short communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoJOURNAL OF
APPLIED
CRYSTALLOGRAPHY
ISSN: 1600-5767
Volume 44| Part 1| February 2011| Pages 213-215

Evaluation of the Bruker SMART X2S: crystallography for the nonspecialist?

aDepartment of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Ireland, and bDepartment of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, University College Cork, Ireland
*Correspondence e-mail: s.lawrence@ucc.ie

(Received 30 April 2010; accepted 20 October 2010; online 27 November 2010)

An evaluation of the Bruker SMART X2S for the collection of crystallographic diffraction data, structure solution and refinement is carried out with a variety of materials with different electron densities, presenting some of the successes and challenges of automation in chemical crystallography.

1. Introduction

Chemical crystallography is a mature science in which structural analysis of well formed single crystals is routine for many samples (Ooi, 2010[Ooi, L.-L. (2010). Principles of X-ray Crystallography. Oxford University Press.]), with the largest amount of time spent on problematic cases, such as twinning, disorder etc. (Herbst-Irmer & Sheldrick, 1998[Herbst-Irmer, R. & Sheldrick, G. M. (1998). Acta Cryst. B54, 443-449.]; Müller, 2007[Müller, P. (2007). Crystal Structure Refinement. A Crystallographer's Guide to SHELXL, IUCr Texts on Crystallography 8. Oxford University Press.], 2009[Müller, P. (2009). Cryst. Rev. 15, 57-83.]). Automation is developing for both chemical and biological crystallography (Adams et al., 2010[Adams, P. D. et al. (2010). Acta Cryst. D66, 213-221.]; Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Fuller et al., 2010[Fuller, A. L., Scott-Hayward, L. A. S., Li, Y., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2010). J. Am. Chem. Soc. 132, 5799-5802.]). Automation can increase awareness of a technique, but can also lead to reduced understanding and knowledge of the scientific theory involved and reduced appreciation of its difficulties or limitations. A criticism is that it leads to a `black box' philosophy, characterized by noncritical appraisal of, and over-reliance on, the results obtained.

The Bruker SMART X2S is a benchtop crystallography instrument designed to enable more widespread use of crystallography in the wider chemical community, in the same way that NMR and mass spectrometry have become commonplace. The design has centred not only on automatic data collection, structure solution and refinement, but also on some critical analysis of the structural results obtained. The main features are the air-cooled Breeze CCD detector and an Mo microfocus source. The use of CCD detectors for X-ray diffraction is a mature technology (Gruner et al., 2002[Gruner, S. M., Tate, M. W. & Eikenberry, E. F. (2002). Rev. Sci. Instrum. 73, 2815-2842.]), with an air-cooled detector available since 2006. [See supplementary information1 for further details of the instrument; see also Kirschbaum et al. (1997[Kirschbaum, K., Martin, A. & Pinkerton, A. A. (1997). J. Appl. Cryst. 30, 514-516.]) and Schulz et al. (2009[Schulz, T., Meindl, K., Leusser, D., Stern, D., Graf, J., Michaelsen, C., Ruf, M., Sheldrick, G. M. & Stalke, D. (2009). J. Appl. Cryst. 42, 885-891.]).] Herein, we discuss our experiences with the Bruker SMART X2S, presenting data for a representative range of chemical samples, highlighting its successes and challenges.

2. Sample preparation – alignment

Correct sample alignment remains critical for good quality diffraction data (Müller, 2009[Müller, P. (2009). Cryst. Rev. 15, 57-83.]) and is a major consideration for any automated process. The effect of sample misalignment on the overall data quality and success of the instrument has been investigated with a crystal (0.24 × 0.28 × 0.29 mm) of dibenzyl sulfone, (1), for which a crystal structure had been previously reported by Rudolph et al. (2010[Rudolph, F. A. M., Fuller, A. L., Slawin, A. M. Z., Bühl, M., Aitken, R. A. & Woollins, J. D. (2010). J. Chem. Cryst. 40, 253-265.]). Three experiments were run with the crystal intentionally placed in the following positions: (i) correctly in the middle of the mount, (ii) incorrectly below the centre of the mount and (iii) incorrectly to the side of the centre of the mount. Table 1 in the supplementary information summarizes the data.

The first two experiments have similar data, both of which are perfectly acceptable for publication: a slight increase in R1, wR2 and goodness of fit (GooF) for the second experiment suggests the overall data quality is slightly worse, and the experiment took longer. For the third experiment, the crystal is sufficiently far from the centre of the mount that it is precessing in and out of the beam. Thus, the symmetry-equivalent reflections do not match, the Laue check fails and the larger centred unit cell is not identified. The checkCIF output highlights the missed symmetry, as well as the high Rint and final R values, and should alert the nonspecialist to the fact that there is a problem.

In summary, the large beam size means that alignment is not as critically important as on other instruments, particularly in the horizontal direction, although for short data collection times and good quality data, it is still important.

3. Sample preparation – sample size

Crystal size is of paramount importance for successful experiments (Müller, 2009[Müller, P. (2009). Cryst. Rev. 15, 57-83.]). Different sized crystals of N-cyano-S-benzyl-S-(2-fluorophenyl)sulfilimine, (2), synthesized (Barry et al., 2009[Barry, N., Brondel, N., Lawrence, S. E. & Maguire, A. R. (2009). Tetrahedron, 65, 10660-10670.]) and obtained from the same batch, were used to investigate the effects of crystal size on the capabilities of the SMART X2S. The effective minimum crystal size limit was of particular interest. Table 2 in the supplementary information summarizes the results, which show that the minimum practical crystal dimensions for a moderate scatterer, in this case S, are 0.20 mm in two directions and 0.1 mm in the third. For smaller dimensions, the system aborted data collection owing to insufficient diffraction from this compound.

Of course, one cannot completely generalize from these results to all samples since the diffracting power of each compound depends upon a number of different factors, e.g. the scattering power of the atoms, the degree of disorder, the crystal mosaicity etc.

4. Correct structure assignment

The reliability of the software for a range of compounds to which we have ready access was tested, viz. transition metal complexes, organic compounds, cocrystals and hydrates. Compounds (3), (4) and (11) are novel (see the supplementary information for their synthesis). Literature methods were used for the synthesis of (5) (Feng et al., 2009[Feng, Y., Wanf, H., Sun, F., Li, Y., Fu, X. & Jin, K. (2009). Tetrahedron, 65, 9737-9741.]), (6) (Singh et al., 2002[Singh, V., Alam, S. Q. & Praveena, G. D. (2002). Tetrahedron, 58, 9729-9736.]), (7) (Barbosa et al., 2009[Barbosa, M. L. C., Melo, G. M. A., Cupertino da Silva, Y. K., Lopes, Tenorio de Souza, E., Cavalcanti de Queiroz, A., Smaniotto, S., Alexandre-Moreira, M. S., Barreiro, E. J. & Lima, L. M. (2009). Eur. J. Med. Chem. 44, 3612-3620.]), (8) (Takada et al., 1997[Takada, H., Nishibayashi, Y., Ohe, K. & Uemura, S. (1997). Phosphorus Sulfur Silicon, 120, 363-364.]) and (9) (Brondel et al., 2010[Brondel, N., Moynihan, E. J. A., Lehane, K. N., Eccles, K. S., Elcoate, C. J., Coles, S. J., Lawrence, S. E. & Maguire, A. R. (2010). CrystEngComm, 12, 2910-2927.]). Compound (10) was obtained from Sigma–Aldrich. The crystal structures of (9) and (10) (Himes et al., 1981[Himes, V. L., Mighell, A. D. & De Camp, W. H. (1981). Acta Cryst. B37, 2242-2245.]) are known. For all compounds the correct structure was obtained, with satisfactory results in terms of R factor, GooF, C—C bond precision etc. (see supplementary information , Scheme 1 and Table 3). The polarity of compound (9), as evidenced by the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter, was also correctly assigned. Thus, for these compounds, the hardware and software work well to produce crystallographic and structural data of publishable quality, suitable for deposition in the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

5. Incorrect structure assignment – one-electron differences

Scheme 2 and Table 4 in the supplementary information show that for compounds (12)–(14) an incorrect structure was obtained. The data quality seems fine, with no evidence of twinning or disorder, so what types of issues have occurred? The errors involve differentiation between atoms that differ by one electron, e.g. N and O atoms are reversed in (12) (Wardell et al., 2005[Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o1944-o1946.]), and C and N in (13) (Kiran et al., 2008[Kiran, Y. B., Konakahara, T. & Sakai, N. (2008). Synthesis, 15, 2327-2332.]; Kelly et al., 2010[Kelly, D. M., Eccles, K. S., Elcoate, C. J., Lawrence, S. E. & Moynihan, H. A. (2010). Cryst. Growth Des. 10, 4303-4309.]). For (14) (synthesis previously described; Barry et al., 2009[Barry, N., Brondel, N., Lawrence, S. E. & Maguire, A. R. (2009). Tetrahedron, 65, 10660-10670.]), an extra H atom has been placed on the N atom attached to the S atom, which is part of the unusual functional group S=N—C≡N. This group was also found in (2), for which there were no problems. Interestingly, the crystal is a racemic twin, although whether this has caused the incorrect assignment is unclear. The software did detect that there was a problem, which it attributed to twinning, and finished at this point.

Scientists have always scrutinized crystallographic results to verify that the structure makes chemical sense. This is still important, no matter what combination of hardware and software is producing the crystallographic result. As with all crystallographic experiments, evidence from other techniques is always required.

6. Crystals with multiple moieties

Compounds (2)–(14) are anhydrous samples, without any solvent present. The effectiveness of the system for crystals containing more than one compound was investigated: a hydrate, a solvate and a cocrystal, (15)–(17) (see the supplementary information for their synthesis; see also Scheme 3 and Table 5).

The structures of both (15) and (17) were assigned correctly. For (16), a C and an N atom were misassigned, as discussed in §[link]5. The H atoms of the water molecule were not assigned, probably because of the low scattering ability of hydrogen and the fact that the experiment was not performed at low temperature. Interestingly, this is a new polymorph of (16), which has been prepared by a different method to the known polymorph (Alléaume et al., 1976[Alléaume, M., Gulko, A., Herbstein, F. H., Kapon, M. & Marsh, R. E. (1976). Acta Cryst. B32, 669-682.]) and has been confirmed by powder X-ray diffraction analysis of bulk samples of both polymorphs, as well as a comparative data collection on a Bruker APEX DUO (see §[link]8).

7. Inputting the incorrect formula

The effect of inputting the incorrect molecular formula was investigated, since it is necessary to input a formula at the start of the experiment, and in some cases the identity of the crystal may not be known. For example, (5), C13H10OS, was incorrectly input as the sulfoxide, C13H10O2S, and (10), C15H12N2O, was input as C27H22N2O2S. The hydrate (16) and solvate (15) were input as the pure material. The software is robust and coped with an incorrect molecular formula in the majority of cases, with 80% of samples obtaining the correct structure.

There is one issue that causes inconvenience. The system does not update the CIF and report files with the molecular formula based on the structure obtained, but instead uses the formula input by the user. This requires manual refinement for cases where the submitted formula is different from the structure obtained.

8. Comparison with a Bruker APEX DUO

A comparative study with a Bruker APEX DUO was undertaken at room temperature using a sealed-tube Mo Kα source for (2), (8), (11), (12), (16) and (18), which include samples of both good and poor crystal quality. The synthesis of (18), 4-methyl-N-phenylbenzenesulfonamide, has been described by Massah et al. (2006[Massah, A. R., Kazemi, F., Azadi, D., Farzaneh, S., Aliyan, H., Naghash, H. J. & Momeni, A. R. (2006). Lett. Org. Chem. 3, 235-241.]). The results, summarized in Tables 6 and 7 in the supplementary information , are comparable for the two instruments. The biggest difference is the higher intensity of the incident beam of the APEX DUO, leading to shorter experiments for poor quality crystals.

9. Concluding remarks

The SMART X2S is a benchtop instrument designed for routine chemical crystallography and powered from a normal mains supply. The combination of the Breeze detector and the Mo microfocus source means that good quality data from crystals of large to moderate size can be collected, solved and refined without external help within a few hours. For all our samples the overall success rate is approximately >90% for correct structure assignment, rising to >99% when off-line refinement has been undertaken. (There have been two samples from over 200 experiments for which data collection has taken place and we have been unable to solve the structure.)

The checkCIF output allows fast diagnosis of any issues in the experiment. Inputting an incorrect formula at the start of the experiment, for example, will immediately become obvious from the checkCIF output because of differences in formula, density etc. In our experience, those users who are familiar with the checkCIF output after an experienced crystallographer has finalized a crystal structure are asking more questions about the checkCIF output they obtain from the SMART X2S. Novice users are also asking similar questions and some of these questions are about the technique itself. This is a major advantage of the output from the instrument, in that it does seem to be increasing awareness of crystallography among the synthetic chemists.

Instrumentation at an early stage of evolution will inevitably present minor issues that are not optimal, or at least not to an end-user's liking; for example, re-numbering of atoms has to be done off-line, using the APEX2 software suite (Bruker, 2007[Bruker (2009). APEX2, GIS, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) which is supplied with the SMART X2S. In addition, some extra cycles of refinement would be beneficial since the software does terminate too early in some cases, as evidenced by the Δ/σ values.

In some experiments, Fobs for the very low angle reflections are much smaller than Fcalc, with ΔF2/σ values significantly higher (>10) than the rest of the data set (<5), owing to the beam stop blocking or partially blocking the correct measurement of these reflections in some orientations. This is not unusual for chemical crystallography and omitting these from the latter cycles of refinement would be useful, although it may be better not to do this in a routine manner.

In summary, the SMART X2S as an instrument has allowed chemists with no crystallography experience to obtain crystallographic data for novel compounds. The instrument has greatly increased the use of crystallography in the department, with little training required to operate a user-friendly and easy-to-use instrument.

The CIF data (Hall & McMahon, 2006[Hall, S. R. & McMahon, B. (2006). Editors. International Tables for Crystallography, Vol. G, Definition and Exchange of Crystallographic Data, 1st online ed. http://it.iucr.org/ .]) for all experiments are provided as supplementary information and have been deposited with the Cambridge Crystallographic Data Centre (CCDC) for the novel crystals (2)–(8), (11) and (14)–(18). [The following computer programs were used in the refinement: APEX2, GIS, SADABS and SAINT (Bruker (2009[Bruker (2009). APEX2, GIS, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).]

Supporting information


Computing details top

Data collection: Bruker GIS for Compound_1_Below, Compound_1_Centre, Compound_1_Side, Compound_2_Run_1, Compound_2_Run_2, Compound_2_Run_3, Compound_2_Run_4, Compound_3_CCDC, Compound_3_X2S, Compound_4_CCDC, Compound_4_X2S, Compound_5_CCDC, Compound_5_X2S, Compound_6_CCDC, Compound_6_X2S, Compound_7_CCDC, Compound_7_X2S, Compound_8_CCDC, Compound_8_X2S, Compound_9_X2S, Compound_10_X2S, Compound_11_CCDC, Compound_11_X2S, Compound_12_Manual, Compound_12_X2S, Compound_13_Manual, Compound_13_X2S, Compound_14_CCDC, Compound_14_Manual, Compound_14_X2S, Compound_15_CCDC, Compound_15_Manual, Compound_15_X2S, Compound_16_Manual, Compound_16_X2S, Compound_17_CCDC, Compound_17_X2S, Compound_18_CCDC, Compound_18_Manual, Compound_18_X2S; Bruker Instrument Service v2008, 7, 0, 0 for Compound_2_APEX, Compound_2_CCDC; Bruker Instrument Service v2009, 7, 0, 0 for Compound_8_APEX, Compound_11_APEX, Compound_12_APEX, Compound_16_APEX, Compound_16_CCDC. Cell refinement: Bruker SAINT for Compound_1_Below, Compound_1_Centre, Compound_1_Side, Compound_2_Run_1, Compound_2_Run_2, Compound_2_Run_3, Compound_2_Run_4, Compound_3_CCDC, Compound_3_X2S, Compound_4_CCDC, Compound_4_X2S, Compound_5_CCDC, Compound_5_X2S, Compound_6_CCDC, Compound_6_X2S, Compound_7_CCDC, Compound_7_X2S, Compound_8_CCDC, Compound_8_X2S, Compound_9_X2S, Compound_10_X2S, Compound_11_CCDC, Compound_11_X2S, Compound_12_Manual, Compound_12_X2S, Compound_13_Manual, Compound_13_X2S, Compound_14_CCDC, Compound_14_Manual, Compound_14_X2S, Compound_15_CCDC, Compound_15_Manual, Compound_15_X2S, Compound_16_Manual, Compound_16_X2S, Compound_17_CCDC, Compound_17_X2S, Compound_18_CCDC, Compound_18_Manual, Compound_18_X2S; SAINT V7.66A (Bruker AXS, 2009) for Compound_2_APEX, Compound_2_CCDC, Compound_8_APEX, Compound_11_APEX, Compound_12_APEX; APEX2 v2010.1-2 (Bruker AXS) for Compound_16_APEX, Compound_16_CCDC. Data reduction: Bruker SAINT for Compound_1_Below, Compound_1_Centre, Compound_1_Side, Compound_2_Run_1, Compound_2_Run_2, Compound_2_Run_3, Compound_2_Run_4, Compound_3_CCDC, Compound_3_X2S, Compound_4_CCDC, Compound_4_X2S, Compound_5_CCDC, Compound_5_X2S, Compound_6_CCDC, Compound_6_X2S, Compound_7_CCDC, Compound_7_X2S, Compound_8_CCDC, Compound_8_X2S, Compound_9_X2S, Compound_10_X2S, Compound_11_CCDC, Compound_11_X2S, Compound_12_Manual, Compound_12_X2S, Compound_13_Manual, Compound_13_X2S, Compound_14_CCDC, Compound_14_Manual, Compound_14_X2S, Compound_15_CCDC, Compound_15_Manual, Compound_15_X2S, Compound_16_Manual, Compound_16_X2S, Compound_17_CCDC, Compound_17_X2S, Compound_18_CCDC, Compound_18_Manual, Compound_18_X2S; SAINT V7.66A (Bruker AXS, 2009) for Compound_2_APEX, Compound_2_CCDC, Compound_8_APEX, Compound_11_APEX, Compound_12_APEX, Compound_16_APEX, Compound_16_CCDC. For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: Bruker APEX2 for Compound_1_Below, Compound_1_Centre, Compound_1_Side, Compound_2_Run_1, Compound_2_Run_2, Compound_2_Run_3, Compound_2_Run_4, Compound_3_X2S, Compound_4_CCDC, Compound_4_X2S, Compound_5_CCDC, Compound_5_X2S, Compound_6_CCDC, Compound_6_X2S, Compound_7_CCDC, Compound_7_X2S, Compound_8_CCDC, Compound_8_X2S, Compound_9_X2S, Compound_10_X2S, Compound_11_CCDC, Compound_11_X2S, Compound_12_Manual, Compound_12_X2S, Compound_13_Manual, Compound_13_X2S, Compound_14_CCDC, Compound_14_Manual, Compound_14_X2S, Compound_15_CCDC, Compound_15_Manual, Compound_15_X2S, Compound_16_Manual, Compound_16_X2S, Compound_17_CCDC, Compound_17_X2S, Compound_18_CCDC, Compound_18_Manual, Compound_18_X2S.

(Compound_1_Below) top
Crystal data top
C14H14O2SZ = 2
Mr = 246.31F(000) = 260
Triclinic, P1Dx = 1.333 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.736 (3) ÅCell parameters from 317 reflections
b = 10.819 (5) Åθ = 3.8–21.8°
c = 12.206 (6) ŵ = 0.25 mm1
α = 89.727 (15)°T = 300 K
β = 78.904 (14)°Block, colorless
γ = 89.977 (18)°0.29 × 0.28 × 0.24 mm
V = 613.6 (5) Å3
Data collection top
Bruker SMART X2S
diffractometer
1596 independent reflections
Radiation source: micro-focus sealed tube628 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.200
ω scansθmax = 22.8°, θmin = 1.7°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 55
Tmin = 0.471, Tmax = 0.885k = 1111
4509 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.099Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.321H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1406P)2]
where P = (Fo2 + 2Fc2)/3
1596 reflections(Δ/σ)max = 0.032
154 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C14H14O2Sγ = 89.977 (18)°
Mr = 246.31V = 613.6 (5) Å3
Triclinic, P1Z = 2
a = 4.736 (3) ÅMo Kα radiation
b = 10.819 (5) ŵ = 0.25 mm1
c = 12.206 (6) ÅT = 300 K
α = 89.727 (15)°0.29 × 0.28 × 0.24 mm
β = 78.904 (14)°
Data collection top
Bruker SMART X2S
diffractometer
1596 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
628 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 0.885Rint = 0.200
4509 measured reflectionsθmax = 22.8°
Refinement top
R[F2 > 2σ(F2)] = 0.0990 restraints
wR(F2) = 0.321H-atom parameters constrained
S = 0.98Δρmax = 0.42 e Å3
1596 reflectionsΔρmin = 0.42 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.3529 (6)0.2502 (3)0.5002 (3)0.0371 (11)
O10.2212 (15)0.3500 (8)0.4474 (7)0.052 (3)
O20.1687 (15)0.1538 (8)0.5500 (8)0.055 (3)
C10.275 (3)0.0704 (16)0.1172 (14)0.063 (4)
H10.19580.04630.05650.076*
C20.224 (3)0.0055 (16)0.2125 (16)0.072 (5)
H20.10940.06500.21780.087*
C30.338 (3)0.0417 (12)0.3031 (13)0.053 (4)
H30.29880.00380.36920.064*
C40.511 (2)0.1444 (11)0.2961 (12)0.039 (3)
C50.633 (2)0.1823 (11)0.3966 (10)0.038 (3)
H5A0.78730.24170.37410.046*
H5B0.71250.11060.42800.046*
C60.529 (2)0.3159 (11)0.6027 (10)0.044 (3)
H6A0.65840.25570.62540.052*
H6B0.64150.38700.57150.052*
C70.309 (2)0.3546 (11)0.7020 (11)0.036 (3)
C80.262 (2)0.2880 (13)0.7984 (12)0.053 (4)
H80.36740.21620.80270.063*
C90.058 (3)0.3257 (15)0.8921 (12)0.066 (4)
H90.03370.28210.95910.079*
C100.106 (3)0.4286 (16)0.8818 (15)0.067 (4)
H100.24740.45330.94140.081*
C110.448 (3)0.1747 (16)0.1108 (13)0.070 (5)
H110.48680.21960.04450.085*
C120.564 (2)0.2136 (13)0.1999 (11)0.051 (4)
H120.67600.28480.19500.062*
C130.146 (2)0.4600 (11)0.6943 (13)0.054 (4)
H130.17540.50710.62920.065*
C140.061 (3)0.4936 (14)0.7865 (14)0.061 (4)
H140.17260.56350.78150.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0237 (15)0.045 (2)0.043 (2)0.0031 (13)0.0062 (14)0.0026 (16)
O10.044 (5)0.056 (6)0.059 (6)0.016 (4)0.020 (5)0.010 (5)
O20.040 (5)0.061 (6)0.063 (7)0.013 (4)0.010 (5)0.003 (5)
C10.046 (8)0.099 (13)0.049 (11)0.015 (8)0.020 (8)0.037 (10)
C20.048 (9)0.094 (13)0.074 (14)0.003 (8)0.010 (9)0.029 (11)
C30.054 (8)0.044 (10)0.060 (10)0.001 (7)0.006 (8)0.011 (8)
C40.020 (5)0.031 (8)0.062 (10)0.008 (5)0.001 (6)0.008 (7)
C50.030 (6)0.042 (8)0.041 (8)0.002 (5)0.004 (6)0.011 (6)
C60.041 (7)0.044 (8)0.047 (9)0.008 (6)0.012 (7)0.009 (7)
C70.032 (6)0.031 (7)0.050 (9)0.013 (5)0.016 (6)0.010 (7)
C80.039 (7)0.068 (10)0.051 (10)0.007 (6)0.010 (7)0.008 (8)
C90.064 (9)0.099 (13)0.034 (9)0.003 (9)0.008 (8)0.005 (8)
C100.038 (8)0.093 (13)0.067 (13)0.009 (8)0.001 (8)0.021 (10)
C110.069 (9)0.108 (14)0.038 (10)0.002 (9)0.019 (8)0.001 (9)
C120.042 (7)0.067 (10)0.043 (9)0.014 (6)0.003 (7)0.017 (8)
C130.048 (7)0.039 (9)0.070 (11)0.014 (6)0.001 (8)0.001 (8)
C140.047 (8)0.062 (11)0.073 (13)0.008 (7)0.011 (8)0.008 (9)
Geometric parameters (Å, º) top
S1—O21.418 (9)C6—H6A0.9700
S1—O11.455 (8)C6—H6B0.9700
S1—C61.782 (12)C7—C81.357 (16)
S1—C51.807 (12)C7—C131.389 (16)
C1—C21.34 (2)C8—C91.412 (17)
C1—C111.389 (19)C8—H80.9300
C1—H10.9300C9—C101.37 (2)
C2—C31.38 (2)C9—H90.9300
C2—H20.9300C10—C141.34 (2)
C3—C41.371 (16)C10—H100.9300
C3—H30.9300C11—C121.377 (18)
C4—C121.371 (17)C11—H110.9300
C4—C51.514 (17)C12—H120.9300
C5—H5A0.9700C13—C141.393 (18)
C5—H5B0.9700C13—H130.9300
C6—C71.499 (16)C14—H140.9300
O2—S1—O1116.9 (5)C7—C6—H6B109.8
O2—S1—C6109.0 (5)S1—C6—H6B109.8
O1—S1—C6108.2 (5)H6A—C6—H6B108.2
O2—S1—C5107.9 (5)C8—C7—C13119.4 (13)
O1—S1—C5108.2 (5)C8—C7—C6121.6 (11)
C6—S1—C5106.0 (5)C13—C7—C6119.0 (12)
C2—C1—C11118.6 (13)C7—C8—C9121.4 (12)
C2—C1—H1120.7C7—C8—H8119.3
C11—C1—H1120.7C9—C8—H8119.3
C1—C2—C3120.9 (15)C10—C9—C8118.2 (14)
C1—C2—H2119.6C10—C9—H9120.9
C3—C2—H2119.6C8—C9—H9120.9
C4—C3—C2120.2 (14)C14—C10—C9120.3 (14)
C4—C3—H3119.9C14—C10—H10119.8
C2—C3—H3119.9C9—C10—H10119.8
C3—C4—C12120.2 (13)C12—C11—C1121.9 (14)
C3—C4—C5119.3 (12)C12—C11—H11119.0
C12—C4—C5120.5 (11)C1—C11—H11119.0
C4—C5—S1109.6 (7)C4—C12—C11118.2 (13)
C4—C5—H5A109.8C4—C12—H12120.9
S1—C5—H5A109.8C11—C12—H12120.9
C4—C5—H5B109.8C7—C13—C14118.5 (14)
S1—C5—H5B109.8C7—C13—H13120.8
H5A—C5—H5B108.2C14—C13—H13120.8
C7—C6—S1109.6 (7)C10—C14—C13122.2 (13)
C7—C6—H6A109.8C10—C14—H14118.9
S1—C6—H6A109.8C13—C14—H14118.9
(Compound_1_Centre) top
Crystal data top
C14H14O2SF(000) = 520
Mr = 246.31Dx = 1.327 Mg m3
Monoclinic, C12/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2014 reflections
a = 24.003 (3) Åθ = 3.4–25.0°
b = 4.7435 (6) ŵ = 0.25 mm1
c = 10.8255 (12) ÅT = 300 K
β = 90.185 (4)°Block, colorless
V = 1232.6 (3) Å30.29 × 0.28 × 0.24 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
1094 independent reflections
Radiation source: micro-focus sealed tube894 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.031
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 2828
Tmin = 0.769, Tmax = 0.886k = 55
3757 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0805P)2 + 0.0091P]
where P = (Fo2 + 2Fc2)/3
1094 reflections(Δ/σ)max = 0.003
78 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C14H14O2SV = 1232.6 (3) Å3
Mr = 246.31Z = 4
Monoclinic, C12/c1Mo Kα radiation
a = 24.003 (3) ŵ = 0.25 mm1
b = 4.7435 (6) ÅT = 300 K
c = 10.8255 (12) Å0.29 × 0.28 × 0.24 mm
β = 90.185 (4)°
Data collection top
Bruker SMART X2S
diffractometer
1094 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
894 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 0.886Rint = 0.031
3757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.16Δρmax = 0.24 e Å3
1094 reflectionsΔρmin = 0.33 e Å3
78 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50000.14712 (15)0.25000.0388 (3)
O10.47410 (6)0.3057 (3)0.15153 (14)0.0516 (5)
C10.69124 (12)0.4134 (6)0.0722 (3)0.0700 (9)
H10.72160.52140.04790.084*
C20.69521 (11)0.2466 (7)0.1749 (3)0.0708 (8)
H20.72820.24050.22000.085*
C30.64978 (10)0.0866 (5)0.2114 (2)0.0559 (7)
H30.65220.02430.28200.067*
C40.60086 (9)0.0907 (4)0.1436 (2)0.0407 (6)
C50.55117 (9)0.0820 (4)0.1842 (2)0.0440 (6)
H5A0.56280.22090.24480.053*
H5B0.53540.18070.11380.053*
C60.59791 (10)0.2614 (5)0.0397 (2)0.0513 (6)
H60.56520.26640.00670.062*
C70.64250 (12)0.4227 (6)0.0043 (3)0.0645 (8)
H70.63990.53770.06510.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0421 (5)0.0264 (4)0.0479 (5)0.0000.0034 (3)0.000
O10.0529 (10)0.0442 (10)0.0575 (11)0.0059 (8)0.0023 (8)0.0128 (8)
C10.0606 (19)0.0567 (18)0.093 (2)0.0104 (13)0.0298 (16)0.0048 (15)
C20.0445 (15)0.0691 (18)0.099 (2)0.0050 (14)0.0004 (15)0.0002 (19)
C30.0514 (16)0.0526 (15)0.0636 (16)0.0058 (12)0.0002 (13)0.0053 (12)
C40.0442 (13)0.0322 (12)0.0458 (13)0.0038 (9)0.0090 (10)0.0081 (9)
C50.0482 (14)0.0297 (11)0.0543 (13)0.0007 (9)0.0059 (11)0.0044 (9)
C60.0575 (15)0.0524 (14)0.0441 (13)0.0014 (12)0.0044 (11)0.0009 (12)
C70.080 (2)0.0565 (16)0.0576 (16)0.0010 (14)0.0226 (15)0.0061 (13)
Geometric parameters (Å, º) top
S1—O11.4437 (15)C3—C41.383 (3)
S1—O1i1.4437 (15)C3—H30.9300
S1—C51.790 (2)C4—C61.388 (3)
S1—C5i1.790 (2)C4—C51.513 (3)
C1—C21.368 (4)C5—H5A0.9700
C1—C71.380 (4)C5—H5B0.9700
C1—H10.9300C6—C71.371 (3)
C2—C31.387 (4)C6—H60.9300
C2—H20.9300C7—H70.9300
O1—S1—O1i117.21 (14)C3—C4—C6118.6 (2)
O1—S1—C5108.47 (10)C3—C4—C5120.5 (2)
O1i—S1—C5108.41 (10)C6—C4—C5120.9 (2)
O1—S1—C5i108.41 (10)C4—C5—S1109.24 (14)
O1i—S1—C5i108.48 (10)C4—C5—H5A109.8
C5—S1—C5i105.22 (14)S1—C5—H5A109.8
C2—C1—C7120.5 (3)C4—C5—H5B109.8
C2—C1—H1119.7S1—C5—H5B109.8
C7—C1—H1119.7H5A—C5—H5B108.3
C1—C2—C3119.7 (3)C7—C6—C4121.0 (2)
C1—C2—H2120.1C7—C6—H6119.5
C3—C2—H2120.1C4—C6—H6119.5
C4—C3—C2120.5 (2)C6—C7—C1119.6 (3)
C4—C3—H3119.7C6—C7—H7120.2
C2—C3—H3119.7C1—C7—H7120.2
Symmetry code: (i) x+1, y, z+1/2.
(Compound_1_Side) top
Crystal data top
C14H14O2SF(000) = 520
Mr = 246.31Dx = 1.326 Mg m3
Monoclinic, C12/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2014 reflections
a = 24.012 (3) Åθ = 3.4–25.0°
b = 4.7429 (5) ŵ = 0.25 mm1
c = 10.8321 (13) ÅT = 300 K
β = 90.197 (4)°Block, colorless
V = 1233.6 (3) Å30.29 × 0.28 × 0.24 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
1097 independent reflections
Radiation source: micro-focus sealed tube960 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.024
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 2828
Tmin = 0.783, Tmax = 0.886k = 55
3662 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0759P)2 + 0.2443P]
where P = (Fo2 + 2Fc2)/3
1097 reflections(Δ/σ)max = 0.008
78 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C14H14O2SV = 1233.6 (3) Å3
Mr = 246.31Z = 4
Monoclinic, C12/c1Mo Kα radiation
a = 24.012 (3) ŵ = 0.25 mm1
b = 4.7429 (5) ÅT = 300 K
c = 10.8321 (13) Å0.29 × 0.28 × 0.24 mm
β = 90.197 (4)°
Data collection top
Bruker SMART X2S
diffractometer
1097 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
960 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.886Rint = 0.024
3662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.20Δρmax = 0.24 e Å3
1097 reflectionsΔρmin = 0.33 e Å3
78 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50000.14726 (12)0.25000.0365 (3)
O10.47421 (6)0.3056 (3)0.15149 (13)0.0499 (4)
C10.69130 (10)0.4145 (6)0.0721 (3)0.0678 (7)
H10.72170.52220.04790.081*
C20.64257 (11)0.4232 (5)0.0043 (2)0.0625 (7)
H20.64000.53780.06510.075*
C30.59767 (9)0.2611 (5)0.03988 (19)0.0501 (6)
H30.56490.26600.00620.060*
C40.60095 (7)0.0913 (4)0.14369 (18)0.0384 (5)
C50.55121 (7)0.0823 (4)0.18398 (19)0.0422 (5)
H5A0.56280.22160.24440.051*
H5B0.53550.18060.11350.051*
C60.69499 (9)0.2478 (6)0.1750 (3)0.0691 (7)
H60.72790.24250.22030.083*
C70.64984 (8)0.0870 (5)0.2119 (2)0.0535 (6)
H70.65240.02380.28250.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0389 (4)0.0240 (4)0.0466 (4)0.0000.0039 (3)0.000
O10.0504 (8)0.0425 (8)0.0567 (9)0.0056 (6)0.0027 (7)0.0133 (7)
C10.0555 (14)0.0548 (14)0.0931 (19)0.0110 (11)0.0280 (13)0.0038 (14)
C20.0778 (17)0.0537 (13)0.0563 (14)0.0018 (12)0.0239 (12)0.0068 (11)
C30.0548 (12)0.0520 (12)0.0435 (12)0.0012 (10)0.0034 (10)0.0013 (10)
C40.0416 (10)0.0299 (9)0.0438 (11)0.0034 (7)0.0080 (8)0.0068 (7)
C50.0446 (11)0.0282 (9)0.0539 (12)0.0021 (8)0.0063 (9)0.0038 (8)
C60.0426 (12)0.0689 (16)0.096 (2)0.0035 (12)0.0001 (13)0.0014 (16)
C70.0493 (12)0.0489 (12)0.0622 (14)0.0061 (9)0.0010 (10)0.0066 (10)
Geometric parameters (Å, º) top
S1—O1i1.4429 (14)C3—C41.385 (3)
S1—O11.4429 (14)C3—H30.9300
S1—C5i1.7930 (18)C4—C71.385 (3)
S1—C51.7930 (18)C4—C51.516 (2)
C1—C61.369 (4)C5—H5A0.9700
C1—C21.380 (4)C5—H5B0.9700
C1—H10.9300C6—C71.386 (3)
C2—C31.380 (3)C6—H60.9300
C2—H20.9300C7—H70.9300
O1i—S1—O1117.25 (12)C3—C4—C7119.17 (19)
O1i—S1—C5i108.32 (9)C3—C4—C5120.46 (18)
O1—S1—C5i108.54 (8)C7—C4—C5120.36 (18)
O1i—S1—C5108.54 (8)C4—C5—S1109.09 (13)
O1—S1—C5108.32 (9)C4—C5—H5A109.9
C5i—S1—C5105.22 (12)S1—C5—H5A109.9
C6—C1—C2120.2 (2)C4—C5—H5B109.9
C6—C1—H1119.9S1—C5—H5B109.9
C2—C1—H1119.9H5A—C5—H5B108.3
C3—C2—C1119.8 (2)C1—C6—C7120.3 (2)
C3—C2—H2120.1C1—C6—H6119.9
C1—C2—H2120.1C7—C6—H6119.9
C2—C3—C4120.6 (2)C4—C7—C6120.0 (2)
C2—C3—H3119.7C4—C7—H7120.0
C4—C3—H3119.7C6—C7—H7120.0
Symmetry code: (i) x+1, y, z+1/2.
(Compound_2_APEX) top
Crystal data top
C14H11FN2SF(000) = 536
Mr = 258.31Dx = 1.334 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.100 (2) ÅCell parameters from 2568 reflections
b = 11.365 (2) Åθ = 2.6–22.5°
c = 11.300 (2) ŵ = 0.25 mm1
β = 97.464 (5)°T = 291 K
V = 1286.1 (4) Å3Plate, clear colourless
Z = 40.27 × 0.21 × 0.14 mm
Data collection top
Bruker APEX II DUO
diffractometer
2180 independent reflections
Radiation source: fine-focus sealed tube1698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.3333 pixels mm-1θmax = 24.7°, θmin = 2.0°
φ & ω scansh = 1111
Absorption correction: multi-scan
SADABS Version 2008/1
k = 1313
Tmin = 0.83, Tmax = 0.95l = 1313
13491 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.278P]
where P = (Fo2 + 2Fc2)/3
2180 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H11FN2SV = 1286.1 (4) Å3
Mr = 258.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.100 (2) ŵ = 0.25 mm1
b = 11.365 (2) ÅT = 291 K
c = 11.300 (2) Å0.27 × 0.21 × 0.14 mm
β = 97.464 (5)°
Data collection top
Bruker APEX II DUO
diffractometer
2180 independent reflections
Absorption correction: multi-scan
SADABS Version 2008/1
1698 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.95Rint = 0.039
13491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
2180 reflectionsΔρmin = 0.27 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34284 (5)0.47322 (4)0.12743 (4)0.05047 (17)
F180.12948 (13)0.63513 (11)0.16614 (12)0.0783 (4)
N20.40076 (18)0.36620 (15)0.05260 (15)0.0669 (5)
N40.36314 (19)0.37798 (18)0.16644 (17)0.0754 (5)
C150.0887 (3)0.3848 (3)0.1554 (2)0.0872 (8)
H150.17770.3670.16030.105*
C140.0465 (2)0.5001 (2)0.16551 (18)0.0736 (7)
H140.10540.56050.17760.088*
C130.0851 (2)0.52274 (19)0.15715 (16)0.0551 (5)
C120.17434 (18)0.43502 (17)0.14101 (15)0.0488 (5)
C50.42218 (19)0.43316 (18)0.27464 (16)0.0569 (5)
H5A0.41270.34920.28620.068*
H5B0.51680.4510.28120.068*
C60.36170 (18)0.49808 (17)0.36994 (16)0.0505 (5)
C110.3991 (2)0.61265 (19)0.39841 (18)0.0607 (5)
H110.46210.64990.35830.073*
C100.3432 (2)0.6717 (2)0.4860 (2)0.0713 (6)
H100.36840.74890.50450.086*
C90.2509 (3)0.6177 (2)0.5457 (2)0.0757 (7)
H90.21370.6580.60490.091*
C160.0016 (3)0.2960 (2)0.1382 (2)0.0843 (7)
H160.03210.21880.13110.101*
C170.1307 (2)0.31998 (19)0.13135 (18)0.0671 (6)
H170.18990.25950.12040.081*
C30.37844 (18)0.37816 (17)0.0639 (2)0.0552 (5)
C70.2681 (2)0.44387 (18)0.43051 (18)0.0611 (5)
H70.24210.36690.4120.073*
C80.2133 (2)0.5038 (2)0.5185 (2)0.0754 (7)
H80.15060.46710.55940.09*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0522 (3)0.0485 (3)0.0524 (3)0.0051 (2)0.0130 (2)0.0035 (2)
F180.0779 (9)0.0585 (8)0.0993 (10)0.0139 (6)0.0145 (7)0.0098 (7)
N20.0810 (13)0.0642 (11)0.0592 (11)0.0219 (9)0.0225 (9)0.0011 (8)
N40.0753 (13)0.0887 (14)0.0646 (12)0.0039 (10)0.0187 (10)0.0080 (10)
C150.0562 (15)0.143 (3)0.0619 (15)0.0258 (17)0.0066 (11)0.0082 (16)
C140.0519 (13)0.111 (2)0.0575 (13)0.0096 (13)0.0067 (10)0.0021 (13)
C130.0553 (12)0.0621 (13)0.0474 (11)0.0019 (10)0.0050 (9)0.0018 (9)
C120.0518 (11)0.0522 (11)0.0419 (10)0.0007 (9)0.0048 (8)0.0022 (8)
C50.0516 (12)0.0613 (12)0.0571 (12)0.0090 (9)0.0048 (9)0.0075 (10)
C60.0470 (11)0.0565 (12)0.0459 (10)0.0050 (9)0.0018 (8)0.0053 (9)
C110.0539 (12)0.0631 (14)0.0625 (13)0.0030 (10)0.0023 (10)0.0030 (10)
C100.0789 (16)0.0589 (14)0.0713 (15)0.0047 (12)0.0078 (13)0.0075 (11)
C90.0874 (18)0.0785 (18)0.0610 (14)0.0226 (13)0.0094 (12)0.0050 (12)
C160.0851 (19)0.0875 (19)0.0789 (17)0.0320 (16)0.0053 (14)0.0079 (14)
C170.0730 (15)0.0595 (14)0.0688 (14)0.0085 (11)0.0095 (11)0.0035 (10)
C30.0442 (11)0.0575 (12)0.0668 (14)0.0003 (9)0.0187 (10)0.0046 (10)
C70.0690 (14)0.0549 (12)0.0602 (12)0.0002 (10)0.0114 (11)0.0076 (10)
C80.0827 (17)0.0808 (18)0.0669 (14)0.0066 (13)0.0258 (12)0.0146 (12)
Geometric parameters (Å, º) top
S1—N21.6325 (16)C5—H5B0.97
S1—C121.7822 (19)C6—C71.382 (3)
S1—C51.8084 (19)C6—C111.382 (3)
F18—C131.353 (2)C11—C101.376 (3)
N2—C31.313 (3)C11—H110.93
N4—C31.149 (3)C10—C91.365 (3)
C15—C161.369 (4)C10—H100.93
C15—C141.378 (4)C9—C81.372 (3)
C15—H150.93C9—H90.93
C14—C131.369 (3)C16—C171.375 (3)
C14—H140.93C16—H160.93
C13—C121.372 (3)C17—H170.93
C12—C171.380 (3)C7—C81.380 (3)
C5—C61.499 (3)C7—H70.93
C5—H5A0.97C8—H80.93
N2—S1—C12105.87 (9)C11—C6—C5120.42 (18)
N2—S1—C598.23 (9)C10—C11—C6120.1 (2)
C12—S1—C599.99 (9)C10—C11—H11119.9
C3—N2—S1114.56 (14)C6—C11—H11119.9
C16—C15—C14121.0 (2)C9—C10—C11120.4 (2)
C16—C15—H15119.5C9—C10—H10119.8
C14—C15—H15119.5C11—C10—H10119.8
C13—C14—C15117.8 (2)C10—C9—C8120.0 (2)
C13—C14—H14121.1C10—C9—H9120.0
C15—C14—H14121.1C8—C9—H9120.0
F18—C13—C14119.2 (2)C15—C16—C17120.6 (2)
F18—C13—C12118.60 (18)C15—C16—H16119.7
C14—C13—C12122.2 (2)C17—C16—H16119.7
C13—C12—C17119.37 (19)C16—C17—C12119.1 (2)
C13—C12—S1119.06 (15)C16—C17—H17120.5
C17—C12—S1121.53 (16)C12—C17—H17120.5
C6—C5—S1111.33 (13)N4—C3—N2173.6 (2)
C6—C5—H5A109.4C8—C7—C6120.1 (2)
S1—C5—H5A109.4C8—C7—H7120.0
C6—C5—H5B109.4C6—C7—H7120.0
S1—C5—H5B109.4C9—C8—C7120.1 (2)
H5A—C5—H5B108.0C9—C8—H8119.9
C7—C6—C11119.25 (19)C7—C8—H8119.9
C7—C6—C5120.33 (18)
(Compound_2_CCDC) top
Crystal data top
C14H11FN2SF(000) = 536
Mr = 258.31Dx = 1.334 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.100 (2) ÅCell parameters from 2568 reflections
b = 11.365 (2) Åθ = 2.6–22.5°
c = 11.300 (2) ŵ = 0.25 mm1
β = 97.464 (5)°T = 291 K
V = 1286.1 (4) Å3Plate, clear colourless
Z = 40.27 × 0.21 × 0.14 mm
Data collection top
Bruker APEX II DUO
diffractometer
2180 independent reflections
Radiation source: fine-focus sealed tube1698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.3333 pixels mm-1θmax = 24.7°, θmin = 2.0°
φ & ω scansh = 1111
Absorption correction: multi-scan
SADABS Version 2008/1
k = 1313
Tmin = 0.83, Tmax = 0.95l = 1313
13491 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.278P]
where P = (Fo2 + 2Fc2)/3
2180 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H11FN2SV = 1286.1 (4) Å3
Mr = 258.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.100 (2) ŵ = 0.25 mm1
b = 11.365 (2) ÅT = 291 K
c = 11.300 (2) Å0.27 × 0.21 × 0.14 mm
β = 97.464 (5)°
Data collection top
Bruker APEX II DUO
diffractometer
2180 independent reflections
Absorption correction: multi-scan
SADABS Version 2008/1
1698 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.95Rint = 0.039
13491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
2180 reflectionsΔρmin = 0.27 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34284 (5)0.47322 (4)0.12743 (4)0.05047 (17)
F180.12948 (13)0.63513 (11)0.16614 (12)0.0783 (4)
N20.40076 (18)0.36620 (15)0.05260 (15)0.0669 (5)
N40.36314 (19)0.37798 (18)0.16644 (17)0.0754 (5)
C150.0887 (3)0.3848 (3)0.1554 (2)0.0872 (8)
H150.17770.3670.16030.105*
C140.0465 (2)0.5001 (2)0.16551 (18)0.0736 (7)
H140.10540.56050.17760.088*
C130.0851 (2)0.52274 (19)0.15715 (16)0.0551 (5)
C120.17434 (18)0.43502 (17)0.14101 (15)0.0488 (5)
C50.42218 (19)0.43316 (18)0.27464 (16)0.0569 (5)
H5A0.41270.34920.28620.068*
H5B0.51680.4510.28120.068*
C60.36170 (18)0.49808 (17)0.36994 (16)0.0505 (5)
C110.3991 (2)0.61265 (19)0.39841 (18)0.0607 (5)
H110.46210.64990.35830.073*
C100.3432 (2)0.6717 (2)0.4860 (2)0.0713 (6)
H100.36840.74890.50450.086*
C90.2509 (3)0.6177 (2)0.5457 (2)0.0757 (7)
H90.21370.6580.60490.091*
C160.0016 (3)0.2960 (2)0.1382 (2)0.0843 (7)
H160.03210.21880.13110.101*
C170.1307 (2)0.31998 (19)0.13135 (18)0.0671 (6)
H170.18990.25950.12040.081*
C30.37844 (18)0.37816 (17)0.0639 (2)0.0552 (5)
C70.2681 (2)0.44387 (18)0.43051 (18)0.0611 (5)
H70.24210.36690.4120.073*
C80.2133 (2)0.5038 (2)0.5185 (2)0.0754 (7)
H80.15060.46710.55940.09*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0522 (3)0.0485 (3)0.0524 (3)0.0051 (2)0.0130 (2)0.0035 (2)
F180.0779 (9)0.0585 (8)0.0993 (10)0.0139 (6)0.0145 (7)0.0098 (7)
N20.0810 (13)0.0642 (11)0.0592 (11)0.0219 (9)0.0225 (9)0.0011 (8)
N40.0753 (13)0.0887 (14)0.0646 (12)0.0039 (10)0.0187 (10)0.0080 (10)
C150.0562 (15)0.143 (3)0.0619 (15)0.0258 (17)0.0066 (11)0.0082 (16)
C140.0519 (13)0.111 (2)0.0575 (13)0.0096 (13)0.0067 (10)0.0021 (13)
C130.0553 (12)0.0621 (13)0.0474 (11)0.0019 (10)0.0050 (9)0.0018 (9)
C120.0518 (11)0.0522 (11)0.0419 (10)0.0007 (9)0.0048 (8)0.0022 (8)
C50.0516 (12)0.0613 (12)0.0571 (12)0.0090 (9)0.0048 (9)0.0075 (10)
C60.0470 (11)0.0565 (12)0.0459 (10)0.0050 (9)0.0018 (8)0.0053 (9)
C110.0539 (12)0.0631 (14)0.0625 (13)0.0030 (10)0.0023 (10)0.0030 (10)
C100.0789 (16)0.0589 (14)0.0713 (15)0.0047 (12)0.0078 (13)0.0075 (11)
C90.0874 (18)0.0785 (18)0.0610 (14)0.0226 (13)0.0094 (12)0.0050 (12)
C160.0851 (19)0.0875 (19)0.0789 (17)0.0320 (16)0.0053 (14)0.0079 (14)
C170.0730 (15)0.0595 (14)0.0688 (14)0.0085 (11)0.0095 (11)0.0035 (10)
C30.0442 (11)0.0575 (12)0.0668 (14)0.0003 (9)0.0187 (10)0.0046 (10)
C70.0690 (14)0.0549 (12)0.0602 (12)0.0002 (10)0.0114 (11)0.0076 (10)
C80.0827 (17)0.0808 (18)0.0669 (14)0.0066 (13)0.0258 (12)0.0146 (12)
Geometric parameters (Å, º) top
S1—N21.6325 (16)C5—H5B0.97
S1—C121.7822 (19)C6—C71.382 (3)
S1—C51.8084 (19)C6—C111.382 (3)
F18—C131.353 (2)C11—C101.376 (3)
N2—C31.313 (3)C11—H110.93
N4—C31.149 (3)C10—C91.365 (3)
C15—C161.369 (4)C10—H100.93
C15—C141.378 (4)C9—C81.372 (3)
C15—H150.93C9—H90.93
C14—C131.369 (3)C16—C171.375 (3)
C14—H140.93C16—H160.93
C13—C121.372 (3)C17—H170.93
C12—C171.380 (3)C7—C81.380 (3)
C5—C61.499 (3)C7—H70.93
C5—H5A0.97C8—H80.93
N2—S1—C12105.87 (9)C11—C6—C5120.42 (18)
N2—S1—C598.23 (9)C10—C11—C6120.1 (2)
C12—S1—C599.99 (9)C10—C11—H11119.9
C3—N2—S1114.56 (14)C6—C11—H11119.9
C16—C15—C14121.0 (2)C9—C10—C11120.4 (2)
C16—C15—H15119.5C9—C10—H10119.8
C14—C15—H15119.5C11—C10—H10119.8
C13—C14—C15117.8 (2)C10—C9—C8120.0 (2)
C13—C14—H14121.1C10—C9—H9120.0
C15—C14—H14121.1C8—C9—H9120.0
F18—C13—C14119.2 (2)C15—C16—C17120.6 (2)
F18—C13—C12118.60 (18)C15—C16—H16119.7
C14—C13—C12122.2 (2)C17—C16—H16119.7
C13—C12—C17119.37 (19)C16—C17—C12119.1 (2)
C13—C12—S1119.06 (15)C16—C17—H17120.5
C17—C12—S1121.53 (16)C12—C17—H17120.5
C6—C5—S1111.33 (13)N4—C3—N2173.6 (2)
C6—C5—H5A109.4C8—C7—C6120.1 (2)
S1—C5—H5A109.4C8—C7—H7120.0
C6—C5—H5B109.4C6—C7—H7120.0
S1—C5—H5B109.4C9—C8—C7120.1 (2)
H5A—C5—H5B108.0C9—C8—H8119.9
C7—C6—C11119.25 (19)C7—C8—H8119.9
C7—C6—C5120.33 (18)
(Compound_2_Run_1) top
Crystal data top
C14H11FN2SF(000) = 536
Mr = 258.31Dx = 1.323 Mg m3
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2425 reflections
a = 10.1414 (9) Åθ = 2.6–22.4°
b = 11.3865 (9) ŵ = 0.24 mm1
c = 11.3289 (9) ÅT = 300 K
β = 97.400 (3)°Block, colorless
V = 1297.31 (19) Å30.50 × 0.35 × 0.21 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
2277 independent reflections
Radiation source: micro-focus sealed tube1729 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.029
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 1212
Tmin = 0.888, Tmax = 0.931k = 1313
8247 measured reflectionsl = 913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0954P)2]
where P = (Fo2 + 2Fc2)/3
2277 reflections(Δ/σ)max = 0.012
163 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C14H11FN2SV = 1297.31 (19) Å3
Mr = 258.31Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 10.1414 (9) ŵ = 0.24 mm1
b = 11.3865 (9) ÅT = 300 K
c = 11.3289 (9) Å0.50 × 0.35 × 0.21 mm
β = 97.400 (3)°
Data collection top
Bruker SMART X2S
diffractometer
2277 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
1729 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.931Rint = 0.029
8247 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
2277 reflectionsΔρmin = 0.35 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84242 (6)0.47328 (5)0.12753 (5)0.0501 (3)
F10.62909 (17)0.63504 (13)0.16615 (16)0.0791 (5)
N10.9003 (2)0.36623 (18)0.05259 (19)0.0672 (6)
N20.8633 (2)0.3788 (2)0.1664 (2)0.0768 (7)
C10.4123 (3)0.3846 (4)0.1554 (3)0.0890 (11)
H10.32360.36670.16030.107*
C20.4537 (3)0.5002 (3)0.1658 (3)0.0734 (8)
H20.39480.56020.17800.088*
C30.5851 (2)0.5228 (2)0.1575 (2)0.0552 (6)
C40.6739 (2)0.4351 (2)0.14091 (19)0.0472 (6)
C50.9219 (2)0.4334 (2)0.2749 (2)0.0574 (6)
H5A0.91260.34960.28650.069*
H5B1.01600.45130.28120.069*
C60.8616 (2)0.4984 (2)0.3702 (2)0.0503 (6)
C70.7683 (3)0.4444 (2)0.4306 (2)0.0612 (7)
H70.74260.36740.41220.073*
C80.7129 (3)0.5044 (3)0.5183 (3)0.0761 (8)
H80.65000.46800.55880.091*
C90.7513 (3)0.6181 (3)0.5455 (3)0.0756 (9)
H90.71440.65840.60470.091*
C100.4990 (3)0.2956 (3)0.1381 (3)0.0848 (9)
H100.46870.21850.13080.102*
C110.6298 (3)0.3199 (2)0.1317 (2)0.0654 (7)
H110.68890.25950.12110.078*
C120.8778 (2)0.3785 (2)0.0636 (3)0.0554 (6)
C130.8433 (3)0.6722 (3)0.4860 (3)0.0721 (8)
H130.86830.74920.50470.086*
C140.8993 (3)0.6133 (2)0.3986 (2)0.0602 (7)
H140.96210.65040.35860.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0537 (4)0.0479 (4)0.0505 (4)0.0051 (2)0.0134 (3)0.0037 (2)
F10.0796 (11)0.0578 (9)0.1008 (13)0.0147 (8)0.0155 (9)0.0114 (8)
N10.0849 (16)0.0641 (14)0.0557 (14)0.0254 (11)0.0215 (12)0.0013 (10)
N20.0775 (17)0.0924 (18)0.0631 (16)0.0049 (12)0.0193 (13)0.0066 (13)
C10.0594 (18)0.150 (4)0.0571 (19)0.027 (2)0.0064 (14)0.0102 (19)
C20.0566 (16)0.107 (2)0.0565 (18)0.0070 (16)0.0083 (13)0.0036 (16)
C30.0555 (14)0.0651 (16)0.0446 (14)0.0034 (12)0.0049 (11)0.0010 (11)
C40.0505 (13)0.0510 (13)0.0398 (12)0.0004 (10)0.0045 (10)0.0013 (10)
C50.0529 (14)0.0642 (15)0.0546 (15)0.0103 (12)0.0052 (11)0.0077 (12)
C60.0476 (13)0.0587 (14)0.0431 (13)0.0058 (10)0.0001 (10)0.0064 (10)
C70.0713 (17)0.0555 (14)0.0580 (16)0.0001 (12)0.0129 (13)0.0063 (12)
C80.086 (2)0.080 (2)0.0659 (19)0.0063 (15)0.0259 (16)0.0125 (15)
C90.091 (2)0.079 (2)0.0560 (17)0.0222 (16)0.0099 (15)0.0044 (14)
C100.088 (2)0.088 (2)0.076 (2)0.0312 (18)0.0032 (17)0.0083 (17)
C110.0752 (18)0.0571 (16)0.0633 (16)0.0092 (13)0.0067 (14)0.0032 (13)
C120.0473 (14)0.0576 (15)0.0647 (18)0.0002 (10)0.0200 (12)0.0056 (12)
C130.0835 (19)0.0591 (16)0.0691 (18)0.0042 (14)0.0070 (15)0.0094 (14)
C140.0546 (14)0.0605 (16)0.0625 (17)0.0048 (11)0.0036 (12)0.0024 (12)
Geometric parameters (Å, º) top
S1—N11.637 (2)C5—H5B0.9700
S1—C41.788 (2)C6—C71.381 (3)
S1—C51.816 (2)C6—C141.389 (3)
F1—C31.353 (3)C7—C81.383 (4)
N1—C121.315 (4)C7—H70.9300
N2—C121.155 (3)C8—C91.375 (4)
C1—C101.373 (5)C8—H80.9300
C1—C21.381 (4)C9—C131.366 (4)
C1—H10.9300C9—H90.9300
C2—C31.373 (4)C10—C111.366 (4)
C2—H20.9300C10—H100.9300
C3—C41.374 (3)C11—H110.9300
C4—C111.386 (3)C13—C141.377 (4)
C5—C61.502 (3)C13—H130.9300
C5—H5A0.9700C14—H140.9300
N1—S1—C4105.87 (12)C14—C6—C5120.3 (2)
N1—S1—C598.30 (11)C6—C7—C8120.2 (3)
C4—S1—C5100.20 (11)C6—C7—H7119.9
C12—N1—S1114.37 (17)C8—C7—H7119.9
C10—C1—C2121.4 (3)C9—C8—C7119.8 (3)
C10—C1—H1119.3C9—C8—H8120.1
C2—C1—H1119.3C7—C8—H8120.1
C3—C2—C1117.4 (3)C13—C9—C8120.4 (3)
C3—C2—H2121.3C13—C9—H9119.8
C1—C2—H2121.3C8—C9—H9119.8
F1—C3—C2119.1 (2)C11—C10—C1120.2 (3)
F1—C3—C4118.7 (2)C11—C10—H10119.9
C2—C3—C4122.1 (3)C1—C10—H10119.9
C3—C4—C11119.2 (2)C10—C11—C4119.6 (3)
C3—C4—S1119.03 (18)C10—C11—H11120.2
C11—C4—S1121.76 (19)C4—C11—H11120.2
C6—C5—S1111.38 (16)N2—C12—N1173.4 (3)
C6—C5—H5A109.4C9—C13—C14120.4 (3)
S1—C5—H5A109.4C9—C13—H13119.8
C6—C5—H5B109.4C14—C13—H13119.8
S1—C5—H5B109.4C13—C14—C6119.9 (3)
H5A—C5—H5B108.0C13—C14—H14120.0
C7—C6—C14119.3 (2)C6—C14—H14120.0
C7—C6—C5120.3 (2)
(Compound_2_Run_2) top
Crystal data top
C14H11FN2SF(000) = 536
Mr = 258.32Dx = 1.327 Mg m3
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4016 reflections
a = 10.1385 (11) Åθ = 2.6–24.7°
b = 11.3898 (11) ŵ = 0.24 mm1
c = 11.3325 (12) ÅT = 300 K
β = 97.467 (4)°Block, colorless
V = 1297.5 (2) Å30.39 × 0.34 × 0.15 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
2291 independent reflections
Radiation source: micro-focus sealed tube1818 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.041
ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 1212
Tmin = 0.911, Tmax = 0.967k = 1313
12421 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.270P]
where P = (Fo2 + 2Fc2)/3
2291 reflections(Δ/σ)max = 0.015
163 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H11FN2SV = 1297.5 (2) Å3
Mr = 258.32Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 10.1385 (11) ŵ = 0.24 mm1
b = 11.3898 (11) ÅT = 300 K
c = 11.3325 (12) Å0.39 × 0.34 × 0.15 mm
β = 97.467 (4)°
Data collection top
Bruker SMART X2S
diffractometer
2291 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
1818 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.967Rint = 0.041
12421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.09Δρmax = 0.26 e Å3
2291 reflectionsΔρmin = 0.21 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84219 (5)0.52676 (5)0.12735 (5)0.0491 (2)
F10.62902 (15)0.36501 (12)0.16636 (14)0.0786 (4)
N10.8998 (2)0.63377 (17)0.05248 (17)0.0666 (6)
N20.8630 (2)0.6212 (2)0.1664 (2)0.0765 (6)
C10.7513 (3)0.3823 (3)0.5455 (2)0.0763 (8)
H10.71430.34200.60460.092*
C20.7133 (3)0.4959 (3)0.5183 (2)0.0755 (8)
H20.65080.53250.55900.091*
C30.7682 (2)0.5557 (2)0.4305 (2)0.0621 (6)
H30.74230.63260.41200.075*
C40.8617 (2)0.50161 (19)0.36974 (18)0.0507 (5)
C50.9215 (2)0.5668 (2)0.27466 (19)0.0562 (6)
H5A1.01580.54930.28100.067*
H5B0.91170.65060.28630.067*
C60.6735 (2)0.56475 (19)0.14085 (17)0.0473 (5)
C70.6298 (3)0.6799 (2)0.1313 (2)0.0662 (6)
H70.68890.74010.12040.079*
C80.4987 (3)0.7043 (3)0.1381 (2)0.0848 (9)
H80.46850.78140.13110.102*
C90.4118 (3)0.6152 (4)0.1554 (2)0.0883 (10)
H90.32310.63290.16020.106*
C100.8438 (3)0.3280 (2)0.4859 (2)0.0715 (7)
H100.86910.25110.50470.086*
C110.8995 (2)0.3871 (2)0.3980 (2)0.0595 (6)
H110.96220.35000.35780.071*
C120.5850 (2)0.4772 (2)0.15752 (19)0.0553 (6)
C130.4537 (3)0.5002 (3)0.1656 (2)0.0736 (8)
H130.39480.44000.17760.088*
C140.8776 (2)0.62124 (19)0.0639 (2)0.0548 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0526 (3)0.0471 (3)0.0493 (3)0.0051 (2)0.0130 (2)0.0039 (2)
F10.0790 (10)0.0574 (9)0.1005 (11)0.0140 (7)0.0152 (8)0.0105 (7)
N10.0836 (14)0.0618 (13)0.0579 (12)0.0228 (10)0.0226 (10)0.0010 (9)
N20.0774 (15)0.0917 (17)0.0629 (14)0.0045 (12)0.0181 (11)0.0077 (11)
C10.091 (2)0.083 (2)0.0555 (15)0.0254 (16)0.0095 (14)0.0051 (13)
C20.0847 (19)0.082 (2)0.0645 (16)0.0080 (15)0.0269 (14)0.0127 (14)
C30.0718 (15)0.0562 (14)0.0593 (14)0.0007 (11)0.0124 (12)0.0085 (11)
C40.0486 (12)0.0569 (13)0.0445 (11)0.0055 (10)0.0016 (9)0.0061 (9)
C50.0518 (12)0.0617 (14)0.0543 (13)0.0103 (10)0.0039 (10)0.0079 (10)
C60.0513 (12)0.0513 (12)0.0389 (10)0.0008 (10)0.0041 (9)0.0035 (9)
C70.0742 (16)0.0594 (15)0.0647 (15)0.0086 (12)0.0078 (12)0.0039 (12)
C80.087 (2)0.089 (2)0.0768 (19)0.0331 (18)0.0026 (15)0.0088 (15)
C90.0580 (16)0.146 (3)0.0599 (16)0.0269 (19)0.0051 (13)0.0107 (17)
C100.0814 (18)0.0603 (15)0.0682 (16)0.0036 (13)0.0080 (14)0.0090 (13)
C110.0535 (13)0.0615 (15)0.0606 (14)0.0041 (11)0.0036 (11)0.0029 (11)
C120.0547 (13)0.0659 (15)0.0447 (11)0.0038 (11)0.0040 (10)0.0010 (10)
C130.0542 (14)0.111 (2)0.0557 (15)0.0087 (15)0.0060 (11)0.0014 (14)
C140.0465 (12)0.0570 (14)0.0643 (15)0.0003 (10)0.0203 (11)0.0058 (11)
Geometric parameters (Å, º) top
S1—N11.6356 (19)C5—H5A0.9700
S1—C61.789 (2)C5—H5B0.9700
S1—C51.815 (2)C6—C121.372 (3)
F1—C121.353 (3)C6—C71.384 (3)
N1—C141.316 (3)C7—C81.370 (4)
N2—C141.152 (3)C7—H70.9300
C1—C101.372 (4)C8—C91.375 (4)
C1—C21.374 (4)C8—H80.9300
C1—H10.9300C9—C131.378 (4)
C2—C31.381 (3)C9—H90.9300
C2—H20.9300C10—C111.382 (3)
C3—C41.387 (3)C10—H100.9300
C3—H30.9300C11—H110.9300
C4—C111.385 (3)C12—C131.371 (4)
C4—C51.500 (3)C13—H130.9300
N1—S1—C6105.89 (11)C7—C6—S1121.50 (18)
N1—S1—C598.31 (10)C8—C7—C6119.4 (3)
C6—S1—C5100.06 (10)C8—C7—H7120.3
C14—N1—S1114.38 (16)C6—C7—H7120.3
C10—C1—C2120.2 (2)C7—C8—C9120.2 (3)
C10—C1—H1119.9C7—C8—H8119.9
C2—C1—H1119.9C9—C8—H8119.9
C1—C2—C3119.9 (3)C8—C9—C13121.2 (3)
C1—C2—H2120.0C8—C9—H9119.4
C3—C2—H2120.0C13—C9—H9119.4
C2—C3—C4120.3 (2)C1—C10—C11120.3 (2)
C2—C3—H3119.9C1—C10—H10119.8
C4—C3—H3119.9C11—C10—H10119.8
C11—C4—C3119.4 (2)C10—C11—C4119.9 (2)
C11—C4—C5120.4 (2)C10—C11—H11120.1
C3—C4—C5120.2 (2)C4—C11—H11120.0
C4—C5—S1111.37 (15)F1—C12—C13119.3 (2)
C4—C5—H5A109.4F1—C12—C6118.8 (2)
S1—C5—H5A109.4C13—C12—C6121.9 (2)
C4—C5—H5B109.4C12—C13—C9117.9 (3)
S1—C5—H5B109.4C12—C13—H13121.1
H5A—C5—H5B108.0C9—C13—H13121.1
C12—C6—C7119.4 (2)N2—C14—N1173.3 (3)
C12—C6—S1119.06 (17)
(Compound_2_Run_3) top
Crystal data top
C14H11FN2SF(000) = 536
Mr = 258.31Dx = 1.322 Mg m3
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2278 reflections
a = 10.1375 (11) Åθ = 2.6–22.7°
b = 11.3871 (14) ŵ = 0.24 mm1
c = 11.3412 (14) ÅT = 300 K
β = 97.482 (4)°Block, colorless
V = 1298.0 (3) Å30.27 × 0.21 × 0.14 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
2275 independent reflections
Radiation source: micro-focus sealed tube1692 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.043
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 1112
Tmin = 0.888, Tmax = 0.988k = 1313
8248 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.1168P]
where P = (Fo2 + 2Fc2)/3
2275 reflections(Δ/σ)max = 0.008
163 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H11FN2SV = 1298.0 (3) Å3
Mr = 258.31Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 10.1375 (11) ŵ = 0.24 mm1
b = 11.3871 (14) ÅT = 300 K
c = 11.3412 (14) Å0.27 × 0.21 × 0.14 mm
β = 97.482 (4)°
Data collection top
Bruker SMART X2S
diffractometer
2275 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
1692 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.988Rint = 0.043
8248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.09Δρmax = 0.23 e Å3
2275 reflectionsΔρmin = 0.23 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34243 (6)0.02671 (5)0.12747 (5)0.0493 (2)
F10.12900 (15)0.13483 (13)0.16612 (15)0.0781 (5)
N10.4002 (2)0.13378 (19)0.05241 (19)0.0665 (6)
N20.3629 (2)0.1214 (2)0.1664 (2)0.0760 (7)
C10.2510 (3)0.1177 (3)0.5455 (2)0.0748 (8)
H10.21380.15790.60440.090*
C20.3433 (3)0.1720 (3)0.4858 (3)0.0711 (8)
H20.36850.24910.50440.085*
C30.3991 (2)0.1129 (2)0.3983 (2)0.0606 (7)
H30.46180.15010.35840.073*
C40.3618 (2)0.0016 (2)0.3699 (2)0.0501 (6)
C50.4216 (2)0.0667 (2)0.2746 (2)0.0557 (6)
H5A0.51590.04910.28100.067*
H5B0.41200.15050.28610.067*
C60.1739 (2)0.0651 (2)0.14121 (19)0.0466 (5)
C70.1303 (3)0.1801 (2)0.1314 (2)0.0657 (7)
H70.18930.24040.12010.079*
C80.0010 (3)0.2043 (3)0.1384 (3)0.0836 (9)
H80.03130.28140.13160.100*
C90.0877 (3)0.1156 (4)0.1554 (3)0.0874 (11)
H90.17640.13360.16020.105*
C100.2683 (3)0.0559 (2)0.4306 (2)0.0613 (7)
H100.24240.13280.41210.074*
C110.2135 (3)0.0039 (3)0.5182 (3)0.0746 (8)
H110.15100.03290.55880.089*
C120.0848 (2)0.0227 (2)0.1578 (2)0.0537 (6)
C130.0462 (3)0.0002 (3)0.1656 (2)0.0737 (8)
H130.10520.06030.17730.088*
C140.3779 (2)0.1213 (2)0.0639 (3)0.0545 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0526 (4)0.0466 (4)0.0501 (4)0.0050 (2)0.0125 (3)0.0040 (3)
F10.0777 (10)0.0580 (10)0.0994 (13)0.0148 (8)0.0152 (9)0.0102 (8)
N10.0840 (16)0.0634 (14)0.0554 (14)0.0225 (11)0.0210 (12)0.0001 (10)
N20.0764 (16)0.0905 (19)0.0628 (16)0.0038 (12)0.0161 (13)0.0082 (13)
C10.088 (2)0.080 (2)0.0567 (17)0.0242 (16)0.0098 (15)0.0050 (15)
C20.0806 (19)0.0599 (17)0.0676 (18)0.0027 (14)0.0096 (15)0.0092 (14)
C30.0546 (14)0.0630 (17)0.0612 (16)0.0049 (11)0.0036 (12)0.0018 (13)
C40.0461 (13)0.0571 (15)0.0449 (13)0.0052 (10)0.0019 (10)0.0061 (11)
C50.0512 (13)0.0590 (15)0.0561 (15)0.0084 (11)0.0042 (11)0.0075 (12)
C60.0511 (13)0.0502 (14)0.0382 (12)0.0003 (10)0.0046 (10)0.0033 (10)
C70.0738 (18)0.0575 (17)0.0657 (17)0.0090 (13)0.0080 (14)0.0033 (13)
C80.086 (2)0.085 (2)0.078 (2)0.0321 (18)0.0053 (17)0.0072 (17)
C90.0578 (17)0.146 (4)0.0578 (18)0.027 (2)0.0055 (14)0.009 (2)
C100.0707 (17)0.0549 (16)0.0588 (16)0.0010 (12)0.0103 (13)0.0067 (12)
C110.083 (2)0.080 (2)0.0642 (18)0.0082 (15)0.0242 (16)0.0124 (15)
C120.0545 (14)0.0613 (16)0.0444 (13)0.0026 (12)0.0030 (11)0.0013 (11)
C130.0539 (16)0.110 (3)0.0570 (17)0.0101 (16)0.0053 (13)0.0026 (16)
C140.0445 (13)0.0574 (16)0.0640 (18)0.0000 (10)0.0165 (12)0.0074 (13)
Geometric parameters (Å, º) top
S1—N11.638 (2)C5—H5A0.9700
S1—C61.790 (2)C5—H5B0.9700
S1—C51.813 (2)C6—C121.376 (3)
F1—C121.353 (3)C6—C71.382 (3)
N1—C141.317 (3)C7—C81.371 (4)
N2—C141.152 (3)C7—H70.9300
C1—C21.371 (4)C8—C91.369 (5)
C1—C111.375 (4)C8—H80.9300
C1—H10.9300C9—C131.384 (4)
C2—C31.379 (4)C9—H90.9300
C2—H20.9300C10—C111.379 (4)
C3—C41.384 (3)C10—H100.9300
C3—H30.9300C11—H110.9300
C4—C101.387 (3)C12—C131.367 (4)
C4—C51.502 (3)C13—H130.9300
N1—S1—C6105.85 (12)C7—C6—S1121.57 (19)
N1—S1—C598.39 (11)C8—C7—C6119.2 (3)
C6—S1—C599.90 (11)C8—C7—H7120.4
C14—N1—S1114.45 (17)C6—C7—H7120.4
C2—C1—C11120.0 (3)C9—C8—C7120.4 (3)
C2—C1—H1120.0C9—C8—H8119.8
C11—C1—H1120.0C7—C8—H8119.8
C1—C2—C3120.3 (3)C8—C9—C13121.4 (3)
C1—C2—H2119.9C8—C9—H9119.3
C3—C2—H2119.9C13—C9—H9119.3
C2—C3—C4120.2 (3)C11—C10—C4120.2 (3)
C2—C3—H3119.9C11—C10—H10119.9
C4—C3—H3119.9C4—C10—H10119.9
C3—C4—C10119.2 (2)C1—C11—C10120.1 (3)
C3—C4—C5120.6 (2)C1—C11—H11119.9
C10—C4—C5120.2 (2)C10—C11—H11119.9
C4—C5—S1111.51 (16)F1—C12—C13119.2 (2)
C4—C5—H5A109.3F1—C12—C6118.6 (2)
S1—C5—H5A109.3C13—C12—C6122.2 (3)
C4—C5—H5B109.3C12—C13—C9117.4 (3)
S1—C5—H5B109.3C12—C13—H13121.3
H5A—C5—H5B108.0C9—C13—H13121.3
C12—C6—C7119.4 (2)N2—C14—N1173.3 (3)
C12—C6—S1119.00 (18)
(Compound_2_Run_4) top
Crystal data top
C14H11FN2SF(000) = 536
Mr = 258.31Dx = 1.318 Mg m3
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2021 reflections
a = 10.137 (3) Åθ = 2.5–22.4°
b = 11.413 (4) ŵ = 0.24 mm1
c = 11.345 (3) ÅT = 300 K
β = 97.465 (11)°Block, colorless
V = 1301.5 (7) Å30.23 × 0.20 × 0.13 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
2277 independent reflections
Radiation source: micro-focus sealed tube1626 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.043
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 1211
Tmin = 0.793, Tmax = 0.888k = 1113
8133 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.1803P]
where P = (Fo2 + 2Fc2)/3
2277 reflections(Δ/σ)max = 0.016
163 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H11FN2SV = 1301.5 (7) Å3
Mr = 258.31Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 10.137 (3) ŵ = 0.24 mm1
b = 11.413 (4) ÅT = 300 K
c = 11.345 (3) Å0.23 × 0.20 × 0.13 mm
β = 97.465 (11)°
Data collection top
Bruker SMART X2S
diffractometer
2277 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
1626 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.888Rint = 0.043
8133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.09Δρmax = 0.22 e Å3
2277 reflectionsΔρmin = 0.18 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84217 (6)0.47329 (6)0.12755 (6)0.0501 (2)
F10.62881 (17)0.63496 (16)0.16605 (16)0.0786 (5)
N10.8999 (2)0.3662 (2)0.0527 (2)0.0667 (7)
N20.8629 (3)0.3789 (3)0.1664 (2)0.0767 (8)
C10.4122 (4)0.3848 (5)0.1552 (3)0.0890 (12)
H10.32330.36730.15960.107*
C20.4545 (3)0.5003 (3)0.1657 (3)0.0741 (9)
H20.39580.56040.17790.089*
C30.5852 (3)0.5227 (3)0.1576 (2)0.0548 (7)
C40.6739 (2)0.4349 (2)0.1410 (2)0.0471 (6)
C50.9213 (3)0.4330 (3)0.2747 (2)0.0570 (7)
H5A0.91130.34940.28630.068*
H5B1.01570.45030.28110.068*
C60.8615 (2)0.4983 (2)0.3700 (2)0.0506 (7)
C70.7679 (3)0.4444 (3)0.4306 (2)0.0612 (8)
H70.74180.36770.41210.073*
C80.7131 (3)0.5043 (3)0.5184 (3)0.0757 (9)
H80.65080.46770.55930.091*
C90.7508 (3)0.6176 (3)0.5452 (3)0.0739 (9)
H90.71330.65780.60400.089*
C100.4986 (4)0.2960 (4)0.1385 (3)0.0851 (11)
H100.46810.21920.13170.102*
C110.6294 (3)0.3198 (3)0.1316 (2)0.0671 (8)
H110.68820.25930.12080.081*
C120.8775 (2)0.3789 (2)0.0639 (3)0.0546 (7)
C130.8433 (3)0.6721 (3)0.4860 (3)0.0717 (9)
H130.86860.74880.50480.086*
C140.8988 (3)0.6127 (3)0.3982 (2)0.0614 (8)
H140.96140.64980.35810.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0528 (4)0.0488 (4)0.0505 (4)0.0047 (3)0.0137 (3)0.0033 (3)
F10.0767 (12)0.0601 (12)0.0998 (13)0.0142 (9)0.0143 (10)0.0101 (9)
N10.0828 (17)0.0627 (17)0.0583 (15)0.0237 (13)0.0232 (13)0.0014 (12)
N20.0778 (18)0.092 (2)0.0632 (17)0.0038 (14)0.0192 (14)0.0083 (14)
C10.057 (2)0.150 (4)0.059 (2)0.029 (2)0.0065 (15)0.009 (2)
C20.0543 (18)0.112 (3)0.0557 (18)0.0111 (18)0.0065 (14)0.0029 (18)
C30.0532 (16)0.065 (2)0.0451 (15)0.0012 (14)0.0038 (12)0.0002 (13)
C40.0512 (15)0.0522 (17)0.0376 (13)0.0006 (12)0.0047 (11)0.0014 (11)
C50.0519 (16)0.0625 (18)0.0558 (16)0.0101 (13)0.0044 (13)0.0069 (13)
C60.0479 (14)0.0587 (19)0.0434 (14)0.0060 (12)0.0006 (11)0.0075 (12)
C70.0689 (18)0.0573 (19)0.0579 (17)0.0011 (14)0.0108 (15)0.0083 (14)
C80.088 (2)0.081 (3)0.064 (2)0.0081 (18)0.0294 (17)0.0126 (17)
C90.087 (2)0.080 (3)0.0556 (18)0.0230 (19)0.0099 (16)0.0034 (16)
C100.081 (2)0.094 (3)0.078 (2)0.034 (2)0.0038 (19)0.007 (2)
C110.077 (2)0.059 (2)0.0656 (19)0.0083 (15)0.0077 (15)0.0035 (15)
C120.0453 (15)0.0572 (18)0.0652 (19)0.0004 (12)0.0218 (14)0.0057 (14)
C130.081 (2)0.061 (2)0.068 (2)0.0034 (16)0.0088 (17)0.0099 (16)
C140.0550 (16)0.066 (2)0.0607 (18)0.0048 (14)0.0022 (14)0.0030 (15)
Geometric parameters (Å, º) top
S1—N11.639 (2)C5—H5B0.9700
S1—C41.787 (3)C6—C141.385 (4)
S1—C51.815 (3)C6—C71.386 (4)
F1—C31.355 (3)C7—C81.383 (4)
N1—C121.320 (4)C7—H70.9300
N2—C121.153 (3)C8—C91.372 (5)
C1—C101.369 (5)C8—H80.9300
C1—C21.387 (5)C9—C131.371 (4)
C1—H10.9300C9—H90.9300
C2—C31.364 (4)C10—C111.365 (4)
C2—H20.9300C10—H100.9300
C3—C41.376 (4)C11—H110.9300
C4—C111.389 (4)C13—C141.383 (4)
C5—C61.504 (4)C13—H130.9300
C5—H5A0.9700C14—H140.9300
N1—S1—C4105.67 (13)C7—C6—C5120.1 (3)
N1—S1—C598.21 (13)C8—C7—C6120.2 (3)
C4—S1—C599.92 (12)C8—C7—H7119.9
C12—N1—S1114.27 (19)C6—C7—H7119.9
C10—C1—C2121.3 (3)C9—C8—C7120.0 (3)
C10—C1—H1119.4C9—C8—H8120.0
C2—C1—H1119.4C7—C8—H8120.0
C3—C2—C1117.7 (3)C13—C9—C8120.5 (3)
C3—C2—H2121.2C13—C9—H9119.8
C1—C2—H2121.2C8—C9—H9119.8
F1—C3—C2118.9 (3)C11—C10—C1120.3 (3)
F1—C3—C4119.1 (2)C11—C10—H10119.8
C2—C3—C4122.0 (3)C1—C10—H10119.8
C3—C4—C11119.2 (3)C10—C11—C4119.5 (3)
C3—C4—S1118.7 (2)C10—C11—H11120.3
C11—C4—S1122.0 (2)C4—C11—H11120.3
C6—C5—S1111.34 (18)N2—C12—N1173.3 (3)
C6—C5—H5A109.4C9—C13—C14119.9 (3)
S1—C5—H5A109.4C9—C13—H13120.0
C6—C5—H5B109.4C14—C13—H13120.0
S1—C5—H5B109.4C13—C14—C6120.2 (3)
H5A—C5—H5B108.0C13—C14—H14119.9
C14—C6—C7119.2 (3)C6—C14—H14119.9
C14—C6—C5120.7 (2)
(Compound_3_CCDC) top
Crystal data top
C17H20Cl2N2PdF(000) = 864
Mr = 429.65Dx = 1.587 Mg m3
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8388 reflections
a = 9.356 (2) Åθ = 2.9–25.2°
b = 9.9295 (19) ŵ = 1.33 mm1
c = 19.357 (4) ÅT = 300 K
β = 90.470 (7)°Plate, orange
V = 1798.2 (7) Å30.35 × 0.31 × 0.29 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
3229 independent reflections
Radiation source: micro-focus sealed tube2821 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.066
ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 1111
Tmin = 0.654, Tmax = 0.700k = 1111
16537 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0717P)2]
where P = (Fo2 + 2Fc2)/3
3229 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 1.67 e Å3
Crystal data top
C17H20Cl2N2PdV = 1798.2 (7) Å3
Mr = 429.65Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 9.356 (2) ŵ = 1.33 mm1
b = 9.9295 (19) ÅT = 300 K
c = 19.357 (4) Å0.35 × 0.31 × 0.29 mm
β = 90.470 (7)°
Data collection top
Bruker SMART X2S
diffractometer
3229 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
2821 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.700Rint = 0.066
16537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.19Δρmax = 0.76 e Å3
3229 reflectionsΔρmin = 1.67 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.34165 (3)0.36794 (3)0.474015 (13)0.03696 (15)
Cl20.33207 (12)0.48746 (11)0.37305 (5)0.0569 (3)
Cl30.39048 (14)0.17596 (12)0.41288 (6)0.0700 (3)
N170.2901 (3)0.5254 (3)0.53575 (14)0.0362 (6)
N40.3513 (3)0.2777 (3)0.56776 (16)0.0421 (7)
C180.2724 (4)0.6643 (4)0.5106 (2)0.0445 (8)
H18A0.34380.68180.47570.053*
H18B0.28990.72590.54870.053*
C190.1262 (4)0.6928 (4)0.4804 (2)0.0547 (10)
H19A0.05520.69290.51660.066*
H19B0.10060.62380.44700.066*
C200.1306 (5)0.8321 (5)0.4448 (3)0.0648 (12)
H20A0.16590.89830.47760.078*
H20B0.19730.82840.40670.078*
C210.0122 (6)0.8767 (5)0.4179 (3)0.0791 (16)
H21A0.07800.88550.45610.095*
H21B0.04990.80900.38650.095*
C220.0016 (8)1.0109 (6)0.3802 (4)0.108 (2)
H22A0.02321.08050.41250.162*
H22B0.09191.03160.35880.162*
H22C0.07071.00510.34540.162*
C100.2750 (3)0.4970 (3)0.59983 (18)0.0370 (7)
C110.2242 (4)0.5924 (4)0.65287 (18)0.0410 (8)
C120.0778 (5)0.6088 (4)0.6635 (2)0.0566 (10)
H120.01240.56020.63700.068*
C130.0306 (6)0.6968 (5)0.7130 (3)0.0755 (14)
H130.06700.70700.71990.091*
C140.1242 (6)0.7695 (5)0.7521 (3)0.0753 (14)
H140.09030.82860.78540.090*
C150.2709 (6)0.7557 (5)0.7423 (2)0.0743 (14)
H150.33500.80530.76900.089*
C160.3202 (5)0.6677 (5)0.6927 (2)0.0594 (11)
H160.41800.65860.68580.071*
C90.3110 (4)0.3580 (3)0.6206 (2)0.0383 (8)
C50.3924 (5)0.1505 (4)0.5816 (3)0.0610 (12)
H50.42180.09510.54570.073*
C60.3918 (5)0.1009 (5)0.6483 (3)0.0715 (14)
H60.41980.01250.65670.086*
C70.3506 (5)0.1803 (5)0.7016 (2)0.0628 (12)
H70.34980.14700.74650.075*
C80.3093 (4)0.3130 (5)0.6877 (2)0.0502 (9)
H80.28110.36980.72330.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0400 (2)0.0360 (2)0.0348 (2)0.00346 (10)0.00390 (13)0.00320 (10)
Cl20.0755 (7)0.0628 (7)0.0324 (5)0.0177 (5)0.0037 (4)0.0013 (4)
Cl30.0954 (9)0.0484 (6)0.0663 (7)0.0069 (6)0.0090 (6)0.0190 (6)
N170.0376 (14)0.0362 (16)0.0345 (15)0.0036 (12)0.0098 (11)0.0013 (12)
N40.0440 (16)0.0375 (17)0.0448 (17)0.0043 (13)0.0014 (13)0.0046 (14)
C180.060 (2)0.0362 (19)0.038 (2)0.0050 (17)0.0083 (16)0.0022 (16)
C190.056 (2)0.050 (2)0.058 (2)0.0135 (19)0.0080 (18)0.003 (2)
C200.068 (3)0.057 (3)0.069 (3)0.009 (2)0.018 (2)0.001 (2)
C210.080 (4)0.068 (4)0.088 (4)0.013 (2)0.027 (3)0.000 (3)
C220.137 (5)0.067 (4)0.120 (6)0.013 (3)0.052 (4)0.020 (4)
C100.0349 (16)0.0371 (19)0.0390 (18)0.0013 (14)0.0088 (13)0.0024 (15)
C110.048 (2)0.0408 (19)0.0343 (18)0.0037 (16)0.0036 (15)0.0007 (16)
C120.051 (2)0.059 (3)0.060 (3)0.0023 (19)0.0044 (19)0.007 (2)
C130.073 (3)0.072 (3)0.081 (3)0.015 (3)0.028 (3)0.011 (3)
C140.108 (4)0.064 (3)0.054 (3)0.023 (3)0.018 (3)0.014 (2)
C150.099 (4)0.070 (3)0.054 (3)0.002 (3)0.008 (3)0.022 (2)
C160.055 (2)0.073 (3)0.050 (2)0.004 (2)0.0096 (18)0.018 (2)
C90.0337 (17)0.041 (2)0.040 (2)0.0000 (13)0.0046 (14)0.0039 (14)
C50.069 (3)0.046 (2)0.069 (3)0.020 (2)0.012 (2)0.013 (2)
C60.075 (3)0.058 (3)0.081 (4)0.023 (2)0.009 (3)0.031 (3)
C70.062 (3)0.071 (3)0.055 (3)0.008 (2)0.001 (2)0.030 (3)
C80.045 (2)0.064 (3)0.042 (2)0.0034 (19)0.0027 (15)0.011 (2)
Geometric parameters (Å, º) top
Pd1—N42.025 (3)C22—H22C0.9600
Pd1—N172.028 (3)C10—C91.476 (5)
Pd1—Cl22.2875 (10)C10—C111.478 (5)
Pd1—Cl32.2917 (11)C11—C121.396 (5)
N17—C101.281 (5)C11—C161.397 (6)
N17—C181.471 (5)C12—C131.372 (6)
N4—C51.347 (5)C12—H120.9300
N4—C91.353 (5)C13—C141.360 (8)
C18—C191.511 (5)C13—H130.9300
C18—H18A0.9700C14—C151.393 (7)
C18—H18B0.9700C14—H140.9300
C19—C201.546 (6)C15—C161.380 (6)
C19—H19A0.9700C15—H150.9300
C19—H19B0.9700C16—H160.9300
C20—C211.498 (7)C9—C81.373 (5)
C20—H20A0.9700C5—C61.381 (7)
C20—H20B0.9700C5—H50.9300
C21—C221.523 (8)C6—C71.357 (7)
C21—H21A0.9700C6—H60.9300
C21—H21B0.9700C7—C81.399 (6)
C22—H22A0.9600C7—H70.9300
C22—H22B0.9600C8—H80.9300
N4—Pd1—N1779.75 (11)C21—C22—H22C109.5
N4—Pd1—Cl2175.01 (9)H22A—C22—H22C109.5
N17—Pd1—Cl295.49 (8)H22B—C22—H22C109.5
N4—Pd1—Cl394.99 (9)N17—C10—C9116.3 (3)
N17—Pd1—Cl3174.12 (8)N17—C10—C11124.8 (3)
Cl2—Pd1—Cl389.83 (4)C9—C10—C11118.9 (3)
C10—N17—C18120.9 (3)C12—C11—C16118.9 (4)
C10—N17—Pd1115.4 (2)C12—C11—C10119.9 (3)
C18—N17—Pd1123.7 (2)C16—C11—C10121.2 (3)
C5—N4—C9118.9 (3)C13—C12—C11119.9 (4)
C5—N4—Pd1127.1 (3)C13—C12—H12120.0
C9—N4—Pd1114.0 (2)C11—C12—H12120.0
N17—C18—C19113.8 (3)C14—C13—C12121.2 (5)
N17—C18—H18A108.8C14—C13—H13119.4
C19—C18—H18A108.8C12—C13—H13119.4
N17—C18—H18B108.8C13—C14—C15120.1 (4)
C19—C18—H18B108.8C13—C14—H14119.9
H18A—C18—H18B107.7C15—C14—H14119.9
C18—C19—C20108.2 (3)C16—C15—C14119.5 (4)
C18—C19—H19A110.1C16—C15—H15120.3
C20—C19—H19A110.1C14—C15—H15120.3
C18—C19—H19B110.1C15—C16—C11120.4 (4)
C20—C19—H19B110.1C15—C16—H16119.8
H19A—C19—H19B108.4C11—C16—H16119.8
C21—C20—C19113.1 (4)N4—C9—C8121.9 (3)
C21—C20—H20A109.0N4—C9—C10114.1 (3)
C19—C20—H20A109.0C8—C9—C10123.9 (3)
C21—C20—H20B109.0N4—C5—C6121.1 (4)
C19—C20—H20B109.0N4—C5—H5119.4
H20A—C20—H20B107.8C6—C5—H5119.4
C20—C21—C22111.4 (5)C7—C6—C5120.5 (4)
C20—C21—H21A109.4C7—C6—H6119.8
C22—C21—H21A109.4C5—C6—H6119.8
C20—C21—H21B109.4C6—C7—C8118.7 (4)
C22—C21—H21B109.4C6—C7—H7120.6
H21A—C21—H21B108.0C8—C7—H7120.6
C21—C22—H22A109.5C9—C8—C7118.9 (4)
C21—C22—H22B109.5C9—C8—H8120.6
H22A—C22—H22B109.5C7—C8—H8120.6
(Compound_3_X2S) top
Crystal data top
C17H20Cl2N2PdF(000) = 864
Mr = 429.65Dx = 1.587 Mg m3
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8388 reflections
a = 9.356 (2) Åθ = 2.9–25.2°
b = 9.9295 (19) ŵ = 1.33 mm1
c = 19.357 (4) ÅT = 300 K
β = 90.470 (7)°Plate, orange
V = 1798.2 (7) Å30.35 × 0.31 × 0.29 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
3229 independent reflections
Radiation source: micro-focus sealed tube2821 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.066
ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 1111
Tmin = 0.220, Tmax = 0.700k = 1111
16537 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.1997P]
where P = (Fo2 + 2Fc2)/3
3229 reflections(Δ/σ)max = 0.011
200 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 1.66 e Å3
Crystal data top
C17H20Cl2N2PdV = 1798.2 (7) Å3
Mr = 429.65Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 9.356 (2) ŵ = 1.33 mm1
b = 9.9295 (19) ÅT = 300 K
c = 19.357 (4) Å0.35 × 0.31 × 0.29 mm
β = 90.470 (7)°
Data collection top
Bruker SMART X2S
diffractometer
3229 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
2821 reflections with I > 2σ(I)
Tmin = 0.220, Tmax = 0.700Rint = 0.066
16537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.15Δρmax = 0.76 e Å3
3229 reflectionsΔρmin = 1.66 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.34165 (3)0.36794 (3)0.474015 (13)0.03692 (15)
Cl10.33208 (12)0.48747 (11)0.37305 (5)0.0569 (3)
Cl20.39048 (14)0.17595 (12)0.41289 (7)0.0699 (3)
N10.3512 (3)0.2777 (3)0.56775 (16)0.0421 (7)
N20.2902 (3)0.5254 (3)0.53575 (14)0.0362 (6)
C10.3923 (5)0.1504 (4)0.5816 (3)0.0610 (12)
H10.42140.09500.54560.073*
C20.3918 (6)0.1009 (5)0.6483 (3)0.0713 (14)
H20.42000.01260.65670.086*
C30.3506 (5)0.1803 (5)0.7016 (2)0.0627 (12)
H30.34990.14710.74650.075*
C40.3092 (4)0.3129 (5)0.6877 (2)0.0502 (9)
H40.28090.36970.72330.060*
C50.3110 (4)0.3580 (3)0.6206 (2)0.0384 (8)
C60.2750 (3)0.4970 (3)0.59986 (18)0.0371 (7)
C70.2723 (4)0.6643 (4)0.5106 (2)0.0444 (8)
H7A0.34370.68190.47570.053*
H7B0.28970.72590.54870.053*
C80.1262 (4)0.6928 (4)0.4804 (2)0.0546 (10)
H8A0.05520.69290.51660.066*
H8B0.10070.62380.44700.066*
C90.1307 (5)0.8321 (5)0.4448 (3)0.0647 (12)
H9A0.16600.89830.47750.078*
H9B0.19730.82840.40670.078*
C100.0122 (7)0.8767 (5)0.4179 (4)0.0789 (16)
H10A0.07790.88550.45610.095*
H10B0.05000.80900.38660.095*
C110.0016 (8)1.0109 (6)0.3802 (4)0.108 (2)
H11A0.02361.08040.41250.162*
H11B0.09211.03180.35900.162*
H11C0.07031.00500.34520.162*
C120.2242 (4)0.5925 (4)0.65285 (18)0.0410 (8)
C130.0778 (5)0.6087 (4)0.6635 (3)0.0566 (11)
H130.01240.56000.63710.068*
C140.0307 (6)0.6968 (6)0.7130 (3)0.0757 (15)
H140.06700.70710.71990.091*
C150.1245 (6)0.7695 (5)0.7522 (3)0.0753 (15)
H150.09060.82840.78560.090*
C160.2708 (6)0.7556 (5)0.7423 (3)0.0741 (14)
H160.33490.80530.76900.089*
C170.3202 (5)0.6678 (5)0.6928 (2)0.0594 (11)
H170.41800.65860.68590.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0399 (2)0.0360 (2)0.0348 (2)0.00347 (10)0.00391 (13)0.00320 (10)
Cl10.0754 (7)0.0628 (7)0.0324 (5)0.0177 (5)0.0037 (4)0.0013 (4)
Cl20.0953 (9)0.0484 (6)0.0663 (7)0.0068 (6)0.0090 (6)0.0190 (6)
N10.0440 (16)0.0373 (17)0.0449 (17)0.0043 (13)0.0014 (13)0.0046 (14)
N20.0374 (14)0.0363 (16)0.0346 (15)0.0036 (12)0.0098 (11)0.0014 (12)
C10.069 (3)0.045 (2)0.069 (3)0.020 (2)0.012 (2)0.013 (2)
C20.076 (3)0.058 (3)0.081 (4)0.023 (2)0.009 (3)0.031 (3)
C30.062 (3)0.071 (3)0.055 (3)0.007 (2)0.001 (2)0.030 (3)
C40.045 (2)0.064 (3)0.042 (2)0.0034 (19)0.0027 (16)0.011 (2)
C50.0338 (18)0.041 (2)0.040 (2)0.0002 (13)0.0046 (14)0.0037 (14)
C60.0349 (17)0.0372 (19)0.0389 (19)0.0013 (14)0.0088 (13)0.0023 (15)
C70.059 (2)0.0361 (19)0.038 (2)0.0048 (17)0.0084 (16)0.0021 (16)
C80.056 (2)0.050 (2)0.058 (2)0.014 (2)0.0080 (18)0.003 (2)
C90.068 (3)0.057 (3)0.069 (3)0.008 (2)0.018 (2)0.000 (2)
C100.080 (4)0.068 (4)0.088 (4)0.013 (2)0.027 (3)0.000 (3)
C110.136 (6)0.067 (4)0.120 (6)0.013 (4)0.052 (5)0.021 (4)
C120.048 (2)0.0407 (19)0.0342 (18)0.0035 (16)0.0037 (15)0.0009 (16)
C130.051 (2)0.059 (3)0.059 (3)0.0021 (19)0.004 (2)0.007 (2)
C140.074 (3)0.073 (3)0.081 (4)0.015 (3)0.028 (3)0.011 (3)
C150.107 (4)0.065 (3)0.054 (3)0.022 (3)0.018 (3)0.014 (2)
C160.099 (4)0.070 (3)0.054 (3)0.002 (3)0.008 (3)0.022 (2)
C170.055 (2)0.073 (3)0.050 (3)0.003 (2)0.0095 (19)0.019 (2)
Geometric parameters (Å, º) top
Pd1—N12.025 (3)C8—H8A0.9700
Pd1—N22.028 (3)C8—H8B0.9700
Pd1—Cl12.2876 (11)C9—C101.497 (7)
Pd1—Cl22.2917 (12)C9—H9A0.9700
N1—C11.347 (5)C9—H9B0.9700
N1—C51.353 (5)C10—C111.523 (8)
N2—C61.282 (5)C10—H10A0.9700
N2—C71.472 (5)C10—H10B0.9700
C1—C21.382 (7)C11—H11A0.9600
C1—H10.9300C11—H11B0.9600
C2—C31.358 (8)C11—H11C0.9600
C2—H20.9300C12—C131.395 (6)
C3—C41.398 (7)C12—C171.397 (6)
C3—H30.9300C13—C141.373 (7)
C4—C51.374 (5)C13—H130.9300
C4—H40.9300C14—C151.362 (8)
C5—C61.475 (5)C14—H140.9300
C6—C121.479 (5)C15—C161.390 (7)
C7—C81.510 (5)C15—H150.9300
C7—H7A0.9700C16—C171.380 (6)
C7—H7B0.9700C16—H160.9300
C8—C91.546 (6)C17—H170.9300
N1—Pd1—N279.76 (12)C7—C8—H8B110.1
N1—Pd1—Cl1175.01 (9)C9—C8—H8B110.1
N2—Pd1—Cl195.49 (8)H8A—C8—H8B108.4
N1—Pd1—Cl294.99 (9)C10—C9—C8113.1 (4)
N2—Pd1—Cl2174.12 (9)C10—C9—H9A109.0
Cl1—Pd1—Cl289.83 (4)C8—C9—H9A109.0
C1—N1—C5118.9 (4)C10—C9—H9B109.0
C1—N1—Pd1127.1 (3)C8—C9—H9B109.0
C5—N1—Pd1114.0 (2)H9A—C9—H9B107.8
C6—N2—C7120.9 (3)C9—C10—C11111.3 (5)
C6—N2—Pd1115.4 (2)C9—C10—H10A109.4
C7—N2—Pd1123.7 (2)C11—C10—H10A109.4
N1—C1—C2121.1 (4)C9—C10—H10B109.4
N1—C1—H1119.4C11—C10—H10B109.4
C2—C1—H1119.4H10A—C10—H10B108.0
C3—C2—C1120.5 (4)C10—C11—H11A109.5
C3—C2—H2119.8C10—C11—H11B109.5
C1—C2—H2119.8H11A—C11—H11B109.5
C2—C3—C4118.7 (4)C10—C11—H11C109.5
C2—C3—H3120.6H11A—C11—H11C109.5
C4—C3—H3120.6H11B—C11—H11C109.5
C5—C4—C3118.9 (4)C13—C12—C17119.0 (4)
C5—C4—H4120.6C13—C12—C6119.9 (3)
C3—C4—H4120.6C17—C12—C6121.2 (3)
N1—C5—C4121.9 (3)C14—C13—C12119.8 (4)
N1—C5—C6114.2 (3)C14—C13—H13120.1
C4—C5—C6123.9 (4)C12—C13—H13120.1
N2—C6—C5116.3 (3)C15—C14—C13121.1 (5)
N2—C6—C12124.7 (3)C15—C14—H14119.4
C5—C6—C12119.0 (3)C13—C14—H14119.5
N2—C7—C8113.8 (3)C14—C15—C16120.1 (4)
N2—C7—H7A108.8C14—C15—H15119.9
C8—C7—H7A108.8C16—C15—H15119.9
N2—C7—H7B108.8C17—C16—C15119.6 (5)
C8—C7—H7B108.8C17—C16—H16120.2
H7A—C7—H7B107.7C15—C16—H16120.2
C7—C8—C9108.2 (4)C16—C17—C12120.3 (4)
C7—C8—H8A110.1C16—C17—H17119.8
C9—C8—H8A110.1C12—C17—H17119.8
(Compound_4_CCDC) top
Crystal data top
C16H18Cl2N2PdZ = 2
Mr = 415.62F(000) = 416
Triclinic, P1Dx = 1.639 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5305 (11) ÅCell parameters from 4927 reflections
b = 9.6211 (14) Åθ = 2.5–25.2°
c = 10.9880 (16) ŵ = 1.41 mm1
α = 72.593 (4)°T = 300 K
β = 78.780 (5)°Block, orange
γ = 83.039 (4)°0.51 × 0.31 × 0.19 mm
V = 842.2 (2) Å3
Data collection top
Bruker SMART X2S
diffractometer
3017 independent reflections
Radiation source: micro-focus sealed tube2740 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.025
ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 109
Tmin = 0.533, Tmax = 0.775k = 1111
8425 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.45 w = 1/[σ2(Fo2) + (0.0494P)2]
where P = (Fo2 + 2Fc2)/3
3017 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
C16H18Cl2N2Pdγ = 83.039 (4)°
Mr = 415.62V = 842.2 (2) Å3
Triclinic, P1Z = 2
a = 8.5305 (11) ÅMo Kα radiation
b = 9.6211 (14) ŵ = 1.41 mm1
c = 10.9880 (16) ÅT = 300 K
α = 72.593 (4)°0.51 × 0.31 × 0.19 mm
β = 78.780 (5)°
Data collection top
Bruker SMART X2S
diffractometer
3017 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
2740 reflections with I > 2σ(I)
Tmin = 0.533, Tmax = 0.775Rint = 0.025
8425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.45Δρmax = 0.75 e Å3
3017 reflectionsΔρmin = 0.78 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.24607 (3)1.03943 (2)0.48489 (2)0.03525 (13)
Cl30.16891 (13)1.21022 (11)0.30576 (11)0.0561 (3)
Cl20.32131 (13)1.22359 (10)0.54955 (10)0.0539 (3)
N170.3073 (3)0.8747 (3)0.6379 (3)0.0321 (6)
N40.1933 (3)0.8650 (3)0.4348 (3)0.0360 (6)
C180.3699 (4)0.9003 (4)0.7444 (3)0.0376 (8)
H18A0.45200.96970.70830.045*
H18B0.41990.80940.79180.045*
C190.2416 (4)0.9583 (4)0.8387 (3)0.0387 (8)
H190.18471.04540.78980.046*
C200.1206 (4)0.8458 (4)0.9148 (4)0.0498 (9)
H20A0.06130.82610.85670.075*
H20B0.04830.88330.97800.075*
H20C0.17620.75720.95770.075*
C210.3272 (5)1.0017 (5)0.9319 (5)0.0676 (13)
H21A0.24921.03930.99190.101*
H21B0.39991.07520.88340.101*
H21C0.38570.91750.97860.101*
C100.2878 (4)0.7450 (4)0.6329 (3)0.0342 (7)
C110.3177 (4)0.6086 (4)0.7384 (3)0.0355 (7)
C120.1848 (4)0.5353 (4)0.8153 (4)0.0454 (9)
H120.08220.56660.79700.054*
C130.2090 (5)0.4146 (4)0.9198 (4)0.0574 (11)
H130.12130.36660.97280.069*
C140.3621 (6)0.3649 (4)0.9459 (4)0.0586 (11)
H140.37690.28491.01640.070*
C150.4912 (5)0.4346 (4)0.8671 (4)0.0562 (10)
H150.59380.39970.88330.067*
C160.4719 (4)0.5557 (4)0.7640 (4)0.0449 (9)
H160.56100.60210.71170.054*
C90.2284 (4)0.7344 (4)0.5188 (3)0.0362 (8)
C50.1371 (5)0.8662 (4)0.3301 (4)0.0483 (9)
H50.11250.95530.27230.058*
C60.1145 (5)0.7388 (5)0.3050 (4)0.0563 (11)
H60.07240.74320.23190.068*
C70.1532 (5)0.6060 (5)0.3863 (4)0.0520 (10)
H70.14140.51960.36850.062*
C80.2104 (4)0.6050 (4)0.4956 (4)0.0436 (9)
H80.23690.51670.55370.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03283 (19)0.02384 (18)0.0393 (2)0.00006 (12)0.00018 (12)0.00119 (12)
Cl30.0553 (6)0.0398 (5)0.0575 (6)0.0016 (4)0.0153 (5)0.0128 (4)
Cl20.0674 (7)0.0262 (4)0.0606 (6)0.0091 (4)0.0001 (5)0.0056 (4)
N170.0280 (14)0.0252 (14)0.0384 (15)0.0019 (11)0.0002 (11)0.0051 (12)
N40.0332 (15)0.0305 (15)0.0356 (16)0.0016 (12)0.0013 (12)0.0005 (12)
C180.0330 (17)0.0293 (17)0.050 (2)0.0022 (14)0.0102 (15)0.0085 (15)
C190.0396 (18)0.0304 (17)0.048 (2)0.0004 (15)0.0120 (16)0.0125 (15)
C200.053 (2)0.048 (2)0.047 (2)0.0089 (19)0.0008 (18)0.0153 (18)
C210.063 (3)0.070 (3)0.087 (3)0.003 (2)0.024 (3)0.042 (3)
C100.0315 (17)0.0277 (17)0.0368 (18)0.0016 (14)0.0019 (14)0.0041 (14)
C110.0430 (19)0.0239 (16)0.0359 (18)0.0031 (14)0.0043 (14)0.0043 (14)
C120.047 (2)0.0317 (18)0.051 (2)0.0071 (16)0.0054 (17)0.0027 (16)
C130.063 (3)0.037 (2)0.059 (3)0.016 (2)0.004 (2)0.0033 (19)
C140.088 (3)0.032 (2)0.047 (2)0.000 (2)0.016 (2)0.0043 (17)
C150.059 (3)0.041 (2)0.059 (3)0.0086 (19)0.019 (2)0.0002 (19)
C160.043 (2)0.0356 (19)0.047 (2)0.0017 (16)0.0035 (16)0.0026 (16)
C90.0308 (17)0.0328 (18)0.0372 (19)0.0011 (14)0.0010 (14)0.0039 (15)
C50.054 (2)0.048 (2)0.039 (2)0.0043 (19)0.0164 (18)0.0038 (17)
C60.062 (3)0.068 (3)0.043 (2)0.002 (2)0.0181 (19)0.018 (2)
C70.054 (2)0.050 (2)0.055 (2)0.0022 (19)0.0059 (19)0.022 (2)
C80.051 (2)0.0325 (19)0.046 (2)0.0021 (17)0.0040 (17)0.0119 (16)
Geometric parameters (Å, º) top
Pd1—N42.037 (3)C10—C111.502 (5)
Pd1—N172.039 (3)C11—C161.402 (5)
Pd1—Cl22.2940 (11)C11—C121.401 (5)
Pd1—Cl32.3052 (10)C12—C131.396 (6)
N17—C101.297 (4)C12—H120.9300
N17—C181.471 (4)C13—C141.389 (6)
N4—C51.326 (5)C13—H130.9300
N4—C91.358 (5)C14—C151.369 (6)
C18—C191.529 (5)C14—H140.9300
C18—H18A0.9700C15—C161.380 (5)
C18—H18B0.9700C15—H150.9300
C19—C201.527 (5)C16—H160.9300
C19—C211.542 (5)C9—C81.374 (5)
C19—H190.9800C5—C61.377 (6)
C20—H20A0.9600C5—H50.9300
C20—H20B0.9600C6—C71.367 (6)
C20—H20C0.9600C6—H60.9300
C21—H21A0.9600C7—C81.379 (5)
C21—H21B0.9600C7—H70.9300
C21—H21C0.9600C8—H80.9300
C10—C91.475 (5)
N4—Pd1—N1780.38 (11)N17—C10—C9117.2 (3)
N4—Pd1—Cl2175.33 (8)N17—C10—C11123.2 (3)
N17—Pd1—Cl295.56 (8)C9—C10—C11119.5 (3)
N4—Pd1—Cl394.57 (9)C16—C11—C12119.7 (3)
N17—Pd1—Cl3174.93 (8)C16—C11—C10122.4 (3)
Cl2—Pd1—Cl389.50 (4)C12—C11—C10117.9 (3)
C10—N17—C18122.7 (3)C13—C12—C11118.8 (4)
C10—N17—Pd1114.3 (2)C13—C12—H12120.6
C18—N17—Pd1123.0 (2)C11—C12—H12120.6
C5—N4—C9118.6 (3)C14—C13—C12121.0 (4)
C5—N4—Pd1127.7 (3)C14—C13—H13119.5
C9—N4—Pd1113.6 (2)C12—C13—H13119.5
N17—C18—C19113.6 (3)C15—C14—C13119.4 (4)
N17—C18—H18A108.9C15—C14—H14120.3
C19—C18—H18A108.9C13—C14—H14120.3
N17—C18—H18B108.9C14—C15—C16121.3 (4)
C19—C18—H18B108.9C14—C15—H15119.4
H18A—C18—H18B107.7C16—C15—H15119.4
C20—C19—C18112.2 (3)C15—C16—C11119.7 (4)
C20—C19—C21110.1 (3)C15—C16—H16120.1
C18—C19—C21107.8 (3)C11—C16—H16120.1
C20—C19—H19108.9N4—C9—C8121.4 (3)
C18—C19—H19108.9N4—C9—C10114.4 (3)
C21—C19—H19108.9C8—C9—C10124.2 (3)
C19—C20—H20A109.5N4—C5—C6121.6 (4)
C19—C20—H20B109.5N4—C5—H5119.2
H20A—C20—H20B109.5C6—C5—H5119.2
C19—C20—H20C109.5C7—C6—C5120.7 (4)
H20A—C20—H20C109.5C7—C6—H6119.6
H20B—C20—H20C109.5C5—C6—H6119.6
C19—C21—H21A109.5C6—C7—C8117.5 (4)
C19—C21—H21B109.5C6—C7—H7121.2
H21A—C21—H21B109.5C8—C7—H7121.2
C19—C21—H21C109.5C9—C8—C7120.0 (4)
H21A—C21—H21C109.5C9—C8—H8120.0
H21B—C21—H21C109.5C7—C8—H8120.0
(Compound_4_X2S) top
Crystal data top
C16H18Cl2N2PdZ = 2
Mr = 415.62F(000) = 416
Triclinic, P1Dx = 1.639 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5305 (11) ÅCell parameters from 4927 reflections
b = 9.6211 (14) Åθ = 2.5–25.2°
c = 10.9880 (16) ŵ = 1.41 mm1
α = 72.593 (4)°T = 300 K
β = 78.780 (5)°Block, orange
γ = 83.039 (4)°0.51 × 0.31 × 0.19 mm
V = 842.2 (2) Å3
Data collection top
Bruker SMART X2S
diffractometer
3017 independent reflections
Radiation source: micro-focus sealed tube2740 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.025
ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 109
Tmin = 0.533, Tmax = 0.775k = 1111
8425 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.053P)2 + 0.1355P]
where P = (Fo2 + 2Fc2)/3
3017 reflections(Δ/σ)max = 0.011
192 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
C16H18Cl2N2Pdγ = 83.039 (4)°
Mr = 415.62V = 842.2 (2) Å3
Triclinic, P1Z = 2
a = 8.5305 (11) ÅMo Kα radiation
b = 9.6211 (14) ŵ = 1.41 mm1
c = 10.9880 (16) ÅT = 300 K
α = 72.593 (4)°0.51 × 0.31 × 0.19 mm
β = 78.780 (5)°
Data collection top
Bruker SMART X2S
diffractometer
3017 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
2740 reflections with I > 2σ(I)
Tmin = 0.533, Tmax = 0.775Rint = 0.025
8425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.23Δρmax = 0.66 e Å3
3017 reflectionsΔρmin = 0.78 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.24612 (3)1.03943 (2)0.48490 (2)0.03536 (12)
Cl10.32147 (13)1.22355 (9)0.54961 (10)0.0541 (3)
Cl20.16898 (12)1.21023 (10)0.30576 (10)0.0561 (3)
N10.3076 (3)0.8746 (3)0.6379 (3)0.0322 (6)
N20.1938 (3)0.8650 (3)0.4349 (3)0.0363 (6)
C10.3700 (4)0.9005 (3)0.7440 (3)0.0375 (7)
H1A0.45180.97020.70770.045*
H1B0.42030.80980.79130.045*
C20.2419 (4)0.9582 (4)0.8385 (3)0.0388 (7)
H20.18481.04520.78950.047*
C30.3271 (5)1.0024 (5)0.9309 (5)0.0674 (12)
H3A0.24901.03890.99150.101*
H3B0.39841.07700.88210.101*
H3C0.38720.91880.97680.101*
C40.1210 (4)0.8459 (4)0.9145 (4)0.0495 (9)
H4A0.06250.82550.85620.074*
H4B0.04800.88380.97710.074*
H4C0.17650.75770.95810.074*
C50.2885 (4)0.7449 (3)0.6331 (3)0.0339 (7)
C60.2293 (4)0.7342 (4)0.5192 (3)0.0365 (7)
C70.1374 (4)0.8661 (4)0.3301 (3)0.0491 (9)
H70.11280.95520.27230.059*
C80.1145 (5)0.7389 (5)0.3047 (4)0.0570 (10)
H80.07200.74310.23180.068*
C90.1541 (5)0.6058 (4)0.3866 (4)0.0522 (9)
H90.14250.51930.36890.063*
C100.2115 (4)0.6045 (4)0.4961 (3)0.0435 (8)
H100.23820.51620.55410.052*
C110.3179 (4)0.6085 (3)0.7383 (3)0.0354 (7)
C120.1856 (4)0.5352 (4)0.8152 (4)0.0456 (8)
H120.08300.56660.79700.055*
C130.2091 (5)0.4148 (4)0.9195 (4)0.0573 (10)
H130.12120.36710.97230.069*
C140.3615 (5)0.3650 (4)0.9456 (4)0.0581 (10)
H140.37610.28501.01600.070*
C150.4907 (5)0.4347 (4)0.8668 (4)0.0562 (10)
H150.59330.39980.88300.067*
C160.4713 (4)0.5558 (4)0.7635 (3)0.0451 (8)
H160.56030.60200.71100.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03294 (17)0.02393 (16)0.03945 (18)0.00005 (11)0.00020 (11)0.00114 (11)
Cl10.0677 (6)0.0262 (4)0.0608 (6)0.0091 (4)0.0001 (5)0.0057 (4)
Cl20.0551 (6)0.0400 (5)0.0576 (6)0.0016 (4)0.0152 (4)0.0127 (4)
N10.0285 (13)0.0254 (13)0.0381 (14)0.0016 (10)0.0011 (11)0.0049 (11)
N20.0338 (14)0.0305 (14)0.0359 (15)0.0016 (11)0.0013 (11)0.0007 (11)
C10.0328 (16)0.0295 (16)0.0499 (19)0.0017 (13)0.0106 (14)0.0084 (14)
C20.0399 (17)0.0305 (16)0.0482 (19)0.0004 (14)0.0125 (15)0.0124 (14)
C30.063 (3)0.070 (3)0.087 (3)0.002 (2)0.024 (2)0.043 (3)
C40.053 (2)0.048 (2)0.046 (2)0.0086 (17)0.0001 (16)0.0150 (17)
C50.0311 (15)0.0279 (15)0.0364 (17)0.0015 (13)0.0005 (13)0.0037 (13)
C60.0318 (16)0.0329 (17)0.0375 (17)0.0010 (13)0.0008 (13)0.0042 (14)
C70.056 (2)0.048 (2)0.039 (2)0.0043 (18)0.0158 (17)0.0039 (16)
C80.063 (2)0.068 (3)0.044 (2)0.003 (2)0.0174 (18)0.018 (2)
C90.055 (2)0.050 (2)0.055 (2)0.0029 (18)0.0053 (18)0.0221 (18)
C100.051 (2)0.0329 (17)0.045 (2)0.0022 (15)0.0042 (16)0.0119 (15)
C110.0423 (18)0.0241 (15)0.0364 (17)0.0027 (13)0.0047 (14)0.0043 (13)
C120.0462 (19)0.0321 (17)0.052 (2)0.0065 (15)0.0060 (16)0.0028 (15)
C130.064 (2)0.037 (2)0.058 (2)0.0154 (19)0.0031 (19)0.0032 (17)
C140.087 (3)0.0318 (18)0.046 (2)0.001 (2)0.016 (2)0.0045 (16)
C150.060 (2)0.042 (2)0.059 (2)0.0085 (18)0.0198 (19)0.0005 (18)
C160.0433 (19)0.0354 (18)0.048 (2)0.0017 (15)0.0036 (15)0.0022 (15)
Geometric parameters (Å, º) top
Pd1—N22.036 (3)C5—C111.499 (4)
Pd1—N12.040 (3)C6—C101.377 (5)
Pd1—Cl12.2944 (10)C7—C81.378 (6)
Pd1—Cl22.3054 (10)C7—H70.9300
N1—C51.296 (4)C8—C91.374 (6)
N1—C11.466 (4)C8—H80.9300
N2—C71.328 (4)C9—C101.381 (5)
N2—C61.361 (4)C9—H90.9300
C1—C21.529 (4)C10—H100.9300
C1—H1A0.9700C11—C121.397 (4)
C1—H1B0.9700C11—C161.394 (5)
C2—C41.524 (5)C12—C131.391 (5)
C2—C31.536 (5)C12—H120.9300
C2—H20.9800C13—C141.384 (6)
C3—H3A0.9600C13—H130.9300
C3—H3B0.9600C14—C151.369 (6)
C3—H3C0.9600C14—H140.9300
C4—H4A0.9600C15—C161.381 (5)
C4—H4B0.9600C15—H150.9300
C4—H4C0.9600C16—H160.9300
C5—C61.472 (5)
N2—Pd1—N180.34 (11)N1—C5—C6117.1 (3)
N2—Pd1—Cl1175.21 (8)N1—C5—C11123.5 (3)
N1—Pd1—Cl195.52 (8)C6—C5—C11119.3 (3)
N2—Pd1—Cl294.63 (8)N2—C6—C10121.3 (3)
N1—Pd1—Cl2174.96 (7)N2—C6—C5114.5 (3)
Cl1—Pd1—Cl289.52 (4)C10—C6—C5124.2 (3)
C5—N1—C1122.7 (3)N2—C7—C8121.8 (3)
C5—N1—Pd1114.5 (2)N2—C7—H7119.1
C1—N1—Pd1122.9 (2)C8—C7—H7119.1
C7—N2—C6118.8 (3)C9—C8—C7120.3 (4)
C7—N2—Pd1127.7 (2)C9—C8—H8119.9
C6—N2—Pd1113.4 (2)C7—C8—H8119.9
N1—C1—C2113.7 (3)C8—C9—C10117.9 (4)
N1—C1—H1A108.8C8—C9—H9121.0
C2—C1—H1A108.8C10—C9—H9121.0
N1—C1—H1B108.8C6—C10—C9119.9 (3)
C2—C1—H1B108.8C6—C10—H10120.1
H1A—C1—H1B107.7C9—C10—H10120.1
C4—C2—C1112.3 (3)C12—C11—C16119.5 (3)
C4—C2—C3110.4 (3)C12—C11—C5118.2 (3)
C1—C2—C3107.9 (3)C16—C11—C5122.3 (3)
C4—C2—H2108.7C13—C12—C11119.2 (3)
C1—C2—H2108.7C13—C12—H12120.4
C3—C2—H2108.7C11—C12—H12120.4
C2—C3—H3A109.5C14—C13—C12120.9 (3)
C2—C3—H3B109.5C14—C13—H13119.6
H3A—C3—H3B109.5C12—C13—H13119.6
C2—C3—H3C109.5C15—C14—C13119.4 (3)
H3A—C3—H3C109.5C15—C14—H14120.3
H3B—C3—H3C109.5C13—C14—H14120.3
C2—C4—H4A109.5C14—C15—C16121.2 (4)
C2—C4—H4B109.5C14—C15—H15119.4
H4A—C4—H4B109.5C16—C15—H15119.4
C2—C4—H4C109.5C15—C16—C11119.8 (3)
H4A—C4—H4C109.5C15—C16—H16120.1
H4B—C4—H4C109.5C11—C16—H16120.1
(Compound_5_CCDC) top
Crystal data top
C13H10OSF(000) = 448
Mr = 214.27Dx = 1.310 Mg m3
Monoclinic, P121/n1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2019 reflections
a = 8.007 (2) Åθ = 2.8–25.1°
b = 16.958 (5) ŵ = 0.27 mm1
c = 8.031 (2) ÅT = 300 K
β = 95.097 (10)°Block, colorless
V = 1086.1 (5) Å30.31 × 0.31 × 0.27 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
1910 independent reflections
Radiation source: micro-focus sealed tube1366 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.049
ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 99
Tmin = 0.922, Tmax = 0.932k = 2020
6685 measured reflectionsl = 97
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0875P)2]
where P = (Fo2 + 2Fc2)/3
1910 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H10OSV = 1086.1 (5) Å3
Mr = 214.27Z = 4
Monoclinic, P121/n1Mo Kα radiation
a = 8.007 (2) ŵ = 0.27 mm1
b = 16.958 (5) ÅT = 300 K
c = 8.031 (2) Å0.31 × 0.31 × 0.27 mm
β = 95.097 (10)°
Data collection top
Bruker SMART X2S
diffractometer
1910 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
1366 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.932Rint = 0.049
6685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
1910 reflectionsΔρmin = 0.25 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.95308 (8)0.89514 (5)0.33211 (9)0.0507 (3)
O91.1091 (3)0.78594 (14)0.5555 (3)0.0697 (7)
C130.7126 (4)1.0597 (2)0.0634 (4)0.0657 (9)
H130.66731.09360.14630.079*
C120.7805 (4)1.0894 (2)0.0841 (4)0.0681 (9)
H120.78021.14350.10260.082*
C110.8499 (4)1.03928 (19)0.2066 (4)0.0580 (8)
H110.89701.05990.30740.070*
C100.8500 (3)0.95873 (17)0.1806 (3)0.0440 (6)
C20.7876 (3)0.86483 (16)0.4498 (3)0.0406 (6)
C30.8173 (3)0.80788 (15)0.5752 (3)0.0452 (7)
C40.6855 (4)0.78208 (19)0.6636 (4)0.0604 (8)
H40.70580.74390.74600.073*
C50.5271 (4)0.8115 (2)0.6320 (4)0.0660 (9)
H50.44010.79290.69060.079*
C140.7104 (4)0.9800 (3)0.0911 (4)0.0735 (10)
H140.66270.96020.19240.088*
C150.7787 (4)0.9287 (2)0.0311 (4)0.0624 (8)
H150.77660.87460.01250.075*
C70.6253 (3)0.89590 (18)0.4229 (4)0.0505 (7)
H70.60290.93530.34350.061*
C60.4983 (4)0.8686 (2)0.5132 (4)0.0608 (8)
H60.39110.88950.49260.073*
C80.9816 (4)0.77186 (18)0.6176 (4)0.0604 (8)
H80.98790.73400.70160.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0457 (4)0.0526 (5)0.0545 (5)0.0039 (3)0.0086 (3)0.0098 (3)
O90.0586 (13)0.0641 (15)0.0862 (16)0.0103 (11)0.0048 (12)0.0112 (12)
C130.0630 (19)0.073 (3)0.060 (2)0.0035 (17)0.0011 (16)0.0179 (17)
C120.079 (2)0.052 (2)0.071 (2)0.0047 (16)0.0055 (18)0.0105 (16)
C110.0697 (18)0.049 (2)0.0536 (17)0.0013 (15)0.0049 (15)0.0019 (14)
C100.0422 (14)0.0471 (18)0.0435 (14)0.0019 (12)0.0077 (11)0.0019 (12)
C20.0440 (14)0.0361 (15)0.0416 (14)0.0028 (11)0.0023 (11)0.0082 (11)
C30.0556 (16)0.0326 (15)0.0472 (15)0.0039 (12)0.0041 (13)0.0021 (12)
C40.070 (2)0.0509 (19)0.0616 (19)0.0069 (15)0.0128 (16)0.0056 (15)
C50.065 (2)0.069 (2)0.067 (2)0.0158 (17)0.0248 (16)0.0006 (17)
C140.082 (2)0.091 (3)0.0454 (17)0.003 (2)0.0073 (16)0.0006 (18)
C150.078 (2)0.057 (2)0.0519 (18)0.0019 (16)0.0047 (16)0.0039 (15)
C70.0486 (15)0.0544 (19)0.0481 (16)0.0008 (13)0.0017 (13)0.0016 (13)
C60.0449 (16)0.075 (2)0.0637 (19)0.0020 (15)0.0085 (14)0.0059 (17)
C80.069 (2)0.0398 (18)0.072 (2)0.0017 (15)0.0011 (17)0.0125 (15)
Geometric parameters (Å, º) top
S1—C21.771 (3)C3—C41.394 (4)
S1—C101.773 (3)C3—C81.463 (4)
O9—C81.199 (4)C4—C51.365 (5)
C13—C121.355 (4)C4—H40.9300
C13—C141.369 (5)C5—C61.365 (5)
C13—H130.9300C5—H50.9300
C12—C111.379 (4)C14—C151.387 (5)
C12—H120.9300C14—H140.9300
C11—C101.382 (4)C15—H150.9300
C11—H110.9300C7—C61.380 (4)
C10—C151.380 (4)C7—H70.9300
C2—C31.400 (4)C6—H60.9300
C2—C71.401 (4)C8—H80.9300
C2—S1—C10102.59 (12)C5—C4—H4119.2
C12—C13—C14120.5 (3)C3—C4—H4119.2
C12—C13—H13119.7C6—C5—C4119.1 (3)
C14—C13—H13119.7C6—C5—H5120.5
C13—C12—C11119.9 (3)C4—C5—H5120.5
C13—C12—H12120.0C13—C14—C15120.3 (3)
C11—C12—H12120.0C13—C14—H14119.8
C12—C11—C10120.5 (3)C15—C14—H14119.8
C12—C11—H11119.8C10—C15—C14119.4 (3)
C10—C11—H11119.8C10—C15—H15120.3
C15—C10—C11119.3 (3)C14—C15—H15120.3
C15—C10—S1120.3 (2)C6—C7—C2120.6 (3)
C11—C10—S1120.3 (2)C6—C7—H7119.7
C3—C2—C7117.8 (3)C2—C7—H7119.7
C3—C2—S1119.8 (2)C5—C6—C7121.2 (3)
C7—C2—S1122.4 (2)C5—C6—H6119.4
C4—C3—C2119.6 (3)C7—C6—H6119.4
C4—C3—C8117.2 (3)O9—C8—C3127.0 (3)
C2—C3—C8123.2 (3)O9—C8—H8116.5
C5—C4—C3121.6 (3)C3—C8—H8116.5
(Compound_5_X2S) top
Crystal data top
C13H10OSF(000) = 448
Mr = 214.27Dx = 1.310 Mg m3
Monoclinic, P121/n1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2019 reflections
a = 8.007 (2) Åθ = 2.8–25.1°
b = 16.958 (5) ŵ = 0.27 mm1
c = 8.031 (2) ÅT = 300 K
β = 95.097 (10)°Block, colorless
V = 1086.1 (5) Å30.31 × 0.31 × 0.27 mm
Z = 4
Data collection top
Radiation source: fine-focus sealed tube1366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
θmax = 25.1°, θmin = 2.4°
Tmin = 0.922, Tmax = 0.932h = 99
6685 measured reflectionsk = 2020
1910 independent reflectionsl = 97
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0904P)2]
where P = (Fo2 + 2Fc2)/3
1910 reflections(Δ/σ)max = 0.013
136 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H10OSV = 1086.1 (5) Å3
Mr = 214.27Z = 4
Monoclinic, P121/n1Mo Kα radiation
a = 8.007 (2) ŵ = 0.27 mm1
b = 16.958 (5) ÅT = 300 K
c = 8.031 (2) Å0.31 × 0.31 × 0.27 mm
β = 95.097 (10)°
Data collection top
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
1910 independent reflections
Tmin = 0.922, Tmax = 0.9321366 reflections with I > 2σ(I)
6685 measured reflectionsRint = 0.049
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
1910 reflectionsΔρmin = 0.26 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04691 (8)0.10486 (5)0.66790 (9)0.0507 (3)
O10.1091 (3)0.21406 (14)0.4445 (3)0.0697 (7)
C10.2874 (4)0.0596 (2)1.0634 (4)0.0657 (9)
H10.33270.09361.14640.079*
C20.2195 (4)0.0894 (2)0.9159 (4)0.0681 (9)
H20.21980.14350.89740.082*
C30.1501 (4)0.03928 (19)0.7934 (4)0.0580 (8)
H30.10300.05980.69260.070*
C40.1500 (3)0.04127 (17)0.8194 (3)0.0441 (6)
C50.2124 (3)0.13516 (16)0.5502 (3)0.0407 (6)
C60.1827 (3)0.19211 (15)0.4248 (3)0.0452 (7)
C70.0184 (4)0.22814 (18)0.3825 (4)0.0604 (8)
H70.01210.26600.29840.072*
C80.2213 (4)0.0713 (2)0.9689 (4)0.0624 (8)
H80.22340.12540.98750.075*
C90.2897 (4)0.0200 (3)1.0912 (4)0.0734 (10)
H90.33730.03981.19240.088*
C100.3145 (4)0.21791 (19)0.3364 (4)0.0604 (8)
H100.29420.25610.25400.073*
C110.4729 (4)0.1885 (2)0.3680 (4)0.0660 (9)
H110.55990.20710.30940.079*
C120.5017 (4)0.1314 (2)0.4868 (4)0.0609 (8)
H120.60890.11040.50740.073*
C130.3747 (3)0.10408 (18)0.5771 (4)0.0505 (7)
H130.39710.06470.65650.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0457 (4)0.0526 (5)0.0545 (5)0.0039 (3)0.0086 (3)0.0098 (3)
O10.0586 (13)0.0641 (15)0.0862 (16)0.0104 (11)0.0049 (12)0.0112 (12)
C10.0630 (19)0.073 (3)0.060 (2)0.0035 (17)0.0011 (16)0.0179 (17)
C20.079 (2)0.052 (2)0.071 (2)0.0046 (16)0.0055 (18)0.0105 (16)
C30.0697 (18)0.049 (2)0.0536 (17)0.0012 (15)0.0049 (15)0.0019 (14)
C40.0423 (14)0.0471 (18)0.0435 (14)0.0019 (12)0.0077 (11)0.0019 (12)
C50.0440 (14)0.0361 (15)0.0416 (14)0.0028 (11)0.0023 (11)0.0082 (11)
C60.0556 (16)0.0326 (15)0.0472 (15)0.0039 (12)0.0041 (13)0.0021 (12)
C70.069 (2)0.0398 (18)0.072 (2)0.0017 (15)0.0011 (17)0.0125 (15)
C80.078 (2)0.057 (2)0.0519 (18)0.0019 (16)0.0047 (16)0.0039 (15)
C90.082 (2)0.091 (3)0.0455 (17)0.003 (2)0.0073 (16)0.0005 (18)
C100.070 (2)0.0510 (19)0.0616 (19)0.0070 (15)0.0129 (16)0.0056 (15)
C110.065 (2)0.069 (2)0.067 (2)0.0159 (17)0.0248 (16)0.0006 (17)
C120.0449 (16)0.075 (2)0.0637 (19)0.0020 (15)0.0085 (14)0.0059 (17)
C130.0486 (15)0.0544 (19)0.0481 (16)0.0008 (13)0.0018 (13)0.0016 (13)
Geometric parameters (Å, º) top
S1—C51.771 (3)C6—C101.394 (4)
S1—C41.773 (3)C6—C71.463 (4)
O1—C71.199 (4)C7—H70.9300
C1—C21.355 (4)C8—C91.387 (5)
C1—C91.368 (5)C8—H80.9300
C1—H10.9300C9—H90.9300
C2—C31.379 (4)C10—C111.365 (5)
C2—H20.9300C10—H100.9300
C3—C41.382 (4)C11—C121.365 (5)
C3—H30.9300C11—H110.9300
C4—C81.380 (4)C12—C131.380 (4)
C5—C61.400 (4)C12—H120.9300
C5—C131.401 (4)C13—H130.9300
C5—S1—C4102.59 (12)O1—C7—H7116.5
C2—C1—C9120.5 (3)C6—C7—H7116.5
C2—C1—H1119.7C4—C8—C9119.4 (3)
C9—C1—H1119.7C4—C8—H8120.3
C1—C2—C3119.9 (3)C9—C8—H8120.3
C1—C2—H2120.0C1—C9—C8120.3 (3)
C3—C2—H2120.0C1—C9—H9119.9
C2—C3—C4120.4 (3)C8—C9—H9119.9
C2—C3—H3119.8C11—C10—C6121.6 (3)
C4—C3—H3119.8C11—C10—H10119.2
C8—C4—C3119.3 (3)C6—C10—H10119.2
C8—C4—S1120.3 (2)C12—C11—C10119.1 (3)
C3—C4—S1120.3 (2)C12—C11—H11120.5
C6—C5—C13117.8 (3)C10—C11—H11120.5
C6—C5—S1119.8 (2)C11—C12—C13121.2 (3)
C13—C5—S1122.4 (2)C11—C12—H12119.4
C10—C6—C5119.6 (3)C13—C12—H12119.4
C10—C6—C7117.2 (3)C12—C13—C5120.6 (3)
C5—C6—C7123.2 (3)C12—C13—H13119.7
O1—C7—C6127.0 (3)C5—C13—H13119.7
(Compound_6_CCDC) top
Crystal data top
C12H16O3F(000) = 448
Mr = 208.25Dx = 1.238 Mg m3
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1463 reflections
a = 8.894 (4) Åθ = 2.5–21.9°
b = 16.220 (8) ŵ = 0.09 mm1
c = 7.742 (3) ÅT = 300 K
β = 90.214 (14)°Block, colorless
V = 1116.9 (9) Å30.44 × 0.38 × 0.27 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
1944 independent reflections
Radiation source: micro-focus sealed tube1285 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.043
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 109
Tmin = 0.962, Tmax = 0.977k = 1919
7217 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0956P)2]
where P = (Fo2 + 2Fc2)/3
1944 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C12H16O3V = 1116.9 (9) Å3
Mr = 208.25Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 8.894 (4) ŵ = 0.09 mm1
b = 16.220 (8) ÅT = 300 K
c = 7.742 (3) Å0.44 × 0.38 × 0.27 mm
β = 90.214 (14)°
Data collection top
Bruker SMART X2S
diffractometer
1944 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
1285 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.977Rint = 0.043
7217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
1944 reflectionsΔρmin = 0.33 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O100.27549 (17)0.40331 (10)0.09433 (17)0.0413 (5)
O90.1882 (2)0.50089 (10)0.39245 (19)0.0577 (6)
H90.17550.46520.46610.087*
O140.18947 (17)0.36544 (10)0.36779 (17)0.0432 (5)
C130.3372 (3)0.26728 (15)0.2005 (3)0.0506 (7)
H13A0.34970.23520.30370.076*
H13C0.42660.26350.13170.076*
H13B0.25310.24660.13560.076*
C110.3092 (2)0.35671 (14)0.2484 (3)0.0396 (6)
C40.1317 (2)0.39187 (13)0.0277 (3)0.0351 (6)
C30.1055 (2)0.42109 (13)0.1399 (3)0.0369 (6)
C20.0379 (3)0.41084 (15)0.2091 (3)0.0451 (6)
H20.05720.43010.32010.054*
C10.1536 (3)0.37279 (15)0.1182 (3)0.0478 (6)
C70.3093 (3)0.3633 (2)0.1979 (4)0.0766 (9)
H7A0.34910.31000.16940.115*
H7B0.30250.36860.32110.115*
H7C0.37450.40540.15340.115*
C120.4460 (3)0.39724 (18)0.3284 (3)0.0576 (7)
H12C0.42290.45350.35630.086*
H12A0.52780.39570.24800.086*
H12B0.47390.36820.43170.086*
C50.0182 (2)0.35579 (14)0.1236 (3)0.0369 (6)
C60.1231 (2)0.34571 (15)0.0476 (3)0.0448 (6)
H60.19890.32010.11020.054*
C80.2320 (3)0.46348 (15)0.2347 (3)0.0442 (6)
H8A0.27480.50540.16000.053*
H8B0.31000.42330.25830.053*
C150.0497 (3)0.33104 (16)0.3084 (3)0.0467 (6)
H15B0.03140.35010.38160.056*
H15A0.05390.27140.31640.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O100.0397 (9)0.0478 (10)0.0365 (9)0.0064 (7)0.0044 (7)0.0084 (7)
O90.0938 (15)0.0440 (11)0.0353 (9)0.0017 (10)0.0003 (9)0.0077 (7)
O140.0495 (10)0.0484 (10)0.0316 (8)0.0030 (8)0.0003 (7)0.0042 (7)
C130.0579 (16)0.0507 (15)0.0430 (14)0.0106 (12)0.0036 (12)0.0000 (11)
C110.0427 (13)0.0462 (14)0.0300 (12)0.0007 (11)0.0036 (10)0.0033 (10)
C40.0365 (13)0.0353 (12)0.0336 (12)0.0022 (10)0.0030 (10)0.0018 (9)
C30.0452 (14)0.0325 (12)0.0328 (12)0.0023 (10)0.0015 (10)0.0007 (9)
C20.0541 (16)0.0434 (14)0.0376 (13)0.0106 (11)0.0090 (12)0.0018 (10)
C10.0420 (15)0.0510 (15)0.0504 (15)0.0045 (12)0.0101 (12)0.0101 (12)
C70.0491 (17)0.098 (3)0.082 (2)0.0007 (17)0.0237 (15)0.0046 (18)
C120.0544 (16)0.0677 (18)0.0508 (15)0.0096 (14)0.0127 (12)0.0023 (13)
C50.0405 (13)0.0377 (13)0.0323 (12)0.0021 (10)0.0023 (10)0.0039 (9)
C60.0378 (13)0.0481 (14)0.0485 (15)0.0028 (11)0.0034 (11)0.0044 (11)
C80.0571 (16)0.0404 (14)0.0351 (13)0.0025 (11)0.0009 (11)0.0043 (10)
C150.0471 (15)0.0531 (15)0.0399 (14)0.0070 (12)0.0051 (11)0.0036 (11)
Geometric parameters (Å, º) top
O10—C41.390 (3)C2—H20.9300
O10—C111.443 (3)C1—C61.383 (3)
O9—C81.417 (3)C1—C71.522 (3)
O9—H90.8200C7—H7A0.9600
O14—C111.420 (3)C7—H7B0.9600
O14—C151.437 (3)C7—H7C0.9600
C13—C111.518 (3)C12—H12C0.9600
C13—H13A0.9600C12—H12A0.9600
C13—H13C0.9600C12—H12B0.9600
C13—H13B0.9600C5—C61.395 (3)
C11—C121.513 (3)C5—C151.511 (3)
C4—C51.385 (3)C6—H60.9300
C4—C31.400 (3)C8—H8A0.9700
C3—C21.392 (3)C8—H8B0.9700
C3—C81.511 (3)C15—H15B0.9700
C2—C11.393 (3)C15—H15A0.9700
C4—O10—C11115.15 (16)H7A—C7—H7B109.5
C8—O9—H9109.5C1—C7—H7C109.5
C11—O14—C15113.77 (16)H7A—C7—H7C109.5
C11—C13—H13A109.5H7B—C7—H7C109.5
C11—C13—H13C109.5C11—C12—H12C109.5
H13A—C13—H13C109.5C11—C12—H12A109.5
C11—C13—H13B109.5H12C—C12—H12A109.5
H13A—C13—H13B109.5C11—C12—H12B109.5
H13C—C13—H13B109.5H12C—C12—H12B109.5
O14—C11—O10109.39 (17)H12A—C12—H12B109.5
O14—C11—C12107.08 (18)C4—C5—C6118.7 (2)
O10—C11—C12105.97 (18)C4—C5—C15119.1 (2)
O14—C11—C13112.25 (19)C6—C5—C15122.1 (2)
O10—C11—C13109.41 (17)C1—C6—C5121.8 (2)
C12—C11—C13112.5 (2)C1—C6—H6119.1
C5—C4—O10121.95 (19)C5—C6—H6119.1
C5—C4—C3121.4 (2)O9—C8—C3114.3 (2)
O10—C4—C3116.65 (19)O9—C8—H8A108.7
C2—C3—C4117.7 (2)C3—C8—H8A108.7
C2—C3—C8123.4 (2)O9—C8—H8B108.7
C4—C3—C8118.88 (19)C3—C8—H8B108.7
C3—C2—C1122.4 (2)H8A—C8—H8B107.6
C3—C2—H2118.8O14—C15—C5110.92 (18)
C1—C2—H2118.8O14—C15—H15B109.5
C6—C1—C2117.8 (2)C5—C15—H15B109.5
C6—C1—C7121.3 (2)O14—C15—H15A109.5
C2—C1—C7120.8 (2)C5—C15—H15A109.5
C1—C7—H7A109.5H15B—C15—H15A108.0
C1—C7—H7B109.5
(Compound_6_X2S) top
Crystal data top
C12H16O3F(000) = 448
Mr = 208.25Dx = 1.238 Mg m3
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1463 reflections
a = 8.894 (4) Åθ = 2.5–21.9°
b = 16.220 (8) ŵ = 0.09 mm1
c = 7.742 (3) ÅT = 300 K
β = 90.214 (14)°Block, colorless
V = 1116.9 (9) Å30.44 × 0.38 × 0.27 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
1944 independent reflections
Radiation source: micro-focus sealed tube1285 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.043
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 109
Tmin = 0.848, Tmax = 0.977k = 1919
7217 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1061P)2]
where P = (Fo2 + 2Fc2)/3
1944 reflections(Δ/σ)max = 6.481
140 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C12H16O3V = 1116.9 (9) Å3
Mr = 208.25Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 8.894 (4) ŵ = 0.09 mm1
b = 16.220 (8) ÅT = 300 K
c = 7.742 (3) Å0.44 × 0.38 × 0.27 mm
β = 90.214 (14)°
Data collection top
Bruker SMART X2S
diffractometer
1944 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
1285 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.977Rint = 0.043
7217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.01(Δ/σ)max = 6.481
1944 reflectionsΔρmax = 0.31 e Å3
140 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27547 (18)0.40331 (10)0.09437 (18)0.0415 (5)
O20.1881 (2)0.50078 (10)0.3929 (2)0.0578 (6)
H20.17700.46510.46680.087*
O30.18947 (18)0.36545 (10)0.36778 (19)0.0433 (5)
C10.3372 (3)0.26728 (16)0.2005 (3)0.0507 (7)
H1A0.34990.23520.30370.076*
H1B0.42650.26350.13160.076*
H1C0.25310.24650.13580.076*
C20.3092 (3)0.35675 (15)0.2484 (3)0.0397 (6)
C30.1317 (3)0.39191 (14)0.0278 (3)0.0353 (6)
C40.1054 (3)0.42110 (14)0.1399 (3)0.0370 (6)
C50.0379 (3)0.41084 (16)0.2091 (3)0.0453 (7)
H50.05720.43010.32010.054*
C60.1537 (3)0.37284 (17)0.1182 (3)0.0480 (7)
C70.3094 (3)0.3634 (2)0.1979 (4)0.0767 (10)
H7A0.34820.30960.17160.115*
H7B0.30290.37000.32080.115*
H7C0.37520.40470.15140.115*
C80.4459 (3)0.39727 (19)0.3285 (3)0.0577 (8)
H8A0.42300.45360.35600.087*
H8B0.52790.39550.24840.087*
H8C0.47350.36840.43210.087*
C90.0181 (3)0.35583 (15)0.1236 (3)0.0371 (6)
C100.1232 (3)0.34571 (16)0.0478 (3)0.0449 (7)
H100.19900.32000.11040.054*
C110.2320 (3)0.46342 (16)0.2348 (3)0.0445 (7)
H11A0.27480.50540.16010.053*
H11B0.31010.42320.25810.053*
C120.0497 (3)0.33103 (17)0.3084 (3)0.0468 (7)
H12A0.03140.35010.38170.056*
H12B0.05400.27140.31640.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0399 (10)0.0479 (10)0.0366 (10)0.0064 (8)0.0045 (7)0.0085 (7)
O20.0929 (15)0.0445 (11)0.0358 (10)0.0019 (10)0.0006 (10)0.0089 (8)
O30.0498 (10)0.0486 (10)0.0317 (9)0.0029 (8)0.0003 (8)0.0042 (7)
C10.0583 (17)0.0507 (16)0.0433 (15)0.0108 (13)0.0039 (12)0.0000 (12)
C20.0427 (14)0.0463 (14)0.0301 (13)0.0008 (11)0.0035 (11)0.0031 (10)
C30.0367 (14)0.0353 (13)0.0339 (13)0.0020 (10)0.0028 (10)0.0018 (10)
C40.0452 (14)0.0328 (12)0.0329 (13)0.0021 (10)0.0016 (10)0.0006 (10)
C50.0544 (17)0.0437 (15)0.0376 (14)0.0108 (12)0.0088 (12)0.0018 (11)
C60.0419 (15)0.0512 (16)0.0508 (16)0.0045 (12)0.0101 (13)0.0103 (13)
C70.0492 (18)0.099 (3)0.082 (2)0.0008 (18)0.0236 (16)0.0046 (19)
C80.0545 (17)0.0678 (19)0.0507 (16)0.0097 (14)0.0125 (13)0.0024 (14)
C90.0411 (14)0.0378 (13)0.0325 (13)0.0020 (11)0.0024 (10)0.0040 (10)
C100.0377 (14)0.0484 (15)0.0486 (16)0.0027 (11)0.0033 (12)0.0042 (12)
C110.0574 (17)0.0403 (15)0.0359 (14)0.0024 (12)0.0011 (12)0.0043 (11)
C120.0473 (15)0.0534 (16)0.0398 (15)0.0071 (12)0.0052 (12)0.0036 (12)
Geometric parameters (Å, º) top
O1—C31.389 (3)C5—H50.9300
O1—C21.442 (3)C6—C101.384 (4)
O2—C111.419 (3)C6—C71.522 (3)
O2—H20.8201C7—H7A0.9600
O3—C21.420 (3)C7—H7B0.9600
O3—C121.437 (3)C7—H7C0.9600
C1—C21.519 (4)C8—H8A0.9600
C1—H1A0.9600C8—H8B0.9600
C1—H1B0.9600C8—H8C0.9600
C1—H1C0.9600C9—C101.395 (3)
C2—C81.513 (3)C9—C121.511 (3)
C3—C91.386 (3)C10—H100.9300
C3—C41.400 (3)C11—H11A0.9700
C4—C51.391 (3)C11—H11B0.9700
C4—C111.511 (3)C12—H12A0.9700
C5—C61.393 (4)C12—H12B0.9700
C3—O1—C2115.18 (17)H7A—C7—H7B109.5
C11—O2—H2109.1C6—C7—H7C109.4
C2—O3—C12113.76 (17)H7A—C7—H7C109.5
C2—C1—H1A109.5H7B—C7—H7C109.5
C2—C1—H1B109.4C2—C8—H8A109.5
H1A—C1—H1B109.5C2—C8—H8B109.5
C2—C1—H1C109.6H8A—C8—H8B109.5
H1A—C1—H1C109.5C2—C8—H8C109.4
H1B—C1—H1C109.5H8A—C8—H8C109.5
O3—C2—O1109.42 (18)H8B—C8—H8C109.5
O3—C2—C8107.05 (19)C3—C9—C10118.8 (2)
O1—C2—C8106.0 (2)C3—C9—C12119.1 (2)
O3—C2—C1112.2 (2)C10—C9—C12122.1 (2)
O1—C2—C1109.41 (18)C6—C10—C9121.8 (2)
C8—C2—C1112.5 (2)C6—C10—H10119.1
C9—C3—O1122.0 (2)C9—C10—H10119.1
C9—C3—C4121.3 (2)O2—C11—C4114.2 (2)
O1—C3—C4116.7 (2)O2—C11—H11A108.4
C5—C4—C3117.8 (2)C4—C11—H11A108.8
C5—C4—C11123.4 (2)O2—C11—H11B109.0
C3—C4—C11118.8 (2)C4—C11—H11B108.6
C4—C5—C6122.4 (2)H11A—C11—H11B107.6
C4—C5—H5118.8O3—C12—C9110.93 (19)
C6—C5—H5118.8O3—C12—H12A109.5
C10—C6—C5117.8 (2)C9—C12—H12A109.6
C10—C6—C7121.3 (3)O3—C12—H12B109.4
C5—C6—C7120.9 (2)C9—C12—H12B109.4
C6—C7—H7A109.5H12A—C12—H12B108.0
C6—C7—H7B109.5
(Compound_7_CCDC) top
Crystal data top
C13H18N2O3SF(000) = 600
Mr = 282.35Dx = 1.334 Mg m3
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3155 reflections
a = 12.8651 (14) Åθ = 2.7–24.5°
b = 15.3291 (14) ŵ = 0.24 mm1
c = 7.1435 (8) ÅT = 300 K
β = 93.379 (4)°Plate, colorless
V = 1406.3 (3) Å30.31 × 0.27 × 0.26 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
2482 independent reflections
Radiation source: micro-focus sealed tube1862 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.049
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 1515
Tmin = 0.665, Tmax = 0.745k = 1818
13591 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0759P)2 + 0.1981P]
where P = (Fo2 + 2Fc2)/3
2482 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C13H18N2O3SV = 1406.3 (3) Å3
Mr = 282.35Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 12.8651 (14) ŵ = 0.24 mm1
b = 15.3291 (14) ÅT = 300 K
c = 7.1435 (8) Å0.31 × 0.27 × 0.26 mm
β = 93.379 (4)°
Data collection top
Bruker SMART X2S
diffractometer
2482 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
1862 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.745Rint = 0.049
13591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.32 e Å3
2482 reflectionsΔρmin = 0.36 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33421 (5)0.08148 (4)0.13084 (9)0.0460 (2)
O30.37111 (16)0.00654 (12)0.1230 (3)0.0638 (6)
O20.28767 (17)0.11992 (14)0.0362 (2)0.0686 (6)
O180.82865 (16)0.21154 (14)0.4203 (4)0.0801 (7)
N160.69547 (16)0.30608 (14)0.3613 (3)0.0412 (5)
N40.24633 (16)0.08330 (12)0.2859 (3)0.0410 (5)
C190.8656 (2)0.36289 (19)0.4482 (5)0.0682 (8)
H19A0.88410.36590.58030.102*
H19B0.82960.41520.40920.102*
H19C0.92750.35700.38070.102*
C170.7967 (2)0.28616 (18)0.4089 (4)0.0494 (6)
C130.61163 (18)0.25016 (14)0.3147 (3)0.0352 (5)
C120.51548 (18)0.28784 (14)0.2663 (3)0.0381 (5)
H120.50840.34820.26910.046*
C110.43124 (18)0.23701 (14)0.2145 (3)0.0400 (6)
H110.36730.26300.18240.048*
C100.44080 (19)0.14621 (14)0.2096 (3)0.0388 (6)
C50.1775 (2)0.15986 (18)0.2942 (4)0.0581 (7)
H5A0.15920.18090.16850.070*
H5B0.21310.20640.36410.070*
C60.0804 (2)0.1340 (2)0.3889 (6)0.0772 (10)
H6A0.04190.09140.31200.093*
H6B0.03640.18490.40070.093*
C70.1067 (2)0.0956 (2)0.5822 (5)0.0711 (9)
H7A0.13690.14050.66410.085*
H7B0.04340.07520.63520.085*
C140.6206 (2)0.15967 (15)0.3121 (4)0.0464 (6)
H140.68430.13360.34570.056*
C150.5362 (2)0.10891 (16)0.2602 (4)0.0469 (6)
H150.54310.04850.25900.056*
C90.2776 (2)0.04738 (16)0.4722 (3)0.0469 (6)
H9A0.31650.09090.54590.056*
H9B0.32220.00300.45850.056*
C80.1820 (2)0.02099 (18)0.5717 (4)0.0565 (7)
H8A0.14800.02730.50540.068*
H8B0.20280.00150.69750.068*
H160.6805 (19)0.3588 (17)0.358 (3)0.040 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0590 (4)0.0342 (4)0.0449 (4)0.0094 (3)0.0046 (3)0.0039 (3)
O30.0740 (13)0.0337 (10)0.0858 (14)0.0087 (9)0.0225 (11)0.0175 (9)
O20.0882 (15)0.0745 (14)0.0413 (10)0.0276 (12)0.0119 (10)0.0064 (9)
O180.0498 (12)0.0545 (13)0.135 (2)0.0142 (10)0.0071 (13)0.0031 (12)
N160.0417 (12)0.0302 (12)0.0521 (13)0.0024 (9)0.0081 (9)0.0026 (9)
N40.0423 (11)0.0321 (11)0.0482 (12)0.0015 (8)0.0002 (9)0.0052 (8)
C190.0481 (17)0.063 (2)0.093 (2)0.0049 (14)0.0014 (16)0.0025 (16)
C170.0430 (15)0.0488 (16)0.0566 (16)0.0044 (12)0.0054 (12)0.0009 (12)
C130.0411 (13)0.0314 (12)0.0342 (12)0.0021 (10)0.0109 (10)0.0014 (9)
C120.0454 (14)0.0240 (12)0.0454 (13)0.0022 (10)0.0077 (11)0.0004 (9)
C110.0447 (14)0.0316 (13)0.0438 (13)0.0038 (10)0.0030 (11)0.0030 (10)
C100.0487 (14)0.0315 (12)0.0368 (12)0.0014 (10)0.0084 (11)0.0003 (9)
C50.0531 (17)0.0443 (15)0.0761 (19)0.0094 (13)0.0035 (15)0.0105 (13)
C60.0448 (17)0.072 (2)0.114 (3)0.0142 (15)0.0030 (17)0.0042 (19)
C70.0583 (19)0.073 (2)0.084 (2)0.0074 (16)0.0245 (17)0.0135 (17)
C140.0448 (14)0.0319 (13)0.0629 (16)0.0085 (11)0.0074 (12)0.0045 (11)
C150.0562 (16)0.0253 (12)0.0601 (16)0.0047 (11)0.0112 (13)0.0020 (11)
C90.0513 (15)0.0423 (14)0.0465 (14)0.0001 (12)0.0015 (12)0.0062 (11)
C80.0656 (19)0.0530 (17)0.0518 (16)0.0101 (14)0.0104 (14)0.0018 (12)
Geometric parameters (Å, º) top
S1—O21.430 (2)C11—H110.9300
S1—O31.432 (2)C10—C151.382 (3)
S1—N41.629 (2)C5—C61.508 (4)
S1—C101.758 (2)C5—H5A0.9700
O18—C171.217 (3)C5—H5B0.9700
N16—C171.361 (3)C6—C71.521 (5)
N16—C131.402 (3)C6—H6A0.9700
N16—H160.83 (3)C6—H6B0.9700
N4—C51.473 (3)C7—C81.504 (4)
N4—C91.475 (3)C7—H7A0.9700
C19—C171.490 (4)C7—H7B0.9700
C19—H19A0.9600C14—C151.370 (3)
C19—H19B0.9600C14—H140.9300
C19—H19C0.9600C15—H150.9300
C13—C121.390 (3)C9—C81.510 (4)
C13—C141.392 (3)C9—H9A0.9700
C12—C111.368 (3)C9—H9B0.9700
C12—H120.9300C8—H8A0.9700
C11—C101.398 (3)C8—H8B0.9700
O2—S1—O3118.62 (13)C6—C5—H5A109.9
O2—S1—N4106.67 (12)N4—C5—H5B109.9
O3—S1—N4106.71 (11)C6—C5—H5B109.9
O2—S1—C10108.35 (11)H5A—C5—H5B108.3
O3—S1—C10106.86 (12)C5—C6—C7111.3 (3)
N4—S1—C10109.40 (10)C5—C6—H6A109.4
C17—N16—C13129.3 (2)C7—C6—H6A109.4
C17—N16—H16116.2 (17)C5—C6—H6B109.4
C13—N16—H16114.5 (17)C7—C6—H6B109.4
C5—N4—C9113.2 (2)H6A—C6—H6B108.0
C5—N4—S1118.96 (17)C8—C7—C6111.0 (3)
C9—N4—S1116.38 (16)C8—C7—H7A109.4
C17—C19—H19A109.5C6—C7—H7A109.4
C17—C19—H19B109.5C8—C7—H7B109.4
H19A—C19—H19B109.5C6—C7—H7B109.4
C17—C19—H19C109.5H7A—C7—H7B108.0
H19A—C19—H19C109.5C15—C14—C13120.3 (2)
H19B—C19—H19C109.5C15—C14—H14119.9
O18—C17—N16122.9 (3)C13—C14—H14119.9
O18—C17—C19122.3 (3)C14—C15—C10120.9 (2)
N16—C17—C19114.8 (2)C14—C15—H15119.5
C12—C13—C14118.9 (2)C10—C15—H15119.5
C12—C13—N16117.8 (2)N4—C9—C8109.8 (2)
C14—C13—N16123.3 (2)N4—C9—H9A109.7
C11—C12—C13120.6 (2)C8—C9—H9A109.7
C11—C12—H12119.7N4—C9—H9B109.7
C13—C12—H12119.7C8—C9—H9B109.7
C12—C11—C10120.3 (2)H9A—C9—H9B108.2
C12—C11—H11119.9C7—C8—C9111.4 (2)
C10—C11—H11119.9C7—C8—H8A109.4
C15—C10—C11118.9 (2)C9—C8—H8A109.4
C15—C10—S1120.92 (18)C7—C8—H8B109.4
C11—C10—S1120.12 (19)C9—C8—H8B109.4
N4—C5—C6109.0 (2)H8A—C8—H8B108.0
N4—C5—H5A109.9
(Compound_7_X2S) top
Crystal data top
C13H18N2O3SF(000) = 600
Mr = 282.35Dx = 1.334 Mg m3
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3155 reflections
a = 12.8651 (14) Åθ = 2.7–24.5°
b = 15.3291 (14) ŵ = 0.24 mm1
c = 7.1435 (8) ÅT = 300 K
β = 93.379 (4)°Plate, colorless
V = 1406.3 (3) Å30.31 × 0.27 × 0.26 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
2482 independent reflections
Radiation source: micro-focus sealed tube1862 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.049
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 1515
Tmin = 0.665, Tmax = 0.745k = 1818
13591 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0911P)2 + 0.2744P]
where P = (Fo2 + 2Fc2)/3
2482 reflections(Δ/σ)max = 0.178
173 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C13H18N2O3SV = 1406.3 (3) Å3
Mr = 282.35Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 12.8651 (14) ŵ = 0.24 mm1
b = 15.3291 (14) ÅT = 300 K
c = 7.1435 (8) Å0.31 × 0.27 × 0.26 mm
β = 93.379 (4)°
Data collection top
Bruker SMART X2S
diffractometer
2482 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
1862 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.745Rint = 0.049
13591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 0.97(Δ/σ)max = 0.178
2482 reflectionsΔρmax = 0.31 e Å3
173 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33423 (5)0.08148 (4)0.13084 (9)0.0460 (2)
O10.37112 (17)0.00653 (12)0.1231 (3)0.0639 (6)
O20.28768 (17)0.11992 (14)0.0363 (2)0.0686 (6)
O30.82867 (16)0.21154 (14)0.4203 (4)0.0803 (7)
N10.69540 (15)0.30618 (12)0.3612 (3)0.0411 (5)
H10.68070.36090.35940.049*
N20.24632 (16)0.08331 (12)0.2859 (3)0.0411 (5)
C10.8656 (2)0.3629 (2)0.4483 (5)0.0684 (8)
H1A0.88200.36720.58090.103*
H1B0.83060.41510.40500.103*
H1C0.92870.35600.38450.103*
C20.7967 (2)0.28618 (18)0.4089 (4)0.0495 (6)
C30.61164 (18)0.25016 (14)0.3148 (3)0.0353 (5)
C40.51545 (18)0.28786 (14)0.2662 (3)0.0382 (5)
H40.50830.34820.26900.046*
C50.43120 (18)0.23700 (15)0.2145 (3)0.0401 (6)
H50.36730.26300.18250.048*
C60.44078 (19)0.14622 (14)0.2096 (3)0.0390 (6)
C70.2776 (2)0.04740 (16)0.4723 (3)0.0470 (6)
H7A0.31650.09090.54590.056*
H7B0.32220.00290.45850.056*
C80.1821 (2)0.02102 (18)0.5718 (4)0.0566 (7)
H8A0.14810.02740.50560.068*
H8B0.20290.00160.69770.068*
C90.1067 (2)0.0956 (2)0.5822 (5)0.0712 (9)
H9A0.13690.14050.66410.085*
H9B0.04340.07520.63520.085*
C100.6206 (2)0.15966 (15)0.3122 (4)0.0465 (6)
H100.68420.13360.34590.056*
C110.5362 (2)0.10888 (16)0.2602 (4)0.0470 (6)
H110.54310.04850.25890.056*
C120.1775 (2)0.15985 (18)0.2943 (4)0.0583 (7)
H12A0.15930.18090.16860.070*
H12B0.21310.20640.36430.070*
C130.0804 (2)0.1340 (2)0.3889 (6)0.0774 (10)
H13A0.04190.09140.31200.093*
H13B0.03640.18490.40070.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0590 (4)0.0342 (4)0.0449 (4)0.0094 (3)0.0046 (3)0.0038 (2)
O10.0742 (13)0.0338 (10)0.0857 (14)0.0088 (9)0.0225 (11)0.0174 (9)
O20.0881 (15)0.0747 (14)0.0414 (10)0.0279 (12)0.0117 (10)0.0064 (9)
O30.0499 (12)0.0545 (13)0.135 (2)0.0141 (10)0.0071 (13)0.0030 (12)
N10.0415 (11)0.0311 (11)0.0514 (12)0.0021 (8)0.0080 (9)0.0026 (8)
N20.0424 (11)0.0320 (11)0.0485 (12)0.0014 (8)0.0004 (9)0.0051 (8)
C10.0485 (17)0.063 (2)0.093 (2)0.0048 (14)0.0014 (16)0.0026 (16)
C20.0433 (15)0.0488 (16)0.0568 (16)0.0044 (12)0.0054 (12)0.0009 (12)
C30.0412 (13)0.0314 (12)0.0343 (11)0.0021 (10)0.0109 (10)0.0014 (9)
C40.0454 (14)0.0241 (12)0.0457 (13)0.0023 (10)0.0077 (11)0.0003 (9)
C50.0447 (14)0.0316 (12)0.0440 (13)0.0038 (10)0.0029 (11)0.0030 (10)
C60.0488 (14)0.0316 (12)0.0372 (12)0.0013 (10)0.0082 (10)0.0003 (9)
C70.0516 (15)0.0421 (14)0.0467 (14)0.0002 (12)0.0014 (12)0.0062 (11)
C80.0655 (18)0.0532 (17)0.0519 (16)0.0102 (14)0.0103 (14)0.0019 (12)
C90.0586 (19)0.073 (2)0.084 (2)0.0072 (16)0.0246 (17)0.0136 (17)
C100.0449 (14)0.0319 (13)0.0630 (16)0.0086 (11)0.0073 (12)0.0047 (11)
C110.0560 (16)0.0256 (12)0.0603 (16)0.0047 (11)0.0112 (13)0.0020 (11)
C120.0531 (17)0.0442 (15)0.0766 (19)0.0094 (12)0.0031 (14)0.0105 (13)
C130.0449 (17)0.072 (2)0.115 (3)0.0142 (15)0.0030 (17)0.0042 (19)
Geometric parameters (Å, º) top
S1—O21.431 (2)C5—H50.9300
S1—O11.432 (2)C6—C111.383 (3)
S1—N21.629 (2)C7—C81.510 (4)
S1—C61.758 (2)C7—H7A0.9700
O3—C21.217 (3)C7—H7B0.9700
N1—C21.362 (3)C8—C91.504 (4)
N1—C31.402 (3)C8—H8A0.9700
N1—H10.8600C8—H8B0.9700
N2—C121.473 (3)C9—C131.521 (5)
N2—C71.474 (3)C9—H9A0.9700
C1—C21.491 (4)C9—H9B0.9700
C1—H1A0.9600C10—C111.369 (4)
C1—H1B0.9600C10—H100.9300
C1—H1C0.9600C11—H110.9300
C3—C41.391 (3)C12—C131.508 (4)
C3—C101.392 (3)C12—H12A0.9700
C4—C51.368 (3)C12—H12B0.9700
C4—H40.9300C13—H13A0.9700
C5—C61.398 (3)C13—H13B0.9700
O2—S1—O1118.62 (13)C8—C7—H7A109.7
O2—S1—N2106.68 (12)N2—C7—H7B109.7
O1—S1—N2106.71 (11)C8—C7—H7B109.7
O2—S1—C6108.34 (11)H7A—C7—H7B108.2
O1—S1—C6106.87 (12)C9—C8—C7111.4 (2)
N2—S1—C6109.39 (10)C9—C8—H8A109.4
C2—N1—C3129.2 (2)C7—C8—H8A109.4
C2—N1—H1115.4C9—C8—H8B109.4
C3—N1—H1115.4C7—C8—H8B109.4
C12—N2—C7113.2 (2)H8A—C8—H8B108.0
C12—N2—S1118.96 (17)C8—C9—C13111.0 (3)
C7—N2—S1116.37 (16)C8—C9—H9A109.4
C2—C1—H1A109.5C13—C9—H9A109.4
C2—C1—H1B109.5C8—C9—H9B109.4
H1A—C1—H1B109.5C13—C9—H9B109.4
C2—C1—H1C109.5H9A—C9—H9B108.0
H1A—C1—H1C109.5C11—C10—C3120.3 (2)
H1B—C1—H1C109.5C11—C10—H10119.8
O3—C2—N1122.9 (3)C3—C10—H10119.8
O3—C2—C1122.3 (3)C10—C11—C6120.9 (2)
N1—C2—C1114.8 (2)C10—C11—H11119.6
C4—C3—C10118.9 (2)C6—C11—H11119.6
C4—C3—N1117.68 (19)N2—C12—C13109.0 (2)
C10—C3—N1123.4 (2)N2—C12—H12A109.9
C5—C4—C3120.6 (2)C13—C12—H12A109.9
C5—C4—H4119.7N2—C12—H12B109.9
C3—C4—H4119.7C13—C12—H12B109.9
C4—C5—C6120.3 (2)H12A—C12—H12B108.3
C4—C5—H5119.8C12—C13—C9111.3 (3)
C6—C5—H5119.8C12—C13—H13A109.4
C11—C6—C5118.9 (2)C9—C13—H13A109.4
C11—C6—S1120.89 (18)C12—C13—H13B109.4
C5—C6—S1120.13 (19)C9—C13—H13B109.4
N2—C7—C8109.8 (2)H13A—C13—H13B108.0
N2—C7—H7A109.7
(Compound_8_APEX) top
Crystal data top
C21H21NO3S2F(000) = 840
Mr = 399.51Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7771 (7) ÅCell parameters from 9992 reflections
b = 11.4544 (6) Åθ = 2.8–25.0°
c = 14.9031 (9) ŵ = 0.29 mm1
β = 95.945 (1)°T = 291 K
V = 1999.6 (2) Å3Block, clear colourless
Z = 40.43 × 0.41 × 0.27 mm
Data collection top
Bruker APEX II DUO
diffractometer
3551 independent reflections
Radiation source: fine-focus sealed tube3109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.3333 pixels mm-1θmax = 25.1°, θmin = 1.7°
φ & ω scansh = 1414
Absorption correction: multi-scan
SADABS Version 2008/1
k = 1313
Tmin = 0.84, Tmax = 0.93l = 1717
26025 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.999P]
where P = (Fo2 + 2Fc2)/3
3551 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C21H21NO3S2V = 1999.6 (2) Å3
Mr = 399.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7771 (7) ŵ = 0.29 mm1
b = 11.4544 (6) ÅT = 291 K
c = 14.9031 (9) Å0.43 × 0.41 × 0.27 mm
β = 95.945 (1)°
Data collection top
Bruker APEX II DUO
diffractometer
3551 independent reflections
Absorption correction: multi-scan
SADABS Version 2008/1
3109 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.93Rint = 0.024
26025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3551 reflectionsΔρmin = 0.27 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.91971 (4)0.21669 (4)0.81440 (3)0.03634 (13)
S20.78404 (4)0.40992 (4)0.79051 (3)0.03870 (13)
O11.24609 (11)0.17686 (12)1.14080 (8)0.0502 (3)
O20.71155 (13)0.47433 (13)0.84429 (8)0.0571 (4)
O30.88781 (11)0.46575 (12)0.76918 (9)0.0536 (4)
N10.80920 (12)0.28740 (13)0.84166 (9)0.0394 (3)
C11.2362 (2)0.2417 (2)1.22155 (13)0.0635 (6)
H1A1.24310.32361.20940.095*
H1B1.29560.21851.2670.095*
H1C1.16310.22671.24240.095*
C21.16706 (14)0.19384 (16)1.06907 (11)0.0386 (4)
C31.18363 (15)0.12763 (17)0.99314 (12)0.0450 (4)
H3A1.24610.07780.99440.054*
C41.10890 (15)0.13527 (17)0.91682 (12)0.0435 (4)
H41.1210.09190.86590.052*
C51.01436 (14)0.20857 (15)0.91591 (11)0.0353 (4)
C60.70321 (14)0.37950 (15)0.68654 (10)0.0354 (4)
C70.75666 (15)0.34315 (17)0.61306 (11)0.0423 (4)
H70.83580.33720.61740.051*
C80.69235 (17)0.31579 (18)0.53356 (12)0.0479 (4)
H80.72880.29080.48460.058*
C90.57456 (17)0.32469 (19)0.52483 (12)0.0502 (5)
C100.5053 (2)0.2921 (3)0.43719 (15)0.0783 (7)
H10A0.43930.24830.44990.117*
H10B0.55110.24560.40130.117*
H10C0.48140.36180.40480.117*
C110.99757 (15)0.27512 (16)0.99015 (11)0.0399 (4)
H110.93490.32470.98870.048*
C121.07427 (15)0.26834 (16)1.06728 (12)0.0423 (4)
H121.06340.31361.11750.051*
C130.86641 (17)0.06721 (16)0.80931 (12)0.0456 (4)
H13A0.93010.01320.81220.055*
H13B0.8240.05230.86050.055*
C140.79035 (15)0.04823 (15)0.72325 (11)0.0400 (4)
C150.67372 (16)0.06473 (18)0.72001 (13)0.0505 (5)
H150.64150.08840.77140.061*
C160.60467 (17)0.0460 (2)0.64022 (15)0.0598 (6)
H160.52610.05640.63830.072*
C170.65223 (18)0.0120 (2)0.56390 (14)0.0586 (5)
H170.60590.00010.51020.07*
C180.76801 (18)0.00444 (19)0.56687 (13)0.0542 (5)
H180.79990.02790.51530.065*
C190.83695 (16)0.01362 (17)0.64584 (12)0.0461 (4)
H190.91530.00250.64730.055*
C200.52325 (17)0.3614 (2)0.59898 (15)0.0644 (6)
H200.44420.3680.59460.077*
C210.58601 (16)0.3883 (2)0.67931 (13)0.0547 (5)
H210.54950.41230.72850.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0402 (2)0.0387 (2)0.0296 (2)0.00158 (17)0.00101 (16)0.00320 (16)
S20.0453 (3)0.0368 (2)0.0330 (2)0.00009 (18)0.00091 (17)0.00377 (17)
O10.0514 (8)0.0547 (8)0.0412 (7)0.0070 (6)0.0108 (6)0.0028 (6)
O20.0751 (9)0.0553 (9)0.0406 (7)0.0175 (7)0.0039 (6)0.0070 (6)
O30.0537 (8)0.0515 (8)0.0531 (8)0.0158 (6)0.0063 (6)0.0136 (6)
N10.0407 (8)0.0431 (9)0.0345 (7)0.0018 (6)0.0039 (6)0.0097 (6)
C10.0896 (16)0.0490 (12)0.0461 (11)0.0056 (11)0.0205 (11)0.0084 (9)
C20.0400 (9)0.0389 (10)0.0357 (9)0.0032 (7)0.0016 (7)0.0023 (7)
C30.0411 (10)0.0477 (11)0.0455 (10)0.0115 (8)0.0012 (8)0.0031 (8)
C40.0453 (10)0.0486 (11)0.0366 (9)0.0062 (8)0.0046 (7)0.0067 (8)
C50.0367 (9)0.0373 (9)0.0314 (8)0.0015 (7)0.0012 (6)0.0021 (7)
C60.0372 (9)0.0372 (9)0.0313 (8)0.0023 (7)0.0017 (6)0.0056 (7)
C70.0371 (9)0.0509 (11)0.0397 (9)0.0012 (8)0.0075 (7)0.0026 (8)
C80.0573 (11)0.0526 (12)0.0351 (9)0.0015 (9)0.0104 (8)0.0020 (8)
C90.0546 (11)0.0541 (12)0.0397 (10)0.0040 (9)0.0055 (8)0.0034 (8)
C100.0830 (17)0.092 (2)0.0544 (13)0.0111 (14)0.0195 (12)0.0032 (12)
C110.0399 (9)0.0401 (10)0.0395 (9)0.0062 (7)0.0031 (7)0.0013 (7)
C120.0482 (10)0.0423 (10)0.0359 (9)0.0037 (8)0.0026 (7)0.0057 (7)
C130.0577 (11)0.0366 (10)0.0403 (10)0.0034 (8)0.0058 (8)0.0037 (7)
C140.0476 (10)0.0322 (9)0.0387 (9)0.0043 (7)0.0027 (7)0.0023 (7)
C150.0496 (11)0.0522 (12)0.0501 (11)0.0048 (9)0.0072 (9)0.0012 (9)
C160.0393 (10)0.0684 (15)0.0696 (14)0.0070 (10)0.0044 (9)0.0019 (11)
C170.0577 (12)0.0639 (14)0.0499 (11)0.0110 (10)0.0147 (9)0.0016 (10)
C180.0626 (13)0.0567 (13)0.0422 (10)0.0025 (10)0.0002 (9)0.0064 (9)
C190.0442 (10)0.0465 (11)0.0463 (10)0.0013 (8)0.0012 (8)0.0019 (8)
C200.0368 (10)0.0946 (18)0.0599 (13)0.0107 (11)0.0040 (9)0.0027 (12)
C210.0412 (10)0.0804 (15)0.0427 (10)0.0141 (10)0.0060 (8)0.0045 (10)
Geometric parameters (Å, º) top
S1—N11.6200 (15)C9—C201.379 (3)
S1—C51.7861 (16)C9—C101.513 (3)
S1—C131.8226 (19)C10—H10A0.96
S2—O21.4343 (14)C10—H10B0.96
S2—O31.4435 (13)C10—H10C0.96
S2—N11.6099 (14)C11—C121.389 (2)
S2—C61.7673 (16)C11—H110.93
O1—C21.357 (2)C12—H120.93
O1—C11.430 (2)C13—C141.502 (2)
C1—H1A0.96C13—H13A0.97
C1—H1B0.96C13—H13B0.97
C1—H1C0.96C14—C151.382 (3)
C2—C121.385 (2)C14—C191.386 (3)
C2—C31.393 (2)C15—C161.386 (3)
C3—C41.367 (2)C15—H150.93
C3—H3A0.93C16—C171.375 (3)
C4—C51.393 (2)C16—H160.93
C4—H40.93C17—C181.373 (3)
C5—C111.375 (2)C17—H170.93
C6—C211.377 (2)C18—C191.375 (3)
C6—C71.383 (2)C18—H180.93
C7—C81.375 (2)C19—H190.93
C7—H70.93C20—C211.375 (3)
C8—C91.384 (3)C20—H200.93
C8—H80.93C21—H210.93
N1—S1—C5105.11 (8)C9—C10—H10B109.5
N1—S1—C13101.42 (9)H10A—C10—H10B109.5
C5—S1—C1399.69 (8)C9—C10—H10C109.5
O2—S2—O3117.49 (9)H10A—C10—H10C109.5
O2—S2—N1105.95 (8)H10B—C10—H10C109.5
O3—S2—N1111.84 (8)C5—C11—C12119.99 (16)
O2—S2—C6107.08 (8)C5—C11—H11120.0
O3—S2—C6106.60 (8)C12—C11—H11120.0
N1—S2—C6107.41 (8)C2—C12—C11119.66 (16)
C2—O1—C1118.66 (15)C2—C12—H12120.2
S2—N1—S1115.49 (8)C11—C12—H12120.2
O1—C1—H1A109.5C14—C13—S1110.11 (12)
O1—C1—H1B109.5C14—C13—H13A109.6
H1A—C1—H1B109.5S1—C13—H13A109.6
O1—C1—H1C109.5C14—C13—H13B109.6
H1A—C1—H1C109.5S1—C13—H13B109.6
H1B—C1—H1C109.5H13A—C13—H13B108.2
O1—C2—C12125.39 (16)C15—C14—C19119.20 (16)
O1—C2—C3114.82 (15)C15—C14—C13120.83 (17)
C12—C2—C3119.78 (16)C19—C14—C13119.97 (17)
C4—C3—C2120.59 (16)C14—C15—C16120.09 (18)
C4—C3—H3A119.7C14—C15—H15120.0
C2—C3—H3A119.7C16—C15—H15120.0
C3—C4—C5119.44 (16)C17—C16—C15120.03 (19)
C3—C4—H4120.3C17—C16—H16120.0
C5—C4—H4120.3C15—C16—H16120.0
C11—C5—C4120.51 (15)C18—C17—C16120.04 (19)
C11—C5—S1121.58 (13)C18—C17—H17120.0
C4—C5—S1117.87 (12)C16—C17—H17120.0
C21—C6—C7119.67 (16)C17—C18—C19120.24 (19)
C21—C6—S2119.92 (13)C17—C18—H18119.9
C7—C6—S2120.38 (13)C19—C18—H18119.9
C8—C7—C6119.72 (16)C18—C19—C14120.41 (18)
C8—C7—H7120.1C18—C19—H19119.8
C6—C7—H7120.1C14—C19—H19119.8
C7—C8—C9121.46 (17)C21—C20—C9121.69 (18)
C7—C8—H8119.3C21—C20—H20119.2
C9—C8—H8119.3C9—C20—H20119.2
C20—C9—C8117.74 (17)C20—C21—C6119.72 (17)
C20—C9—C10121.7 (2)C20—C21—H21120.1
C8—C9—C10120.59 (19)C6—C21—H21120.1
C9—C10—H10A109.5
(Compound_8_CCDC) top
Crystal data top
C21H21NO3S2F(000) = 840
Mr = 399.51Dx = 1.319 Mg m3
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3129 reflections
a = 11.7937 (9) Åθ = 2.5–23.1°
b = 11.4816 (7) ŵ = 0.29 mm1
c = 14.9358 (12) ÅT = 300 K
β = 95.972 (3)°Block, colorles
V = 2011.5 (3) Å30.43 × 0.41 × 0.27 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
3546 independent reflections
Radiation source: micro-focus sealed tube2664 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.035
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 1414
Tmin = 0.870, Tmax = 0.870k = 1312
12920 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0813P)2]
where P = (Fo2 + 2Fc2)/3
3546 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C21H21NO3S2V = 2011.5 (3) Å3
Mr = 399.51Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 11.7937 (9) ŵ = 0.29 mm1
b = 11.4816 (7) ÅT = 300 K
c = 14.9358 (12) Å0.43 × 0.41 × 0.27 mm
β = 95.972 (3)°
Data collection top
Bruker SMART X2S
diffractometer
3546 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
2664 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.870Rint = 0.035
12920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.12Δρmax = 0.34 e Å3
3546 reflectionsΔρmin = 0.33 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.91969 (5)0.21665 (5)0.81432 (4)0.0375 (2)
S30.78419 (6)0.40976 (5)0.79044 (4)0.0402 (2)
O261.24615 (15)0.17768 (16)1.14026 (12)0.0512 (5)
O40.88809 (16)0.46532 (16)0.76935 (13)0.0556 (5)
O50.71164 (17)0.47438 (17)0.84434 (12)0.0589 (6)
N20.80930 (17)0.28747 (17)0.84147 (14)0.0400 (5)
C271.2366 (3)0.2421 (3)1.22105 (19)0.0652 (9)
H27A1.24490.32371.20940.098*
H27B1.29520.21781.26660.098*
H27C1.16320.22811.24140.098*
C231.1673 (2)0.1941 (2)1.06897 (17)0.0399 (6)
C241.1835 (2)0.1282 (2)0.99287 (17)0.0464 (7)
H241.24600.07860.99390.056*
C251.1088 (2)0.1358 (2)0.91676 (17)0.0453 (7)
H251.12100.09240.86610.054*
C201.0144 (2)0.2087 (2)0.91535 (16)0.0349 (6)
C60.7033 (2)0.3795 (2)0.68668 (15)0.0361 (6)
C70.5863 (2)0.3880 (3)0.67936 (19)0.0566 (8)
H70.54980.41250.72830.068*
C80.5234 (2)0.3601 (3)0.5991 (2)0.0682 (9)
H80.44440.36580.59500.082*
C90.5746 (2)0.3239 (2)0.52474 (18)0.0507 (7)
C120.5053 (3)0.2913 (3)0.4369 (2)0.0809 (11)
H12A0.43730.25130.44960.121*
H12B0.54970.24130.40260.121*
H12C0.48510.36060.40300.121*
C100.6923 (2)0.3151 (2)0.53404 (18)0.0494 (7)
H100.72890.28990.48530.059*
C110.7563 (2)0.3426 (2)0.61328 (17)0.0432 (6)
H110.83530.33650.61760.052*
C130.8663 (2)0.0672 (2)0.80893 (17)0.0467 (7)
H13A0.92990.01330.81200.056*
H13B0.82370.05230.85990.056*
C140.7905 (2)0.0481 (2)0.72290 (17)0.0403 (6)
C190.8364 (2)0.0135 (2)0.64557 (18)0.0474 (7)
H190.91470.00200.64700.057*
C180.7677 (3)0.0041 (2)0.5667 (2)0.0564 (8)
H180.79960.02710.51510.068*
C170.6520 (3)0.0120 (3)0.5640 (2)0.0597 (8)
H170.60570.00040.51040.072*
C160.6047 (2)0.0453 (3)0.6398 (2)0.0613 (8)
H160.52630.05500.63800.074*
C150.6738 (2)0.0645 (2)0.71944 (19)0.0515 (7)
H150.64160.08840.77060.062*
C210.9981 (2)0.2752 (2)0.99003 (17)0.0418 (6)
H210.93540.32460.98870.050*
C221.0742 (2)0.2690 (2)1.06678 (17)0.0429 (6)
H221.06340.31461.11660.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0423 (4)0.0394 (4)0.0301 (4)0.0018 (3)0.0008 (3)0.0032 (3)
S30.0473 (4)0.0380 (4)0.0341 (4)0.0003 (3)0.0014 (3)0.0044 (3)
O260.0520 (11)0.0568 (11)0.0415 (11)0.0091 (9)0.0111 (9)0.0030 (9)
O40.0546 (12)0.0531 (11)0.0564 (12)0.0178 (10)0.0069 (10)0.0154 (10)
O50.0762 (14)0.0570 (12)0.0433 (12)0.0202 (11)0.0048 (10)0.0078 (9)
N20.0426 (12)0.0423 (12)0.0351 (12)0.0036 (10)0.0041 (9)0.0109 (9)
C270.094 (2)0.0495 (17)0.0460 (18)0.0055 (17)0.0224 (17)0.0085 (14)
C230.0414 (15)0.0395 (14)0.0378 (15)0.0018 (12)0.0002 (12)0.0019 (11)
C240.0426 (15)0.0499 (15)0.0455 (16)0.0128 (13)0.0004 (12)0.0041 (13)
C250.0487 (16)0.0507 (16)0.0370 (15)0.0058 (13)0.0070 (12)0.0066 (12)
C200.0359 (13)0.0374 (13)0.0311 (13)0.0002 (11)0.0022 (10)0.0027 (11)
C60.0382 (13)0.0362 (13)0.0334 (14)0.0016 (11)0.0017 (11)0.0064 (11)
C70.0429 (16)0.084 (2)0.0429 (17)0.0156 (15)0.0062 (13)0.0062 (15)
C80.0376 (15)0.102 (3)0.063 (2)0.0153 (17)0.0078 (15)0.0009 (19)
C90.0546 (17)0.0554 (17)0.0401 (16)0.0033 (14)0.0047 (14)0.0005 (13)
C120.088 (3)0.094 (3)0.054 (2)0.010 (2)0.0242 (19)0.0017 (18)
C100.0574 (18)0.0549 (16)0.0372 (16)0.0012 (14)0.0114 (13)0.0013 (13)
C110.0381 (14)0.0513 (16)0.0409 (15)0.0001 (12)0.0065 (12)0.0031 (13)
C130.0575 (17)0.0392 (14)0.0416 (16)0.0026 (13)0.0036 (13)0.0047 (12)
C140.0472 (15)0.0332 (13)0.0389 (15)0.0053 (12)0.0024 (12)0.0016 (11)
C190.0442 (15)0.0487 (16)0.0480 (17)0.0023 (13)0.0016 (13)0.0033 (13)
C180.0638 (19)0.0607 (18)0.0438 (17)0.0005 (16)0.0018 (14)0.0073 (14)
C170.0572 (19)0.068 (2)0.0500 (19)0.0094 (16)0.0159 (15)0.0032 (16)
C160.0389 (16)0.069 (2)0.074 (2)0.0087 (15)0.0059 (16)0.0001 (17)
C150.0506 (17)0.0539 (17)0.0504 (18)0.0024 (14)0.0077 (14)0.0012 (14)
C210.0418 (14)0.0417 (14)0.0418 (15)0.0088 (12)0.0036 (12)0.0014 (12)
C220.0489 (15)0.0441 (15)0.0352 (14)0.0040 (12)0.0018 (12)0.0063 (12)
Geometric parameters (Å, º) top
S1—N21.622 (2)C9—C101.383 (4)
S1—C201.784 (2)C9—C121.519 (4)
S1—C131.826 (3)C12—H12A0.9600
S3—O51.4401 (19)C12—H12B0.9600
S3—O41.4450 (19)C12—H12C0.9600
S3—N21.610 (2)C10—C111.373 (3)
S3—C61.768 (2)C10—H100.9300
O26—C231.352 (3)C11—H110.9300
O26—C271.430 (3)C13—C141.503 (3)
C27—H27A0.9600C13—H13A0.9700
C27—H27B0.9600C13—H13B0.9700
C27—H27C0.9600C14—C191.384 (4)
C23—C221.392 (3)C14—C151.385 (4)
C23—C241.395 (4)C19—C181.374 (4)
C24—C251.367 (3)C19—H190.9300
C24—H240.9300C18—C171.374 (4)
C25—C201.391 (3)C18—H180.9300
C25—H250.9300C17—C161.367 (4)
C20—C211.382 (3)C17—H170.9300
C6—C71.376 (3)C16—C151.387 (4)
C6—C111.384 (3)C16—H160.9300
C7—C81.380 (4)C15—H150.9300
C7—H70.9300C21—C221.383 (3)
C8—C91.383 (4)C21—H210.9300
C8—H80.9300C22—H220.9300
N2—S1—C20105.21 (11)C9—C12—H12B109.5
N2—S1—C13101.52 (12)H12A—C12—H12B109.5
C20—S1—C1399.90 (11)C9—C12—H12C109.5
O5—S3—O4117.46 (13)H12A—C12—H12C109.5
O5—S3—N2105.99 (11)H12B—C12—H12C109.5
O4—S3—N2111.70 (11)C11—C10—C9121.7 (3)
O5—S3—C6107.08 (12)C11—C10—H10119.1
O4—S3—C6106.75 (11)C9—C10—H10119.1
N2—S3—C6107.41 (11)C10—C11—C6120.0 (2)
C23—O26—C27119.0 (2)C10—C11—H11120.0
S3—N2—S1115.58 (12)C6—C11—H11120.0
O26—C27—H27A109.5C14—C13—S1110.29 (17)
O26—C27—H27B109.5C14—C13—H13A109.6
H27A—C27—H27B109.5S1—C13—H13A109.6
O26—C27—H27C109.5C14—C13—H13B109.6
H27A—C27—H27C109.5S1—C13—H13B109.6
H27B—C27—H27C109.5H13A—C13—H13B108.1
O26—C23—C22125.5 (2)C19—C14—C15118.8 (2)
O26—C23—C24115.1 (2)C19—C14—C13120.4 (2)
C22—C23—C24119.4 (2)C15—C14—C13120.8 (2)
C25—C24—C23120.8 (2)C18—C19—C14120.7 (3)
C25—C24—H24119.6C18—C19—H19119.6
C23—C24—H24119.6C14—C19—H19119.6
C24—C25—C20119.8 (2)C19—C18—C17120.1 (3)
C24—C25—H25120.1C19—C18—H18119.9
C20—C25—H25120.1C17—C18—H18119.9
C21—C20—C25119.9 (2)C16—C17—C18120.1 (3)
C21—C20—S1121.81 (19)C16—C17—H17119.9
C25—C20—S1118.25 (19)C18—C17—H17119.9
C7—C6—C11119.4 (2)C17—C16—C15120.1 (3)
C7—C6—S3120.0 (2)C17—C16—H16120.0
C11—C6—S3120.51 (19)C15—C16—H16120.0
C6—C7—C8119.8 (3)C14—C15—C16120.2 (3)
C6—C7—H7120.1C14—C15—H15119.9
C8—C7—H7120.1C16—C15—H15119.9
C7—C8—C9121.8 (3)C20—C21—C22120.5 (2)
C7—C8—H8119.1C20—C21—H21119.7
C9—C8—H8119.1C22—C21—H21119.7
C8—C9—C10117.3 (3)C21—C22—C23119.6 (2)
C8—C9—C12121.8 (3)C21—C22—H22120.2
C10—C9—C12120.9 (3)C23—C22—H22120.2
C9—C12—H12A109.5
(Compound_8_X2S) top
Crystal data top
C21H21NO3S2F(000) = 840
Mr = 399.51Dx = 1.319 Mg m3
Monoclinic, P121/c1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3129 reflections
a = 11.7937 (9) Åθ = 2.5–23.1°
b = 11.4816 (7) ŵ = 0.29 mm1
c = 14.9358 (12) ÅT = 300 K
β = 95.972 (3)°Block, colorless
V = 2011.5 (3) Å30.43 × 0.41 × 0.27 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
3546 independent reflections
Radiation source: micro-focus sealed tube2664 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.035
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 1414
Tmin = 0.870, Tmax = 0.870k = 1312
12920 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0849P)2 + 0.0076P]
where P = (Fo2 + 2Fc2)/3
3546 reflections(Δ/σ)max = 0.161
246 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C21H21NO3S2V = 2011.5 (3) Å3
Mr = 399.51Z = 4
Monoclinic, P121/c1Mo Kα radiation
a = 11.7937 (9) ŵ = 0.29 mm1
b = 11.4816 (7) ÅT = 300 K
c = 14.9358 (12) Å0.43 × 0.41 × 0.27 mm
β = 95.972 (3)°
Data collection top
Bruker SMART X2S
diffractometer
3546 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
2664 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.870Rint = 0.035
12920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.10(Δ/σ)max = 0.161
3546 reflectionsΔρmax = 0.34 e Å3
246 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78419 (6)0.40976 (5)0.79044 (4)0.0402 (2)
S20.91969 (5)0.21664 (5)0.81432 (4)0.0374 (2)
O11.24615 (15)0.17766 (16)1.14025 (12)0.0512 (5)
O20.88808 (16)0.46531 (16)0.76934 (13)0.0556 (5)
O30.71164 (17)0.47438 (17)0.84433 (12)0.0589 (6)
N10.80930 (17)0.28746 (17)0.84147 (14)0.0400 (5)
C10.5053 (3)0.2914 (3)0.4369 (2)0.0809 (11)
H1A0.43710.25170.44950.121*
H1B0.54960.24120.40270.121*
H1C0.48530.36070.40290.121*
C20.5746 (2)0.3240 (2)0.52474 (18)0.0507 (7)
C30.5234 (2)0.3601 (3)0.5991 (2)0.0682 (9)
H30.44440.36580.59500.082*
C40.5863 (2)0.3880 (3)0.67935 (19)0.0566 (8)
H40.54980.41250.72830.068*
C50.7033 (2)0.3795 (2)0.68666 (15)0.0361 (6)
C61.0144 (2)0.2087 (2)0.91536 (16)0.0349 (6)
C70.9981 (2)0.2752 (2)0.99003 (17)0.0418 (6)
H70.93540.32450.98870.050*
C81.0742 (2)0.2690 (2)1.06679 (17)0.0429 (6)
H81.06340.31461.11670.052*
C91.1673 (2)0.1941 (2)1.06896 (17)0.0399 (6)
C101.2366 (3)0.2421 (3)1.22106 (19)0.0652 (9)
H10A1.24490.32371.20940.098*
H10B1.29520.21771.26660.098*
H10C1.16320.22811.24140.098*
C110.8663 (2)0.0672 (2)0.80896 (17)0.0467 (7)
H11A0.92990.01330.81200.056*
H11B0.82370.05230.86000.056*
C120.7905 (2)0.0481 (2)0.72291 (17)0.0403 (6)
C130.6738 (2)0.0645 (2)0.71947 (19)0.0515 (7)
H130.64160.08840.77070.062*
C140.6047 (2)0.0453 (3)0.6398 (2)0.0613 (8)
H140.52630.05510.63800.074*
C150.6520 (3)0.0121 (3)0.5640 (2)0.0598 (8)
H150.60560.00040.51040.072*
C160.7677 (3)0.0041 (2)0.5667 (2)0.0564 (8)
H160.79960.02710.51510.068*
C170.8365 (2)0.0135 (2)0.64559 (18)0.0474 (7)
H170.91470.00200.64700.057*
C181.1088 (2)0.1358 (2)0.91676 (17)0.0453 (7)
H181.12090.09240.86610.054*
C191.1835 (2)0.1282 (2)0.99286 (17)0.0464 (7)
H191.24600.07860.99390.056*
C200.7563 (2)0.3427 (2)0.61328 (17)0.0432 (6)
H200.83540.33650.61760.052*
C210.6923 (2)0.3152 (2)0.53404 (18)0.0494 (7)
H210.72890.29000.48530.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0473 (4)0.0380 (4)0.0341 (4)0.0003 (3)0.0014 (3)0.0043 (3)
S20.0423 (4)0.0394 (4)0.0301 (4)0.0018 (3)0.0008 (3)0.0032 (3)
O10.0520 (11)0.0568 (11)0.0415 (11)0.0090 (9)0.0111 (9)0.0030 (9)
O20.0548 (12)0.0531 (11)0.0564 (12)0.0178 (10)0.0069 (10)0.0154 (10)
O30.0762 (14)0.0570 (12)0.0433 (12)0.0201 (11)0.0048 (10)0.0077 (9)
N10.0427 (12)0.0423 (12)0.0351 (12)0.0036 (10)0.0041 (9)0.0109 (9)
C10.088 (3)0.094 (3)0.054 (2)0.010 (2)0.0242 (19)0.0016 (18)
C20.0546 (17)0.0554 (17)0.0400 (16)0.0033 (14)0.0048 (13)0.0005 (13)
C30.0376 (15)0.102 (3)0.063 (2)0.0153 (17)0.0078 (14)0.0010 (19)
C40.0429 (16)0.084 (2)0.0430 (17)0.0156 (15)0.0062 (13)0.0063 (15)
C50.0382 (13)0.0362 (13)0.0334 (14)0.0016 (11)0.0016 (11)0.0064 (11)
C60.0359 (13)0.0375 (13)0.0311 (13)0.0003 (11)0.0022 (10)0.0027 (11)
C70.0418 (14)0.0417 (14)0.0419 (15)0.0087 (12)0.0036 (12)0.0014 (12)
C80.0489 (15)0.0441 (15)0.0353 (14)0.0040 (12)0.0018 (12)0.0063 (12)
C90.0414 (14)0.0395 (14)0.0378 (15)0.0018 (12)0.0002 (12)0.0020 (11)
C100.094 (2)0.0495 (17)0.0460 (18)0.0055 (17)0.0224 (17)0.0084 (14)
C110.0575 (17)0.0392 (14)0.0415 (16)0.0026 (13)0.0037 (13)0.0047 (12)
C120.0473 (15)0.0332 (13)0.0389 (15)0.0053 (12)0.0024 (12)0.0016 (11)
C130.0505 (17)0.0540 (17)0.0504 (17)0.0023 (14)0.0076 (14)0.0013 (14)
C140.0390 (15)0.069 (2)0.074 (2)0.0086 (15)0.0058 (15)0.0001 (17)
C150.0572 (19)0.068 (2)0.0501 (19)0.0094 (16)0.0158 (15)0.0032 (15)
C160.0639 (19)0.0608 (18)0.0439 (17)0.0005 (16)0.0018 (14)0.0072 (14)
C170.0442 (15)0.0486 (16)0.0481 (17)0.0023 (13)0.0016 (13)0.0033 (13)
C180.0488 (15)0.0508 (16)0.0370 (15)0.0059 (13)0.0070 (12)0.0066 (12)
C190.0427 (15)0.0499 (15)0.0454 (16)0.0128 (13)0.0005 (12)0.0041 (13)
C200.0381 (14)0.0513 (16)0.0408 (15)0.0002 (12)0.0066 (11)0.0032 (13)
C210.0574 (17)0.0549 (16)0.0372 (15)0.0013 (14)0.0114 (13)0.0013 (13)
Geometric parameters (Å, º) top
S1—O31.4400 (19)C8—H80.9300
S1—O21.4450 (19)C9—C191.395 (4)
S1—N11.610 (2)C10—H10A0.9600
S1—C51.768 (2)C10—H10B0.9600
S2—N11.622 (2)C10—H10C0.9600
S2—C61.784 (2)C11—C121.503 (3)
S2—C111.826 (3)C11—H11A0.9700
O1—C91.352 (3)C11—H11B0.9700
O1—C101.430 (3)C12—C171.384 (4)
C1—C21.519 (4)C12—C131.385 (4)
C1—H1A0.9600C13—C141.387 (4)
C1—H1B0.9600C13—H130.9300
C1—H1C0.9600C14—C151.367 (4)
C2—C31.382 (4)C14—H140.9300
C2—C211.383 (4)C15—C161.374 (4)
C3—C41.380 (4)C15—H150.9300
C3—H30.9300C16—C171.374 (4)
C4—C51.376 (3)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C201.383 (3)C18—C191.367 (3)
C6—C71.382 (3)C18—H180.9300
C6—C181.391 (3)C19—H190.9300
C7—C81.383 (3)C20—C211.373 (3)
C7—H70.9300C20—H200.9300
C8—C91.392 (3)C21—H210.9300
O3—S1—O2117.46 (13)O1—C10—H10B109.5
O3—S1—N1105.99 (11)H10A—C10—H10B109.5
O2—S1—N1111.70 (11)O1—C10—H10C109.5
O3—S1—C5107.07 (12)H10A—C10—H10C109.5
O2—S1—C5106.74 (11)H10B—C10—H10C109.5
N1—S1—C5107.41 (11)C12—C11—S2110.27 (17)
N1—S2—C6105.22 (11)C12—C11—H11A109.6
N1—S2—C11101.52 (12)S2—C11—H11A109.6
C6—S2—C1199.88 (11)C12—C11—H11B109.6
C9—O1—C10119.0 (2)S2—C11—H11B109.6
S1—N1—S2115.58 (12)H11A—C11—H11B108.1
C2—C1—H1A109.5C17—C12—C13118.8 (2)
C2—C1—H1B109.5C17—C12—C11120.4 (2)
H1A—C1—H1B109.5C13—C12—C11120.8 (2)
C2—C1—H1C109.5C12—C13—C14120.2 (3)
H1A—C1—H1C109.5C12—C13—H13119.9
H1B—C1—H1C109.5C14—C13—H13119.9
C3—C2—C21117.3 (3)C15—C14—C13120.1 (3)
C3—C2—C1121.8 (3)C15—C14—H14120.0
C21—C2—C1120.8 (3)C13—C14—H14120.0
C4—C3—C2121.8 (3)C14—C15—C16120.1 (3)
C4—C3—H3119.1C14—C15—H15119.9
C2—C3—H3119.1C16—C15—H15119.9
C5—C4—C3119.8 (3)C17—C16—C15120.1 (3)
C5—C4—H4120.1C17—C16—H16120.0
C3—C4—H4120.1C15—C16—H16120.0
C4—C5—C20119.4 (2)C16—C17—C12120.7 (3)
C4—C5—S1120.0 (2)C16—C17—H17119.7
C20—C5—S1120.49 (19)C12—C17—H17119.7
C7—C6—C18119.9 (2)C19—C18—C6119.8 (2)
C7—C6—S2121.82 (19)C19—C18—H18120.1
C18—C6—S2118.24 (19)C6—C18—H18120.1
C6—C7—C8120.5 (2)C18—C19—C9120.8 (2)
C6—C7—H7119.7C18—C19—H19119.6
C8—C7—H7119.7C9—C19—H19119.6
C7—C8—C9119.6 (2)C21—C20—C5120.0 (2)
C7—C8—H8120.2C21—C20—H20120.0
C9—C8—H8120.2C5—C20—H20120.0
O1—C9—C8125.5 (2)C20—C21—C2121.7 (3)
O1—C9—C19115.1 (2)C20—C21—H21119.1
C8—C9—C19119.4 (2)C2—C21—H21119.1
O1—C10—H10A109.5
(Compound_9_X2S) top
Crystal data top
C13H10F2OSF(000) = 520
Mr = 252.27Dx = 1.448 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2280 reflections
a = 8.3649 (16) Åθ = 3.7–24.7°
b = 5.5063 (10) ŵ = 0.29 mm1
c = 25.129 (4) ÅT = 300 K
V = 1157.4 (4) Å3Block, colorless
Z = 40.31 × 0.27 × 0.24 mm
Data collection top
Bruker SMART X2S
diffractometer
2013 independent reflections
Radiation source: micro-focus sealed tube1760 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.037
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 99
Tmin = 0.749, Tmax = 0.871k = 65
6646 measured reflectionsl = 2928
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0681P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.020
2013 reflectionsΔρmax = 0.18 e Å3
154 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (10)
Crystal data top
C13H10F2OSV = 1157.4 (4) Å3
Mr = 252.27Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 8.3649 (16) ŵ = 0.29 mm1
b = 5.5063 (10) ÅT = 300 K
c = 25.129 (4) Å0.31 × 0.27 × 0.24 mm
Data collection top
Bruker SMART X2S
diffractometer
2013 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
1760 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.871Rint = 0.037
6646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.18 e Å3
S = 1.19Δρmin = 0.19 e Å3
2013 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
154 parametersAbsolute structure parameter: 0.07 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29434 (9)0.17051 (14)0.00059 (3)0.0413 (2)
F10.5368 (4)0.3431 (4)0.21543 (9)0.0785 (8)
F20.2986 (4)0.1816 (5)0.25419 (9)0.0833 (10)
O10.3161 (3)0.0944 (4)0.01086 (11)0.0571 (7)
C10.4817 (5)0.3033 (8)0.16523 (14)0.0539 (10)
C20.5299 (5)0.0960 (8)0.13933 (16)0.0543 (10)
H20.59820.01500.15550.065*
C30.4728 (4)0.0590 (7)0.08826 (14)0.0449 (8)
H30.50150.08080.06980.054*
C40.3734 (4)0.2274 (6)0.06441 (12)0.0376 (7)
C50.4491 (4)0.3284 (6)0.03887 (13)0.0389 (8)
H5A0.55350.26220.03050.047*
H5B0.44910.50000.03010.047*
C60.4130 (4)0.2934 (6)0.09713 (13)0.0355 (8)
C70.3139 (4)0.4548 (6)0.12431 (16)0.0447 (8)
H70.27340.58940.10650.054*
C80.2746 (5)0.4194 (8)0.17711 (15)0.0534 (9)
H80.20730.52640.19500.064*
C90.3383 (5)0.2213 (8)0.20225 (15)0.0501 (9)
C100.3817 (5)0.4729 (8)0.14335 (15)0.0557 (10)
H100.35140.61020.16240.067*
C110.3270 (5)0.4339 (7)0.09210 (16)0.0495 (9)
H110.25900.54610.07620.059*
C120.4383 (4)0.0590 (8)0.17791 (15)0.0521 (10)
H120.48040.07250.19640.063*
C130.4747 (4)0.0967 (7)0.12502 (16)0.0468 (9)
H130.54190.01190.10760.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0374 (4)0.0481 (5)0.0383 (4)0.0047 (3)0.0004 (4)0.0003 (5)
F10.102 (2)0.095 (2)0.0385 (13)0.0210 (15)0.0127 (13)0.0005 (14)
F20.108 (3)0.106 (2)0.0354 (13)0.0111 (16)0.0135 (14)0.0080 (14)
O10.0728 (17)0.0439 (14)0.0547 (19)0.0159 (12)0.0016 (13)0.0059 (13)
C10.064 (2)0.066 (3)0.0309 (18)0.016 (2)0.0007 (17)0.0048 (18)
C20.056 (2)0.056 (3)0.051 (2)0.0008 (19)0.0058 (18)0.0130 (19)
C30.049 (2)0.0390 (18)0.046 (2)0.0013 (16)0.0057 (16)0.0006 (17)
C40.0372 (17)0.0408 (19)0.0348 (17)0.0036 (14)0.0052 (14)0.0015 (15)
C50.0365 (17)0.0358 (19)0.044 (2)0.0057 (14)0.0007 (14)0.0021 (14)
C60.0307 (16)0.0359 (18)0.0399 (19)0.0039 (13)0.0016 (12)0.0019 (14)
C70.047 (2)0.044 (2)0.043 (2)0.0070 (15)0.0016 (17)0.0015 (19)
C80.054 (2)0.063 (2)0.043 (2)0.0097 (19)0.0076 (17)0.0108 (18)
C90.054 (2)0.065 (3)0.0320 (18)0.0019 (19)0.0019 (16)0.0001 (18)
C100.069 (3)0.055 (2)0.043 (2)0.005 (2)0.0079 (19)0.0074 (19)
C110.055 (2)0.044 (2)0.050 (2)0.0074 (17)0.0038 (17)0.0014 (18)
C120.056 (2)0.058 (2)0.042 (2)0.0077 (19)0.0001 (17)0.0115 (17)
C130.0467 (19)0.048 (2)0.045 (2)0.0098 (15)0.0018 (18)0.0029 (19)
Geometric parameters (Å, º) top
S1—O11.493 (3)C5—H5B0.9700
S1—C41.790 (3)C6—C131.390 (5)
S1—C51.832 (3)C6—C71.393 (5)
F1—C11.361 (4)C7—C81.381 (5)
F2—C91.364 (5)C7—H70.9300
C1—C101.369 (6)C8—C91.368 (6)
C1—C21.375 (6)C8—H80.9300
C2—C31.384 (5)C9—C121.369 (6)
C2—H20.9300C10—C111.384 (6)
C3—C41.382 (5)C10—H100.9300
C3—H30.9300C11—H110.9300
C4—C111.388 (5)C12—C131.379 (5)
C5—C61.507 (5)C12—H120.9300
C5—H5A0.9700C13—H130.9300
O1—S1—C4106.50 (16)C7—C6—C5120.9 (3)
O1—S1—C5106.67 (15)C8—C7—C6121.5 (3)
C4—S1—C597.76 (15)C8—C7—H7119.3
F1—C1—C10118.0 (4)C6—C7—H7119.3
F1—C1—C2118.2 (4)C9—C8—C7117.6 (3)
C10—C1—C2123.7 (4)C9—C8—H8121.2
C1—C2—C3117.4 (4)C7—C8—H8121.2
C1—C2—H2121.3F2—C9—C12118.1 (4)
C3—C2—H2121.3F2—C9—C8118.3 (3)
C4—C3—C2120.7 (3)C12—C9—C8123.5 (3)
C4—C3—H3119.6C1—C10—C11118.1 (4)
C2—C3—H3119.6C1—C10—H10121.0
C3—C4—C11120.0 (3)C11—C10—H10121.0
C3—C4—S1120.0 (3)C10—C11—C4120.1 (4)
C11—C4—S1119.8 (3)C10—C11—H11120.0
C6—C5—S1107.9 (2)C4—C11—H11120.0
C6—C5—H5A110.1C9—C12—C13117.9 (4)
S1—C5—H5A110.1C9—C12—H12121.1
C6—C5—H5B110.1C13—C12—H12121.1
S1—C5—H5B110.1C12—C13—C6121.4 (3)
H5A—C5—H5B108.4C12—C13—H13119.3
C13—C6—C7118.1 (3)C6—C13—H13119.3
C13—C6—C5121.0 (3)
(Compound_10_X2S) top
Crystal data top
C15H12N2OF(000) = 496
Mr = 236.27Dx = 1.333 Mg m3
Monoclinic, P121/n1Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1875 reflections
a = 7.5500 (16) Åθ = 2.9–22.8°
b = 11.186 (3) ŵ = 0.09 mm1
c = 13.954 (3) ÅT = 300 K
β = 92.938 (8)°Block, colorless
V = 1176.9 (5) Å30.31 × 0.27 × 0.23 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
2066 independent reflections
Radiation source: micro-focus sealed tube1550 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.033
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
h = 88
Tmin = 0.974, Tmax = 0.981k = 139
7461 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.23 w = 1/[σ2(Fo2) + (0.0626P)2]
where P = (Fo2 + 2Fc2)/3
2066 reflections(Δ/σ)max = 0.012
169 parametersΔρmax = 0.14 e Å3
3 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H12N2OV = 1176.9 (5) Å3
Mr = 236.27Z = 4
Monoclinic, P121/n1Mo Kα radiation
a = 7.5500 (16) ŵ = 0.09 mm1
b = 11.186 (3) ÅT = 300 K
c = 13.954 (3) Å0.31 × 0.27 × 0.23 mm
β = 92.938 (8)°
Data collection top
Bruker SMART X2S
diffractometer
2066 independent reflections
Absorption correction: multi-scan
SADABS V2008/1 (Bruker AXS)
1550 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.981Rint = 0.033
7461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.23Δρmax = 0.14 e Å3
2066 reflectionsΔρmin = 0.20 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50554 (16)0.37794 (11)0.09342 (9)0.0443 (4)
N10.29539 (19)0.23506 (13)0.06062 (10)0.0369 (4)
N20.3205 (2)0.39934 (16)0.03842 (12)0.0502 (5)
H2B0.229 (2)0.379 (2)0.0735 (14)0.075*
H2A0.368 (3)0.4663 (13)0.0538 (15)0.075*
C10.5228 (3)0.05566 (18)0.25480 (14)0.0502 (5)
H10.63040.01650.26670.060*
C20.4892 (2)0.11456 (17)0.16873 (13)0.0434 (5)
H20.57420.11450.12280.052*
C30.3300 (2)0.17365 (16)0.15044 (11)0.0342 (4)
C40.1537 (2)0.18899 (16)0.00154 (12)0.0368 (4)
C50.0219 (2)0.19900 (16)0.02550 (13)0.0401 (5)
C60.1551 (3)0.16093 (18)0.04081 (14)0.0495 (5)
H60.27300.16750.02520.059*
C70.1165 (3)0.11392 (18)0.12869 (15)0.0550 (6)
H70.20790.08970.17160.066*
C80.3971 (3)0.05490 (18)0.32303 (13)0.0507 (5)
H80.41930.01510.38090.061*
C90.2388 (3)0.11326 (17)0.30511 (12)0.0454 (5)
H90.15520.11290.35180.054*
C100.1998 (2)0.17331 (16)0.21848 (11)0.0361 (4)
C110.3809 (2)0.34055 (16)0.04112 (12)0.0342 (4)
C120.1924 (3)0.13928 (18)0.08928 (13)0.0474 (5)
H120.30990.13050.10520.057*
C130.0569 (3)0.10278 (18)0.15299 (14)0.0539 (6)
H130.08300.07080.21210.065*
C140.0683 (3)0.24309 (17)0.11938 (14)0.0461 (5)
H140.17520.28400.12180.055*
C150.0269 (3)0.23079 (17)0.20214 (14)0.0464 (5)
H150.02300.26270.25610.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0404 (8)0.0412 (8)0.0505 (8)0.0133 (6)0.0054 (6)0.0087 (6)
N10.0394 (9)0.0351 (9)0.0360 (8)0.0117 (7)0.0003 (6)0.0059 (6)
N20.0529 (11)0.0451 (11)0.0514 (10)0.0160 (8)0.0097 (8)0.0173 (8)
C10.0516 (13)0.0452 (13)0.0529 (12)0.0007 (10)0.0051 (10)0.0071 (10)
C20.0413 (11)0.0443 (12)0.0449 (11)0.0076 (9)0.0036 (9)0.0029 (9)
C30.0395 (11)0.0285 (10)0.0347 (9)0.0088 (8)0.0013 (8)0.0014 (7)
C40.0428 (11)0.0309 (10)0.0366 (10)0.0093 (8)0.0004 (8)0.0046 (8)
C50.0427 (11)0.0307 (10)0.0467 (11)0.0072 (8)0.0007 (8)0.0075 (8)
C60.0440 (12)0.0429 (13)0.0606 (13)0.0090 (9)0.0059 (10)0.0088 (10)
C70.0668 (16)0.0397 (13)0.0562 (13)0.0138 (11)0.0195 (11)0.0056 (10)
C80.0684 (15)0.0426 (12)0.0402 (11)0.0083 (11)0.0046 (10)0.0072 (9)
C90.0592 (13)0.0425 (12)0.0351 (10)0.0120 (10)0.0090 (9)0.0019 (9)
C100.0446 (11)0.0298 (10)0.0342 (9)0.0064 (8)0.0043 (8)0.0052 (7)
C110.0335 (10)0.0312 (10)0.0384 (10)0.0033 (8)0.0076 (8)0.0026 (8)
C120.0555 (12)0.0453 (12)0.0417 (11)0.0074 (10)0.0054 (9)0.0013 (9)
C130.0761 (17)0.0428 (13)0.0422 (11)0.0079 (11)0.0041 (11)0.0041 (9)
C140.0401 (11)0.0390 (12)0.0597 (13)0.0010 (9)0.0078 (9)0.0030 (10)
C150.0507 (12)0.0417 (12)0.0478 (12)0.0037 (9)0.0136 (9)0.0083 (9)
Geometric parameters (Å, º) top
O1—C111.234 (2)C5—C141.459 (3)
N1—C111.379 (2)C6—C71.379 (3)
N1—C41.438 (2)C6—H60.9300
N1—C31.441 (2)C7—C131.375 (3)
N2—C111.349 (2)C7—H70.9300
N2—H2B0.858 (9)C8—C91.373 (3)
N2—H2A0.862 (9)C8—H80.9300
C1—C81.379 (3)C9—C101.401 (2)
C1—C21.382 (3)C9—H90.9300
C1—H10.9300C10—C151.462 (3)
C2—C31.384 (2)C12—C131.382 (3)
C2—H20.9300C12—H120.9300
C3—C101.401 (2)C13—H130.9300
C4—C121.389 (3)C14—C151.336 (2)
C4—C51.401 (3)C14—H140.9300
C5—C61.398 (3)C15—H150.9300
C11—N1—C4121.95 (14)C6—C7—H7120.0
C11—N1—C3120.90 (13)C9—C8—C1119.67 (18)
C4—N1—C3116.74 (13)C9—C8—H8120.2
C11—N2—H2B124.5 (15)C1—C8—H8120.2
C11—N2—H2A120.1 (14)C8—C9—C10121.84 (18)
H2B—N2—H2A115.1 (18)C8—C9—H9119.1
C8—C1—C2120.06 (19)C10—C9—H9119.1
C8—C1—H1120.0C9—C10—C3117.51 (17)
C2—C1—H1120.0C9—C10—C15119.47 (16)
C1—C2—C3120.46 (18)C3—C10—C15123.02 (16)
C1—C2—H2119.8O1—C11—N2122.46 (16)
C3—C2—H2119.8O1—C11—N1121.61 (15)
C2—C3—C10120.46 (16)N2—C11—N1115.93 (16)
C2—C3—N1120.33 (15)C13—C12—C4120.2 (2)
C10—C3—N1119.21 (15)C13—C12—H12119.9
C12—C4—C5120.95 (17)C4—C12—H12119.9
C12—C4—N1119.41 (17)C7—C13—C12119.84 (19)
C5—C4—N1119.60 (16)C7—C13—H13120.1
C6—C5—C4117.12 (18)C12—C13—H13120.1
C6—C5—C14119.97 (18)C15—C14—C5126.73 (18)
C4—C5—C14122.88 (16)C15—C14—H14116.6
C7—C6—C5121.8 (2)C5—C14—H14116.6
C7—C6—H6119.1C14—C15—C10128.06 (18)
C5—C6—H6119.1C14—C15—H15116.0
C13—C7—C6120.05 (19)C10—C15—H15116.0
C13—C7—H7120.0
(Compound_11_APEX) top
Crystal data top
C13H10INO2SZ = 2
Mr = 371.18F(000) = 360
Triclinic, P1Dx = 1.936 Mg m3
a = 7.4946 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7421 (11) ÅCell parameters from 4101 reflections
c = 11.4816 (16) Åθ = 2.7–27.1°
α = 95.418 (3)°µ = 2.67 mm1
β = 103.879 (3)°T = 291 K
γ = 96.985 (3)°Block, colourless
V = 636.65 (16) Å30.38 × 0.31 × 0.28 mm
Data collection top
Bruker APEX II DUO
diffractometer
2786 independent reflections
Radiation source: fine-focus sealed tube2492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3333 pixels mm-1θmax = 27.3°, θmin = 1.8°
φ & ω scansh = 49
Absorption correction: multi-scan
SADABS Version 2008/1
k = 99
Tmin = 0.56, Tmax = 0.76l = 1414
7653 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.3359P]
where P = (Fo2 + 2Fc2)/3
2786 reflections(Δ/σ)max = 0.004
163 parametersΔρmax = 1.41 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C13H10INO2Sγ = 96.985 (3)°
Mr = 371.18V = 636.65 (16) Å3
Triclinic, P1Z = 2
a = 7.4946 (11) ÅMo Kα radiation
b = 7.7421 (11) ŵ = 2.67 mm1
c = 11.4816 (16) ÅT = 291 K
α = 95.418 (3)°0.38 × 0.31 × 0.28 mm
β = 103.879 (3)°
Data collection top
Bruker APEX II DUO
diffractometer
2786 independent reflections
Absorption correction: multi-scan
SADABS Version 2008/1
2492 reflections with I > 2σ(I)
Tmin = 0.56, Tmax = 0.76Rint = 0.025
7653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.05Δρmax = 1.41 e Å3
2786 reflectionsΔρmin = 0.43 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.32050 (2)1.17267 (3)1.412333 (19)0.04289 (9)
S10.54670 (9)0.71959 (11)0.91681 (7)0.0413 (2)
O10.3387 (3)0.3512 (4)0.7134 (3)0.0599 (7)
O20.2470 (3)0.3193 (4)0.5501 (2)0.0598 (7)
N10.2198 (3)0.3702 (3)0.6568 (3)0.0395 (6)
C11.0642 (4)1.0503 (4)1.2973 (3)0.0328 (6)
C20.9027 (4)1.0497 (4)1.3363 (3)0.0395 (7)
H20.90611.10441.41260.047*
C30.7356 (4)0.9660 (4)1.2595 (3)0.0395 (7)
H30.62710.96571.28530.047*
C40.7265 (4)0.8831 (4)1.1456 (3)0.0312 (6)
C50.5358 (4)0.7918 (4)1.0649 (3)0.0378 (7)
H5A0.44640.8731.06130.045*
H5B0.49260.6921.10120.045*
C60.3162 (4)0.6227 (4)0.8469 (3)0.0332 (6)
C70.1686 (4)0.6265 (4)0.9014 (3)0.0386 (7)
H70.18820.68340.97940.046*
C80.0077 (4)0.5444 (4)0.8379 (3)0.0357 (7)
H80.10720.54640.87290.043*
C90.0341 (4)0.4602 (4)0.7227 (3)0.0328 (6)
C100.8916 (4)0.8863 (4)1.1080 (3)0.0388 (7)
H100.88910.83281.03150.047*
C111.0595 (4)0.9698 (4)1.1851 (3)0.0403 (7)
H111.16880.97061.16020.048*
C120.2851 (4)0.5383 (4)0.7294 (3)0.0379 (7)
H120.38350.53710.69320.046*
C130.1094 (4)0.4566 (4)0.6663 (3)0.0370 (7)
H130.08820.40050.58790.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03388 (11)0.04810 (15)0.03853 (15)0.00226 (8)0.00008 (8)0.00079 (10)
S10.0279 (3)0.0544 (5)0.0359 (4)0.0025 (3)0.0055 (3)0.0048 (4)
O10.0352 (11)0.0776 (19)0.0622 (18)0.0071 (11)0.0170 (11)0.0061 (14)
O20.0434 (12)0.0770 (19)0.0448 (16)0.0103 (12)0.0002 (11)0.0098 (14)
N10.0305 (11)0.0382 (15)0.0439 (17)0.0002 (10)0.0026 (11)0.0013 (13)
C10.0299 (12)0.0326 (15)0.0327 (16)0.0020 (10)0.0037 (11)0.0023 (12)
C20.0368 (14)0.0465 (19)0.0317 (17)0.0036 (12)0.0071 (12)0.0053 (14)
C30.0332 (13)0.0507 (19)0.0341 (18)0.0046 (12)0.0106 (12)0.0000 (15)
C40.0301 (12)0.0292 (15)0.0329 (16)0.0035 (10)0.0060 (11)0.0032 (12)
C50.0335 (13)0.0321 (16)0.055 (2)0.0085 (11)0.0198 (13)0.0152 (15)
C60.0265 (11)0.0343 (16)0.0364 (17)0.0032 (10)0.0041 (11)0.0042 (13)
C70.0369 (14)0.0458 (18)0.0305 (17)0.0042 (12)0.0089 (12)0.0061 (14)
C80.0305 (12)0.0414 (17)0.0338 (17)0.0027 (11)0.0092 (11)0.0019 (14)
C90.0288 (12)0.0307 (15)0.0348 (17)0.0015 (10)0.0023 (11)0.0021 (13)
C100.0363 (14)0.0483 (19)0.0293 (17)0.0027 (13)0.0093 (12)0.0054 (14)
C110.0320 (13)0.0504 (19)0.0376 (19)0.0042 (12)0.0099 (12)0.0010 (15)
C120.0328 (13)0.0477 (18)0.0326 (17)0.0031 (12)0.0103 (12)0.0005 (14)
C130.0370 (13)0.0421 (17)0.0286 (17)0.0035 (12)0.0057 (12)0.0024 (14)
Geometric parameters (Å, º) top
I1—C12.106 (3)C5—H5B0.97
S1—C61.760 (3)C6—C121.395 (4)
S1—C51.763 (3)C6—C71.397 (4)
O1—N11.225 (3)C7—C81.388 (4)
O2—N11.211 (4)C7—H70.93
N1—C91.468 (3)C8—C91.376 (4)
C1—C111.368 (5)C8—H80.93
C1—C21.388 (4)C9—C131.384 (4)
C2—C31.389 (4)C10—C111.394 (4)
C2—H20.93C10—H100.93
C3—C41.384 (4)C11—H110.93
C3—H30.93C12—C131.383 (4)
C4—C101.404 (4)C12—H120.93
C4—C51.548 (4)C13—H130.93
C5—H5A0.97
C6—S1—C5102.67 (14)C12—C6—S1115.8 (2)
O2—N1—O1123.8 (3)C7—C6—S1124.3 (2)
O2—N1—C9118.4 (3)C8—C7—C6119.4 (3)
O1—N1—C9117.8 (3)C8—C7—H7120.3
C11—C1—C2120.6 (3)C6—C7—H7120.3
C11—C1—I1119.4 (2)C9—C8—C7119.6 (3)
C2—C1—I1120.0 (2)C9—C8—H8120.2
C1—C2—C3119.0 (3)C7—C8—H8120.2
C1—C2—H2120.5C8—C9—C13122.1 (3)
C3—C2—H2120.5C8—C9—N1119.4 (3)
C4—C3—C2121.7 (3)C13—C9—N1118.4 (3)
C4—C3—H3119.1C11—C10—C4120.1 (3)
C2—C3—H3119.1C11—C10—H10120.0
C3—C4—C10