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1. X-ray diffraction data from TiO2 nanoparticles

To demonstrate that our technique can be applied to experimental data, we took X-ray

powder diffraction curves from 20 nm TiO2 nanoparticles. The true curve (with zero

noise) is not accessible in real experiments, but we can reduce the noise arbitrarily

by increasing the count time. We took 80 scans of 10 seconds each, which were all

supposed to be equivalent. Our noisy dataset was constructed by summing four scans,

and a low-noise comparison signal was formed from the sum of the remaining 76. The

latter needed to be multiplied by a scaling factor Φ to bring it to the same level as

the noisy data.

If all datasets were equivalent to one another, this factor would be the ratio of the

number of scans, Φ = 4/76. To test this, we ranked the scans by intensity for each

of the 10769 pixels. The results for a representative subset are shown in the top half

of Figure 1. The greyscale intensity in row i and column j represents the ranking of

dataset i at detector pixel j: black denotes the dataset with the highest counts; white,
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the dataset with the lowest counts. This simple visual test can detect both differences

between datasets and correlations between neighboring pixels. Results for a simulated

image with genuine independent Poisson noise are shown at bottom for comparison.

Fig. 1. Test that the datasets are statistically exchangeable. Each row represents a
single noisy dataset, and each column corresponds to one value of 2θ. The greyscale
intensity in a given column gives the rankings of the datasets at that value of 2θ:
the dataset with the most counts is black, and that with the least counts is white.
Comparing to simulated noisy data (bottom) reveals two main departures from
our assumption. First, some rows are darker than others (see magenta arrows),
suggesting fluctuations in the X-ray flux. Second, there is a correlation between
neighboring pixels, whose lengthscale varies periodically from short (blue arrows)
to long (red arrows).

First, it is clear that the datasets are not exactly equivalent. In particular, three

rows indicated by the magenta arrows are clearly darker than the others, meaning

that the corresponding datasets had disproportionately high counts. We attribute this

to a fluctuation in the incident X-ray flux. Consequently, the scaling factor will be

different for different datasets, and even for different regions within the same dataset,

which implies the scaling factor Φ can vary with Q.

To find Φ(Q), we first took the square root of both datasets so the noise level would

be the same. The ratio of the high-noise dataset (4 scans) to the low-noise dataset (76
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scans) can be considered a noisy version of ϕ(Q) ≡
√

Φ(Q); this ratio is shown as the

gray bins in Figure 2. To find the underlying signal ϕ(Q), we used the default settings

(i.e., cubic regression splines) of the geom smooth function in the ggplot2 package

(Wickham, 2009) for R (Figure 2, purple line). The red line is a reference showing the

expected result of
√

4/76 if all noisy scans had been equivalent. As Figure 1 suggested,

the actual ϕ(Q) is generally lower than the expected value.

Scaling factor φ(Q)
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Fig. 2. The square root of the ratio of high-noise datapoints to low-noise datapoints.
The gray bins show the raw ratio datapoints. The purple line shows the smoothed
version ϕ(Q), which we used to scale the low-noise data to get a comparison func-
tion. The red line shows the expected ϕ(Q) when all scans are equivalent:

√
4/76.

Additionally, there is an interesting horizontal correlation in the experimental data.

The correlation lengthscale oscillates with a period of roughly 100 pixels; two periods

have been included in this figure. This oscillation does not appear to be related to any

features of the signal; it seems to be due to the detector. In the short-lengthscale

regions (indicated by blue arrows), the pattern appears similar to the simulated

data, suggesting correlations are below the single-pixel scale; correlations in the long-

lengthscale regions (red arrows) extend over multiple pixels.
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If correlations between neighboring pixels blurs the measured intensity — including

the noise — the practical effect would be to lower the noise variance. This is consistent

with our findings, where we see the MSR with respect to noisy data is considerably

smaller (≈ 0.16) than the expected value of 0.25. Thus, this X-ray data tests how well

our method applies in real-world situations which violate our idealized assumptions

of independent Poisson noise.

2. Novel prior for `(Q): “hypocrisy”

`(Q) is a function which tells functions of Q what to do: its natural interpretation is

that they cannot have features near Q which are narrower than `. Since `(Q) is itself

a function of Q, we can check whether it obeys its own decrees. A person who tells

others to behave one way, but acts a different way, is called a hypocrite; we borrow

this term for functions `(Q) which exhibit more variation than they permit in other

functions.

Further motivation for the term, “hypocrisy,” comes from the way functions f(Q)

respond to a hypocritical `(Q). Consider a constant `min and a function `(Q) > `min

everywhere. Suppose `(Q) has a fluctuation at Q0 whose width `fluct is much smaller

than `min. As Gibbs (1997) pointed out, it is `fluct rather than `min which limits features

around f(Q0). In other words: on encountering a hypocritical `(Q), f(Q) will do what

it does, not what it says! This destroys the natural interpretation of the values of

`(Q), i.e., the lower limit of feature widths near Q. By using a prior which discourages

hypocrisy, we hope to keep `(Q) easily interpretable by researchers.

The goal of the remainder of this section is to derive a useful measure for the

hypocrisy of a function. Our strategy is to build it in two stages: first, measure the

hypocrisy density of a single point with respect to another point; second, integrate

over all pairs of points in the function. Thus, for a suitable non-negative density
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ρ [`(Q′); `(Q)], the total hypocrisy will be

H =

∫∫
ρ
[
`(Q′); `(Q)

]
dQ′ dQ, (1)

and the prior probability will be

p(`) = exp [−H [`]] . (2)

Conceptually, ρ is based on expectations about function values at a point Q′, given

the value at a point Q. As usual, we express these expectations in terms of probability.

Plainly, the most probable value for `(Q′) should be the same as `(Q), corresponding

to the constant-` case. The variance of `(Q′) should depend on the distance: it should

be very small when Q′ is close (in terms of `(Q)) to Q, and very large when Q′ is far

away. For simplicity, we choose a Gaussian distribution, which is fully specified by its

mean and variance:

ρ
[
`(Q′); `(Q)

]
= log

[
N(`(Q′); `(Q), σ2)

N(`(Q); `(Q), σ2)

]
, (3)

where N(x;µ, σ2) is the Gaussian probability density function at x having mean µ and

variance σ2, and we have normalized to the most probable value to make the density

zero by definition for constant functions. The problem then reduces to choosing a

functional form for the variance σ2(Q′;Q, `(Q)).

The discussion will be clearest in terms of the normalized horizontal distance

D(Q′;Q, `(Q)) ≡ (Q′ −Q)/`(Q), (4)

abbreviated to D when there is no ambiguity. The variance then depends only on D,

and σ2(Q′;Q, `0) ≡ V (D) needs the following properties:

1. lim
D→∞

V (D) =∞;

2. lim
D→0

V (D) = 0;
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3.
[

dV
dD

]
D=0

> 0.

Property 1 means we are indifferent to values which are many correlation lengths

away. Property 2 constrains `(Q) to be single-valued. Property 3 allows `(Q) to have

nonzero slope.

To fulfil the third condition, we can write V in the form

V (D) ∝ AD + g(D), (5)

where A is the initial slope, and g(D) has zero slope at D = 0. Now, V (D) will fulfil

conditions 1 and 2 whenever g(D) does. We make an ansatz for g(D) based on the

correlation1 of the two points, C(D) = exp(−(1/2)D2):

g(D) = C(D)−n − 1. (6)

Thus, we have a family of hypocrisy measures, based on the initial slope A (higher

values permit more variation), and the correlation exponent n > 0 (higher values

constrain `(Q) out to longer distances). Comparing the virtues of different parameter

choices is beyond the scope of this paper. Here we simply choose A = 1 and n = 2 as

default values, and observe that the resulting curves `(Q) are in good agreement with

the prior beliefs about smoothness which we intended to capture.

Putting it all together, the hypocrisy density is

ρ
[
`(Q′); `(Q)

]
=

(
1

2τ2

)(
e

eD(Q′;Q,`(Q))2 +D(Q′;Q, `(Q))− 1

)2 (
`(Q′)

`(Q)
− 1

)2

, (7)

where τ is the constant of proportionality in Equation 5. We call it the “tolerance for

hypocrisy”, because τ = 0 permits only constant `(Q), while as τ → ∞ there are no

constraints on `(Q) at all. Values for τ can be chosen by model selection techniques

similar to those discussed in Section 2.3 of the paper (“Model selection and Occams

razor”), though this does require Markov Chain Monte Carlo techniques. In this paper,

we have used τ2 = 10−4, since we observed that it gave good smoothness in `(Q).

1Technically, the equivalent constant-` correlation.
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