twins with a known twinning shear.

However, in a practical determination of unknown twins, it is
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only feasible to resolve the possible twinning plane K1 for

Type I twins or the twinning direction �1 for Type II twins by

means of transmission electron microscopy (TEM) or scan-

ning electron microscopy/electron backscatter diffraction

(SEM/EBSD). In other words, with the given general

expressions, one always suffers from insufficient information

to derive the unknown twinning elements, especially the

twinning shear. As a common practice, laborious geometrical

examination of the lattice correspondence of the stacking

planes parallel to the twinning plane has to be conducted.

Such a process becomes particularly difficult when the twin-

ning plane and the shear plane are irrational and the crystal

structure is complicated. Hence, there exists a substantial gap

between the elaborate theory and the practical determination.

In this paper, we present a complete method to find all

twinning elements for the three classical types of twins, based

on the assumption that a simple minimum shear operation

transforms the lattice points of a crystal into their counterpart

twin positions. The initial inputs are simply the crystal struc-

ture and the experimentally determined K1 (Type I) or �1

(Type II). As a general method applicable to any crystal

structure, it may facilitate future characterization studies of

crystal twinning.

2. Methodology

2.1. Determination of twinning mode

For a twinned crystal, the crystallographic orientations of

the twin and its parent can be experimentally determined with

SEM/EBSD or TEM. In the case of SEM/EBSD examination,

the orientation of a crystal with respect to the macroscopic

sample coordinate system is usually characterized in terms of

three Euler angles. The misorientation between the twin and

the parent is then calculated from their Euler angles, and

expressed by a set of rotation angles and the corresponding

rotation axes (Cong et al., 2006, 2007). According to the

definition of twin relationships mentioned above, there exists

at least one 180� rotation. If the Miller indices of the plane

normal to the 180� rotation axis are rational, the twinning

mode belongs to Type I and the plane is the twinning plane K1.

If the Miller indices of the 180� rotation axis are rational, the

twinning mode refers to Type II and the direction of the

rotation axis is the twinning direction �1. Since a compound

twin has two 180� rotations with rational K1, K2, �1 and �2, the

plane normal to the 180� rotation axis that offers the minimum

shear should be the twinning plane K1.

In contrast to the SEM/EBSD examination, the TEM

determination process involves examining the spot diffraction

image (Nishida et al., 2008). For Type I and compound twins,

the diffraction image – obtained on condition that the incident

beam is parallel to the K1 plane – consists of two sets of

reflections that are in mirror symmetry to each other with

respect to the K1 reflection. Thus, the K1 plane can be iden-

tified. For Type II twins, the diffraction image – obtained with

the incident beam along the �1 direction – contains a single

visible pattern, i.e. the reflections from two twin-related

crystals overlap each other. The �1 direction could also be

determined.

Based on the above experimental identification, the other

twinning elements to define a twinning mode can be further

derived with the method outlined below.

2.2. Determination of twinning elements

2.2.1. Type I and compound twins. According to the clas-

sical definition, a Type I or compound twin is related to its

parent by a reflection across the twinning plane K1, where the

K1 plane is a rational lattice plane with relatively small Miller

indices. With this condition as starting point, the possible

twinning direction �1 and the magnitude of twinning shear �
can be deduced in conformity with the minimum shear

criterion, i.e. the twinning shear that moves all parent lattice

points to their correct twin positions appears to be the smallest

in magnitude. Hereafter, our calculations are conducted in the

direct primitive lattice of the parent crystal. For the coordinate

transformations between the primitive lattice basis and the

conventional Bravais lattice basis, we refer to International

Tables for Crystallography (Hahn, 1996).

At first, let us choose two basis vectors u1 and u2 in the

twinning plane K1 and transform them into the reduced

vectors e1 and e2, as shown schematically in Fig. 1. The

reduced basis vectors e1 and e2 must be the two shortest

translations and the most orthogonal to each other among all

possible basis vectors in the plane K1. Note that such a

reduced basis is useful for determining the nearest lattice

point(s) to a given point (not necessarily lattice site) in the

plane K1. The procedures to find the basis vectors u1 and u2

and to reduce them to e1 and e2 are detailed in Appendix A

and Appendix C, respectively.

Now, we show how to determine the twinning shear vector t

by use of the reduced basis e1 and e2. Let Plane 0 represent the

twinning (invariant) plane K1 that separates the twin lattice

(above Plane 0) from that of the parent (below Plane 0), as

shown schematically in Fig. 2. Since the nearest neighbor

plane (Plane �1) of the parent lattice and its counterpart

(Plane 1) for the twin lattice are parallel and in mirror

symmetry with respect to the invariant plane K1, the

perpendicular projection of Plane�1 onto Plane 1 allows us to

identify the possible twinning shear vector. Here, we select a

parent lattice vector OA that ends at the lattice point A on

Plane �1, and denote by A0 the endpoint of the projection of

vector OA on Plane 1. Obviously, the vector t that joins A0 – a

twin lattice point – to its nearest parent lattice point N on

Plane 1 defines the twinning direction �1 and ensures the

smallest magnitude of shear. The procedures for determining

the vectors OA and t are described in Appendix B.
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Figure 1
Lattice plane K1 with basis vectors u1 and u2 and reduced basis vectors e1

and e2.



Furthermore, the interplanar spacing of the twinning plane

K1 can be easily calculated by the scalar product of OA and m:

dK1
¼ 1

2 OA �mj j; ð1Þ

where m denotes the unit vector in the direction normal to the

twinning plane K1. Thus, the magnitude of shear is given by

� ¼ tj j=dK1
: ð2Þ

Once the shear vector t and the magnitude of shear � are

determined, the other twinning elements (�2, K2 and P) can be

readily calculated according to the Bilby–Crocker theory

(Bilby & Crocker, 1965).

Let I be the unit vector in the twinning direction �1 and gM a

vector in the conjugate twinning direction �2, with reference to

the parent lattice basis. Applying the twinning operation by a

shear � along �1, gM is transformed into gM
0 , as shown sche-

matically in Fig. 3. Since �2 is defined by a rotated but

undistorted lattice line of the shear, gM
0 has the same indices

(and hence the same length) as gM, if it is referred to the twin

lattice basis. Moreover, gM and gM
0 lying in the shear plane P

(perpendicular to K1) are in mirror symmetry with respect to

the plane that contains the vector V (= dK1
m) and is perpen-

dicular to �1. Thus, the three vectors gM, gM
0 and g form an

isosceles triangle. As g (= dK1
�I) in the shear direction is

divided into two equal lengths by V, we obtain

gM ¼ V� 1
2 g ¼ dK1

ðm� 1
2 �IÞ: ð3Þ

Notably, gM is not necessarily a lattice vector, and its

components – expressed in terms of the parent lattice basis –

can always be transformed into rational indices. Once the

lattice vector in the �2 direction is determined from gM, the

shear plane P and the conjugate twinning plane K2 can be

easily calculated by the vector cross product (Bilby & Crocker,

1965).

2.2.2. Type II twin. By definition, a Type II twin is related to

its parent by a 180� rotation about the twinning direction �1 or

a reflection across the plane normal to the twinning direction

�1. Let us first recall the fundamental relationships between

direct lattice and reciprocal lattice. Every lattice vector in the

direct space corresponds to a set of lattice planes normal to

this vector in the reciprocal space, and vice versa. Thus, the

twin relationship of a Type II twin in the direct space can be

equivalently expressed by a reflection with respect to the

plane that is normal to �1 in the reciprocal space, or in other

words, a Type II twin in the direct space is visualized as a Type

I twin in the reciprocal space. As the two spaces are strictly

linked to each other, we can see that, when the direct lattice

undergoes twinning, the reciprocal lattice is subject to the

same deformation (shear in the same direction and with the

same magnitude) and verse visa. In this context, the deter-

mination of the twinning elements of Type II twins can follow

the same procedure as that of Type I, except that all the

calculations should be conducted in the reciprocal space.

Moreover, the resultant directions (planes) in the reciprocal

space correspond to the same indexed planes (directions) in

the direct space, as summarized in Table 1.

3. Conclusions

As a widely observed and intrinsic process, crystal twinning

has a broad impact on the microstructures and properties of

crystalline materials. So far, the classical theory of twinning

has advanced greatly the study of twining, but it often suffers

from insufficient information for practical determination of

full twinning elements. To progress beyond this state, a general

method is elaborated based on the minimum shear criterion,

using the experimentally identified possible twinning plane K1
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Figure 3
Transformation of vector gM (in the direction �2) into vector gM

0 by a
magnitude of shear � along the direction �1. Note that gM and gM

0 have the
same length and are in mirror symmetry with respect to the plane
perpendicular to the K1 plane and the shear plane P.

Table 1
Reciprocal relationship of twinning elements in dual spaces.

Direct space Reciprocal space

K1 �1

�1 K1

K2 � 2

�2 K2

P Normal to P
� �

Figure 2
Illustration of the nearest neighbor plane (Plane �1) of the parent lattice
and its counterpart (Plane 1) for the twin lattice, which are parallel and in
mirror symmetry with respect to the invariant plane K1 (Plane 0). The
twinning shear vector t is represented by the displacement from a parent
lattice point N to the nearest twin lattice position A0 on Plane 1.



for Type I twins or the twinning direction �1 for Type II twins

and the crystal structure as input. As a first step, it determines

a reduced basis of the invariant lattice plane that serves as the

mirror plane (in the direct space for Type I twins and in the

reciprocal space for Type II twins) between the parent and

twin lattices. Then, a lattice vector – with its origin at the

invariant lattice plane and its end at the nearest neighbor

lattice plane of the same set – is selected from the parent

lattice and projected onto the counterpart lattice plane of the

twin lattice. Among the vectors that join the endpoint of the

projected lattice vector to the surrounding parent lattice

points forming the reduced basis, the shortest vector defines

the twinning direction and the twinning shear. Finally, the

other twinning elements can be easily calculated using the

vector product operations. The present method, as it stands, is

highly significant for facilitating the study of twinning in a

variety of crystalline materials.

APPENDIX A
Determination of base vectors u1 and u2 on a lattice
plane

In crystallography, a lattice plane P with a given Bravais lattice

is usually described by the Miller indices (hkl), i.e. a set of

three integers with the greatest common divisor gcdðh; k; lÞ ¼

�1. Assume jgcdðh; kÞj ¼ d; then gcdðd; lÞ ¼ �1. If an arbi-

trary lattice vector u with the Miller indices [uvw] lies in the

plane P, it has

huþ kvþ lw ¼ 0 or huþ kv ¼ �lw; ð4Þ

where u, v and w are integers. Since jgcdðh; kÞj ¼ d, the

following relation holds:

ðh=dÞuþ ðk=dÞv ¼ �lðw=dÞ: ð5Þ

Let h=d ¼ h0, k=d ¼ k0 and w=d ¼ w0; then h0, k0 and w0 are

also integers. Equation (5) can be written as

h0uþ k0v ¼ �lw0: ð6Þ

As gcdðh0; k0Þ ¼ �1, one can find two integers u0 and v0 that

satisfy the following relation according to Bézout’s theorem:

h0u0 þ k0v0 ¼ �1: ð7Þ

Multiplying both sides of equation (7) by (�lw0), we obtain

h0ð�lw0Þu0 þ k0ð�lw0Þv0 ¼ �lw0: ð8Þ

Let ð�lw0Þu0 ¼ u and ð�lw0Þv0 ¼ v; then equation (8) becomes

h0uþ k0v ¼ �lw0: ð9Þ

Subtracting equation (9) from equation (6), we have

h0ðu� uÞ þ k0ðv� vÞ ¼ 0: ð10Þ

Since gcdðh0; k0Þ ¼ �1, there exists an integer � such that

u� u00 ¼ ��k0; v� v00 ¼ �h0: ð11Þ

Rearranging equation (11), we obtain

u ¼ u� �k0 ¼ �lw0u0 � �k=d;

v ¼ vþ �h0 ¼ �lw0v0 þ �h=d;

w ¼ w0d:

ð12Þ

By definition, the basis vectors are a set of linearly inde-

pendent vectors such that each vector in the space is a linear

combination of the vectors from the set. Therefore, equation

(12) proves that the vector (�lw0u0 � �k=d, �lw0v0 þ �h=d,

w0d) constitutes the basis vectors of the plane (hkl). Setting

� ¼ 1 and w0 ¼ 0, and � ¼ 0 and w0 ¼ 1, respectively, we

obtain two basis vectors:

u1 ¼ ð�k=d; h=d; 0Þ; u2 ¼ ð�lu0;�lv0; dÞ; ð13Þ

where u0 and v0 are the Bézout coefficients of equation (7).

With the Euclidean algorithm, u0 and v0 can be easily calculated.

APPENDIX B
Determination of lattice vector OA and shear vector t

B1. Lattice vector OA

According to the fundamental law of the reciprocal lattice

(Authier, 2001), for an arbitrary vector OA with its origin O at

the zeroth plane of a family of lattice planes (hkl), if it inter-

sects the nth plane at the point with coordinates (x, y, z), the

following relation holds:

hxþ kyþ lz ¼ n: ð14Þ

Let OA be the lattice vector with the Miller indices [�2u

�2v �2w] and K1 the invariant plane with the Miller indices

(hkl), as shown in Fig. 2. Then, we have

�2uh� 2vk� 2wl ¼ �2 or uhþ vkþ wl ¼ 1: ð15Þ

The Bézout coefficients u0, v0 and w0 of equation (15) can be

calculated with the Euclidean algorithm, and hence the lattice

vector OA.

B2. Shear vector t

Consider a lattice vector OA with its origin at O on Plane 1

and its end at A on Plane �1, as shown in Fig. 4.
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Figure 4
Perpendicular projection A0 of a lattice point A of Plane�1 onto Plane 1.
The shortest vector joining A0 to the nearest lattice point is denoted as the
shear vector.



Let A0 be the perpendicular projection of the lattice point A

on Plane 1. The shear vector t is defined as the shortest vector

among all vectors that connect A0 with the surrounding lattice

points on Plane 1. Introducing the reduced basis e1 and e2, we

can derive from Fig. 4 that

OA0 ¼ OAþ ðOA �mÞ;

O0A0 ¼ OO0 � ð�e1 þ �e2Þ;

qA0 ¼ O0A0 � e2;

pA0 ¼ O0A0 � ðe1 þ e2Þ;

rA0 ¼ O0A0 � e1;

ð16Þ

where m is the unit vector of the plane normal. By comparing

the lengths of O0A0, qA0, pA0 and rA0, the shortest vector t can

be easily found.

APPENDIX C

Transformation of basis vectors u1 and u2 into the
reduced basis e1 and e2

To find the closest lattice point to the projection A0 and thus

the minimum shear of the twinning, it is essential to establish a

reduced basis, i.e. the two shortest lattice vectors that are most

orthogonal to each other (Zuo et al., 1995). With the basis

vectors u1 and u2 determined according to Appendix A as

input, the reduced basis e1 and e2 can be derived using an

iterative procedure, as described below.

Let e1 be the shorter vector between the two base vectors,

i.e. je1j � je2j. Then, the new base vectors are derived from

e01 ¼ e1; e02 ¼ e2 � "e1: ð17Þ

To render the two vectors orthogonal to each other, this yields

" ¼
e1 � e2

e1 � e1

: ð18Þ

If " � 0:5, e01 and e02 deliver the reduced basis vectors.

Otherwise, " is rounded into the nearest integer and the above

procedure is repeated until " � 0:5.
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