
cif applications

628 doi:10.1107/S0021889811011058 J. Appl. Cryst. (2011). 44, 628–634

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 17 February 2011

Accepted 24 March 2011

2011 International Union of Crystallography

Printed in Singapore – all rights reserved

CIFXML: a schema and toolkit for managing CIFs in
XML

Nick E. Day, Peter Murray-Rust* and Simon M. Tyrrell

Unilever Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road,

Cambridge CB2 1EW, UK. Correspondence e-mail: pm286@cam.ac.uk

CIFXML applies the XML strategies and technologies to create a general

interface for processing CIF documents that conform to the CIF syntax and

DDL1. Both a DTD and an XML schema for CIFs are presented. CIFs can be

read, edited, validated syntactically, sorted, normalized, filtered, stored as an

XML document object model, transformed and output. CIFXOM provides an

easy way of converting CIFs to XML and vice versa using Java.

1. Introduction
Crystallographic information file (CIF; Hall et al., 1991) is a struc-

tured document format that is in common use for the interchange of

crystallographic information [the same acronym is used for the

broader system of exchange protocols known as Crystallographic

Information Framework (Hall & McMahon, 2005)]. It has a formal

syntax, which describes ‘well formed’ CIFs and which is now almost

completely honoured in practice. Some semantics are formalized but

current usage is variable. Ontology is provided by CIF dictionaries,

which in principle allow machine validation of data instances, but

relatively few tools exist for semantic integration.

Several excellent CIF parsers have been developed, but most of

them store the parsed information (infoset) within the memory of the

program and users will need to know the internals and language of

each program to extract information. Programming libraries for

working with CIF files have already been described for Fortran (Hall

& Bernstein, 1996) and C, or variants (Westbrook et al., 1997; Hester,

2006), Python (Chang & Bourne, 1998; Edgington, 1997), and Perl

(Bluhm, 2000).

The CIF standard pre-dated XML (W3C, 1997) by about a decade,

and its components [datafiles, dictionaries and DDLs (dictionary

definition languages)] are essentially isomorphous to the XML

infrastructure [documents, schemas, XSD (XML Schema Defini-

tion)]. It is possible to represent much of the formal power of CIF

DDLs in XSD. One of us (PM-R) has been through this exercise and

established that when the CIF constructs are translated into XML

equivalence it is possible to carry out a large amount of validation

(Murray-Rust, 1998). However there are a number of constructs in

CIF that cannot be trivially converted to XML and doing this

explicitly is considerably more laborious than hard-coding pragmatic

implicit semantics where they are essential (http://www.iucr.org/

__data/iucr/cif/software/ciftbx/).

The XML community has developed many strategies and tools for

semantics and ontological operations on structured documents, and

we have transferred these to support CIFs by developing the XML

dialect CIFXML. XML provides schema-based validation of data

instances and a variety of strategies for transforming documents

[Simple API (application programming interface) for XML (SAX;

http://www.saxproject.org/), Document Object Model (DOM; W3C,

2005), Extensible Stylesheet Language Transformations (XSLT;

W3C, 1999) and XSD (W3C, 2000)]. XML has the great benefit that it

allows the infoset to be serialized independently of the program that

created it. There are a very large number of tools for validating XML

so that it is possible to check the structure and content of the seri-

alized XML without knowing the domain specifics. Indeed many web

browsers now contain good XML parsers which allow searching and

filtering through JavaScript and related languages. Many other XML

tools exist for searching, indexing and other manipulation, and the

type of information is easily transformed into RDF (Resource

Description Framework) and other web-friendly languages. This

makes it possible to search for name–value constructs (CIFItem) in

RDF-ized CIFXML.

XML serialization also allows ‘round-tripping’, which is an

important tool for checking consistency and completeness of parsing

and representation. Some information (mainly whitespace and other

formatting) will be lost during the round trips but it is possible to

carry out the process CIF to CIFXML to CIF to CIFXML with a high

degree of stability.

There are two main strategies for processing structured documents:

(a) SAX. After lexical processing a document is broken into

chunks, which fire events in a linear order. In XML this normally

corresponds to start and end tags and contained text.

(b) DOM. The document is converted into a tree structure (often

representable by a DTD or XML schema). The tree is held in

memory and can be navigated and transformed in many ways.

SAX and DOM are complementary. SAX has the advantage of

being rapid and not limited by memory. DOM preserves the context

of every piece of information. In practice many XML parsers provide

both strategies and use SAX to build a DOM. The use of SAX, DOM

and callbacks may be unfamiliar so a brief description is given later

(x7.2).

2. CIFXML

In 1995 one of us (PM-R) visited the Protein Data Bank (PDB;

Berman et al., 2000) in Brookhaven and worked with Professor H. J.

Bernstein and colleagues on representing the emerging mmCIF

(Fitzgerald et al., 1996) specification in a bespoke structured markup

language. Later one of the authors (PM-R) envisaged a complete

suite of XML tools (Murray-Rust, 1998) that mapped onto the

emerging DDLs and dictionaries, and much of this was discussed with

Professors S. R. Hall and N. Spadaccini. A prototype of DDL1 and

DDL2 was created in an early precursor of CIFXML, as well as a

dictionary validator for the complete infrastructure of emerging

DDLs and dictionaries. However, the DDL specification was still

evolving at this time and even small changes gave rise to large

http://crossmark.crossref.org/dialog/?doi=10.1107/S0021889811011058&domain=pdf&date_stamp=2011-05-14

downstream implications in the software. The conclusion of these

explorations was that building the complete infrastructure for XML

representation and validation through DDLs and dictionaries was a

very considerable labour and was also likely to throw up a number of

semantic concerns which would have needed to have been addressed

by the CIF community. At that stage, therefore, it seemed practical to

hard-code the semantics into DDL1-compatible dictionaries. Since

the CIF core dictionary has become relatively stable, it can be used

without ‘on-the-fly’ validation against DDL1 (Hester, 2006).

To support CIF through standard XML methods and tools, we have

now created CIFXML, an XML dialect with a corresponding XML

DTD and schema. Alongside this, we have developed CIFXOM, a

Java library for converting CIFs to valid CIFXML and vice versa.

CIFXOM is based on the XML parsing strategies, and this article

describes the fundamental engine for transforming CIFs into XML.

The DDL-validated transformation of CIFXML documents into

Chemical Markup Language (CML) will be described elsewhere

(Murray-Rust et al., 2011).

CIFXML currently supports the CIF syntax and DDL1-based

(Hall & Cook, 1995) dictionaries [but not STAR (Cook, 1991) or

DDL2 (Westbrook et al., 2005), i.e. save frames]. It interprets any CIF

as a structured document (CIF), which may contain the following:

(a) datablocks: these must have unique identifiers and may

contain items, loops and comments.

(b) items: all item names must be unique within a datablock.

(c) loops: all loops within a datablock must belong to different

categories (or have specific reference items), and all names in the

loop should be unique.

(d) comments: comments can occur anywhere within a CIF where

whitespace can occur. It is unclear whether comments are technically

part of the content of a CIF or simply annotations for human readers

only. We deprecate their use for holding information, but since they

are often used for metadata we retain them in the CIFXML model.

(e) Whitespace: CIF elements can be separated by inline and

interline whitespace, but this is not included in the CIFXML data

model.

The CIF syntax allows for a number of syntactic variants such as

delimiters on values or tokens used for whitespace. These are not

held in the CIFXML data model so the precise lexical variant will not

be recovered in round trips.

There is no formal concept of order in CIF. The data blocks, the

elements within each data block and the components of a loop can be

reordered without affecting the abstract data model of a CIF.

According to the specification the ordering of ‘rows’ in a loop is not

significant. However, XML supports the order of document elements

and CIFXML preserves precisely all order in the input document.

This allows CIFs to be ‘round-tripped’ (i.e. read into the DOM and

re-output without loss). In addition, the order of the components can

be canonicalized so that it is possible to compare documents with

differing ordering but identical semantic content.

The CIF standard requires that data instances are valid against one

or more dictionaries. In practice few tools validate CIFs against any

dictionary [and we shall report elsewhere a CIFXML-based

dictionary and document validation tool (Murray-Rust et al., 2011)].

Certain semantics can only be applied if a dictionary is available (e.g.

the requirement that elements in a loop must belong to the same

category). These semantics are omitted from the core CIFXML model.

2.1. CIF conformance

To establish the correctness of CIFXML with respect to the

schema/DTD (described below, in x4, and included in full in

Appendix A) and to act as a CIF validator we have written a Java

toolkit, CIFXOM. CIFXOM has been created to implement the CIF

standard as described in the specification. We notice, however, that a

small but significant fraction of CIFs do not adhere to the specifica-

tion precisely. The most common deviations (which probably arise

from using normal text editors rather than CIF-aware ones) are

(a) incorrect use of delimiters (e.g. assuming that end-of-line closes

quotes),

(b) duplication of items,

(c) duplicate datablock names,

(d) improper insertion of ‘comments’ (sometimes apparently

added by technical editors) that do not start with ‘#’,

(e) illegal characters (especially non-printing characters).

CIFXOM provides some optional heuristics to attempt recovery

from these, but cannot, of course, guarantee that the result is what

was intended. We note that the proportion of these errors is declining,

presumably as a result of the greater use of checkCIF (mandated by

some publishers), conformance in software and the greater familiarity

with CIF in the editing processes. Until relatively recently, few if any

CIF-aware editing tools existed and manual editing was required for

the majority of the CIF creation process. The Cambridge Crystal-

lographic Data Centre (CCDC) provides a free (for individual

research and teaching use) tool (enCIFer; CCDC, 2004) which allows

even inexperienced users to generate syntactically correct CIFs.

Another aid for pre-publication validation and formatting of CIFs is

publCIF (Westrip, 2010), available from the International Union of

Crystallography web site (http://www.iucr.org/resources/cif/software/).

3. CIFXOM functionality

CIFXOM supports the following operations:

(a) Complete syntactic validation of CIF documents.

(b) Dictionary-free semantic validation against the CIF standard.

(c) Conversion of escaped characters to their Unicode equivalents.

(d) Reporting of errors and warnings with original line numbers.

Further processing continues after warnings and we attempt optional

recovery from some errors.

(e) Optional parsing of numbers with standard uncertainty fields

[e.g. 123.45(6)].

(f) Choice of DOM or SAX strategies and choice of parsers.

(g) Creation of a CIFXML object from CIF or XML.

(h) Normalization of document structure.

(i) Canonicalization of document structure.

(j) Optional sorting of part or whole document.

(k) Identification of differences between data models for two CIFs

(i.e. independent of syntax and ordering).

(l) Output as XML, HTML or CIF for round-tripping.

4. Representation of CIF documents in XML

The DTD to which the XML serialization of CIFs must conform is

included in full in Appendix A, as is its XML schema representation.

The elements are listed and described in Table 1.

cif applications

J. Appl. Cryst. (2011). 44, 628–634 Nick E. Day et al. � CIFXML 629

Table 1
Elements in the XML schema and DTD.

Element Sub-elements Attribute names

cell comment, datablock su

cif – –
comment – –
datablock comment, item, loop id

id – –
item – name, su, numericValue, dataType
loop row names

row cell –

Using this DTD/schema, we show in Table 2 how a fragment of a

typical CIF is translated.

An alternative syntax for the numeric fields, which avoids the

problems of parsing suffixed brackets, is exemplified by the following:

5. CIFXOM architecture

CIFXOM is a single package based closely on the SAX model. We

have used the simple and elegant XOM (http://www.xom.nu/) model

rather than the overly engineered and difficult W3C DOM model.

CIFXOM contains the following main classes, most of whose func-

tionality is obvious from the name or the position in the class hier-

archy. The CIF parsing uses a SAX-like model where events cause

callbacks to the content or error handlers.

(a) AbstractBlock:java
(b) AbstractTextElement:java
(c) AbstractValueElement:java
(d) CIFComment:java
(e) CIFContentHandler:java
(f) CIFDataBlock:java
(g) CIFElement:java
(h) CIFErrorHandler:java
(i) CIFException:java
(j) CIFItem:java
(k) CIFLoop:java
(l) CIFParser:java
(m) CIFRow:java
(n) CIFSaveFrame:java
(o) CIFTableCell:java
(p) DOMBuilderContentHandler.java

(q) DefaultContentHandler:java
(r) DefaultErrorHandler:java
The inheritance hierarchy of the main

CIFXOM concrete classes is shown in Fig. 1.

All CIFXOM elements are descendants of the

XOM Element class.

The base class is CIFElement, which

defines a basic API for processes common to

all subclasses.

(i) String toCIFStringðÞ

This returns the CIFElement as a CIF-

formatted string.

(ii) void writeXML ðWriterwÞ throws IOException

This will output the CIFElement and all of its children in an XML

format.

(iii) void writeHTML ðWriterwÞ throws IOException

This will output the CIFElement and all of its children in an HTML

format with lists converted into HTML tables.

(iv) void writeCIF ðWriterwÞ throws IOException

This will output the CIFElement and all of its children in CIF format,

thus showing that CIFXOM is a lossless library. It uses the

toCIFStringðÞ method described above.

(v) void normalizeðÞ

This will attempt to remove any lexical variants.

(vi) void canonicalizeðÞ

Within a CIF file the order of the datablocks, items and loops

(including the row/column ordering) are all arbitrary. This will reor-

ganize the order of the various CIFElements within a CIFDocument

into a lexical order. The default behaviour of canonicalizeðÞ is to

apply the following heuristics during its reordering:

(1) CIFItems occur lexically before CIFLoops,

(2) CIFItems are sorted alphabetically by name,

(3) the columns of each CIFloop are sorted alphabetically by

namelist, then the rows are sorted upon their lexical ordering,

(4) the CIFLoops are sorted alphabetically using the name of their

first column.

(vii) void processSuðboolean bÞ

This determines whether numeric variables with standard uncer-

tainties in brackets should be parsed and analysed.

As a further illustration, an example of the canonicalization

algorithm for a small set of CIF data is given in Fig. 2.

6. Installing CIFXOM

CIFXOM requires Java 1.5 or higher (http://www.javasoft.com) and is

available under Artistic License 2.0 (http://www.opensource.org/

cif applications

630 Nick E. Day et al. � CIFXML J. Appl. Cryst. (2011). 44, 628–634

Table 2
A comparison of CIF and CIFXML representation.

CIF structure Equivalent CIFXML structure

<cif>

data_I <datablock id = "I">

_audit_creation_method SHELXL97 <item name = "_audit_creation_method">SHELXL97</item>

_chemical_formula_sum

‘C93 H84 Cl3 Co Fe N8 O2’

<item name = "_chemical_formula_sum">

C93 H84 Cl3 Co Fe N8 O2</item>

_chemical_formula_weight 1566.81 <item name = "_chemical_formula_weight">1566.81</item>

_symmetry_cell_setting ‘Triclinic’ <item name = "_symmetry_cell_setting">Triclinic</item>

_symmetry_space_group_name_H-M ‘P -1’ <item name = "_symmetry_space_group_name_h-m">P -1</item>

loop_ <loop names = "_symmetry_equiv_pos_as_xyz">

_symmetry_equiv_pos_as_xyz

‘x, y, z’ <row>

<cell>x, y, z</cell>

</row>

‘-x, -y, -z’ <row>

<cell>-x, -y, -z</cell>

</row>

</loop>

_cell_length_a 13.8463(3) <item name = "_cell_length_a">13.8463(3)</item>

_cell_length_b 16.8164(5) <item name = "_cell_length_b">16.8164(5)</item>

_cell_length_c 17.9072(6) <item name = "_cell_length_c">17.9072(6)</item>

_cell_angle_alpha 93.7800(10) <item name = "_cell_angle_alpha">93.7800(10)</item>

_cell_angle_beta 111.1430(10) <item name = "_cell_angle_beta">111.1430(10)</item>

_cell_angle_gamma 97.4630(10) <item name = "_cell_angle_gamma">97.4630(10)</item>

_cell_volume 3827.19(19) <item name = "_cell_volume">3827.19(19)</item>

_cell_formula_units_Z 2 <item name = "_cell_formula_units_z">2</item>

_cell_measurement_temperature 110(2) <item name = "_cell_measurement_temperature">110(2)</item>

</datablock>

</cif>

licenses/artistic-license-2.0) from the CML project at Sourceforge

(http://sourceforge.net/projects/cml/). The latest distribution can be

downloaded as a jar file (http://sourceforge.net/projects/cml/), or the

source code can be downloaded from the Subversion/CVS reposi-

tories (http://sourceforge.net/projects/cml/develop) using an appro-

priate client. To build the source code, Maven 2.0 (http://

maven.apache.org/) is recommended. Simple examples, expected

output and unit tests can be found in both the distribution and the

code repository.

7. Using CIFXOM

CIFXOM is a toolkit and can be used for many purposes. A few

standard tasks have been programmed and these will also be valuable

for understanding how to use the toolkit. All classes are fully docu-

mented and are thus supported by Javadoc (http://www.oracle.

com/technetwork/java/javase/documentation/index-jsp-135444.html),

which is recommended as a useful ancillary tool.

As all CIFXOM elements are subclassed from the XOM Element

class, CIFXOM uses many XML functions from the XOM library.

Therefore, application builders may find it useful to refer to the

documentation and tutorials about XOM (http://www.xom.nu/).

7.1. Examples of the API

Each of the CIF classes has an API to facilitate the programmatic

adding, removing, setting and getting of its particular data fields. For

example, some of the methods of CIFItem are shown in Table 3.

7.2. Parsing and callbacks

CIFXOM has a default parsing system which can be subclassed

should a different parsing mechanism be needed. This allows the

implementer or user to choose between parsers (including at

runtime), perhaps on the basis of speed or conformance. In practice

most programmers will use the default.

The SAX strategy is that a parser provides callbacks when lexical/

document events are fired. This means that the user delegates the

parsing process to a parser and only regains control after a complete

parse (unless exceptions are thrown). The user provides callbacks to

trap the events so that any that are not required can be ignored.

The following code is an excerpt from the readToken method of

the CIFParser class, which shows a callback to the CIFContent-

Handler (contentHandler in the code) to add a CIFItem (item) to

the current instance of a CIFDataBlock (this). If there is an error

during this method call, there is a callback to the CIFErrorHandler

(errorHandler) to provide the error message.

cif applications

J. Appl. Cryst. (2011). 44, 628–634 Nick E. Day et al. � CIFXML 631

Figure 2
Example of applying the canonicalization algorithm.

Table 3
Some example methods of the CIFItem class API.

Declaration Description

public void setItemName(String name) throws

CIFException;

Set the name for a data item:
Normally used when building CIFXML
Data names should never be reset
Implementers may check the value of a name or whether it violates any CIF syntax or dictionary restrictions
Parameters: name (should be compliant with CIF syntax)
Throws: CIFException syntax violation or ontology/dictionary violation

public void setItemValue(String value) throws

CIFException;

Set the value for a data item:
Normally used when building CIFXML
Implementers may check the value to see whether it violates any CIF syntax or dictionary restrictions
Parameters: value (should be compliant with CIF syntax); no quotes are permitted unless part of the value
Throws: CIFException syntax violation or ontology/dictionary violation

public String getItemName(); Get the name for a data item:
Returns: the name (should never be null)

public String getItemValue(); Get the value for a data item:
Returns: the value

public Double getSU(); Get the standard uncertainty for a data item:
CIF parsers should ensure that if s.u. is non-blank then the data value should not contain a bracketed s.u.
Returns: the standard uncertainty (null if not present)

Figure 1
The CIFXOM inheritance hierarchy (CIFSaveFrame is reserved for expansion).

7.3. Example use of the CIFParser class

Code to read a CIF into CIFXML, canonicalize it and then write

out the CIFXML is included in full in Appendix B.

7.4. A simple CIF editor

A simple use case involves reading a CIF into CIFXML and

manipulating it through DOM-like calls, thus providing some of the

features of a simple editing system. After creating the CIF, the

process iterates over the datablocks and, for instance, manipulates

the cell measurement temp item. In the example provided, it will

either add a new item or change the value of the current one. The

code is included in full in Appendix C.

8. Deployment

CIFXOM has already been implemented in the following:

(a) The CrystalEye (http://wwmm.ch.cam.ac.uk/crystaleye/) web

site, a crystallographic repository containing over 120 000 CIF files,

all of which have been processed by CIFXOM (parsing, manipulation

of the CIF data structure and input for conversion into CML). This

has exposed CIFXML to CIFs from a wide range of laboratories with

varying degrees of conformance to the exact standard.

(b) The SPECTRa (Downing et al., 2008) and SPECTRa-T

(Downing et al., 2010) projects, in which CIFXOM was similarly

implemented as a component of repository software implemented at

the University of Cambridge, Imperial College London and the

University of Southampton.

APPENDIX A
DTD and XSD schema

The DTD to which the XML serialization of CIFs must conform is as

follows:

This DTD can also be expressed as an XML schema, as in the

following:

cif applications

632 Nick E. Day et al. � CIFXML J. Appl. Cryst. (2011). 44, 628–634

APPENDIX B
Example use of the CIFParser class

The following code will read a CIF into CIFXML, canonicalize it and

then write out the CIFXML:

APPENDIX C
A simple CIF editor

The following code manipulates the cell measurement temp item,

either adding a new item or changing the value of the current one.

We thank the DTI/EPSRC for support under the UK eScience

program. NED thanks the EPSRC for a studentship. The invaluable

assistance of Dr Charlotte Bolton in the preparation of this manu-

script is acknowledged.

References

Bluhm, W. (2000). STAR (CIF) Parser, http://pdb.sdsc.edu/STAR/index.html.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H.,

Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242.
CCDC (2004). enCIFer, http://www.ccdc.cam.ac.uk/free_services/encifer/.
Chang, W. & Bourne, P. E. (1998). J. Appl. Cryst. 31, 505–509.
Cook, A. P. F. (1991). Implementing SMD in STAR: Dictionary Definition

Language. ORAC Ltd, Leeds, UK.
Downing, J., Harvey, M. J., Morgan, P. B., Murray-Rust, P., Rzepa, H. S.,

Stewart, D. C., Tonge, A. P. & Townsend, J. A. (2010). J. Chem. Inf. Model.
50, 251–261.

Downing, J., Murray-Rust, P., Tonge, A. P., Morgan, P., Rzepa, H. S., Cotterill,
F., Day, N. & Harvey, M. J. (2008). J. Chem. Inf. Model. 48, 1571–1581.

Edgington, P. R. (1997). HICCuP: High-Integrity CIF Checking Using Python.
Cambridge Crystallographic Data Centre, UK.

Fitzgerald, P. M. D., Berman, H. M., Bourne, P. E., McMahon, B., Watenpaugh,
K. D. & Westbrook, J. (1996). Acta Cryst. A52(Suppl), MSWK.CF.06.

Hall, S. R., Allen, F. H. & Brown, I. D. (1991). Acta Cryst. A47, 655–685.
Hall, S. R. & Bernstein, H. J. (1996). J. Appl. Cryst. 29, 598–603.
Hall, S. R. & Cook, A. P. F. (1995). J. Chem. Inf. Comput. Sci. 35, 819–825.
Hall, S. R. & McMahon, B. (2005). Editors. International Tables for

Crystallography, Volume G, Definition and Exchange of Crystallographic
Data. Heidelberg: Springer.

Hester, J. R. (2006). J. Appl. Cryst. 39, 621–625.
Murray-Rust, P. (1998). Acta Cryst. D54, 1065–1070.
Murray-Rust, P., Adams, S. E., Day, N. E., Downing, J., England, N. W. &

Townsend, J. A. (2011). In preparation.
W3C (1997). XML Core Working Group Public Page, http://www.w3.org/

XML/Core/.

cif applications

J. Appl. Cryst. (2011). 44, 628–634 Nick E. Day et al. � CIFXML 633

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB27

W3C (1999). XSL Transformations (XSLT), http://www.w3.org/TR/xslt.
W3C (2000). XML Schema, http://www.w3.org/XML/Schema.
W3C (2005). Document Object Model (DOM), http://www.w3.org/DOM/.
Westbrook, J. D., Berman, H. & Hall, S. R. (2005). International Tables

for Crystallography, Volume G, Definition and Exchange of Crystal-

lographic Data, ch. 2.6, edited by S. R. Hall & B. McMahon. Heidelberg:
Springer.

Westbrook, J. D., Hsieh, S.-H. & Fitzgerald, P. M. D. (1997). J. Appl. Cryst. 30,
79–83.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

cif applications

634 Nick E. Day et al. � CIFXML J. Appl. Cryst. (2011). 44, 628–634

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5526&bbid=BB31

