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Monte Carlo (MC) methods, based on random updates and the trial-and-error

principle, are well suited to retrieve form-free particle size distributions from

small-angle scattering patterns of non-interacting low-concentration scatterers

such as particles in solution or precipitates in metals. Improvements are

presented to existing MC methods, such as a non-ambiguous convergence

criterion, nonlinear scaling of contributions to match their observability in a

scattering measurement, and a method for estimating the minimum visibility

threshold and uncertainties on the resulting size distributions.

1. Introduction
The search for generally applicable methods capable of

determining structural parameters from small-angle scattering

patterns for a broad range of samples has yielded several

viable methods. For monodisperse systems consisting of

identical particles, these methods attempt to find a form-free

solution to the pair-distance distribution function, whereas for

polydisperse systems the aim is to determine the particle size

distribution. In both cases, relevant transformation should yield

the observed scattering pattern (Krauthäuser et al., 1996).

There are indirect transform methods (ITMs) based on

regularization techniques, which impose that the solution is as

smooth as possible (Glatter, 1977, 1979; Moore, 1980; Svergun,

1991; Pedersen, 1994), and Bayesian and maximum entropy

ITMs, which find the most likely solution using a Bayesian

approach and entropy maximization, respectively (Hansen,

2000; Hansen & Pedersen, 1991). There are also methods

available based on Titchmarsh transforms for determining size

distributions (Botet & Cabane, 2012; Mulato & Chambou-

leyron, 1996; Fedorova & Schmidt, 1978).

Another class of methods, such as the structure interference

method (SIM; Krauthäuser et al., 1996) and some Monte Carlo

(MC) methods (Martelli & Di Nunzio, 2002; Di Nunzio et al.,

2004), assume a particular shape and do not appear to require

smoothness constraints. These only have a positivity constraint

and have so far been limited to size distributions of sphere-

shaped scatterers. These methods can be used to extract the

particle size distribution function of systems of scatterers

whose shape is known or assumed, and not affected by

concentration effects (Krauthäuser et al., 1996; Martelli & Di

Nunzio, 2002; Di Nunzio et al., 2004). The MC variant

approaches the optimization by trial and error, whereas the

SIM uses a conjugate gradient approach (Krauthauser, 1994).

Both are conceptually easier than the ITMs and methods

based on Titchmarsh transforms and provide stable and

unique solutions (Martelli & Di Nunzio, 2002; Di Nunzio et al.,

2004; Krauthäuser et al., 1996).

Upon implementation of one such method by Martelli & Di

Nunzio (2002), hereafter referred to as ‘the Martelli method’,

several noteworthy changes were made to that method, which

are presented here. We briefly reiterate the working principle

and highlight the differences of the presented MC method

from the Martelli method. Then, a general solution for

detection limits is derived for particles in a polydisperse set.

This aids the MC method as it allows for improved contribu-

tion scaling during the optimization procedure and indicates

detectability limits in the final result. Lastly, a convergence

criterion is defined for the MC method, allowing for the

calculation of uncertainties in the resulting size distribution.

This method is shown to be applicable to scattering data

obtained during the synthesis of AlOOH nanoparticles.

2. A brief overview of the implemented method

The MC method proposed here is essentially identical to that

by Martelli & Di Nunzio (2002). The differences can be

summarized as follows: (1) we apply a help variable pc, which

is used in the optimization to (partially) compensate for the

effect of size on the scaling of the form-factor scattering,

whose magnitude is derived through the definition of

‘maximum observability’; (2) a limited fixed number of sphere

contributions is used and constantly replaced, this number

http://crossmark.crossref.org/dialog/?doi=10.1107/S0021889813001295&domain=pdf&date_stamp=2013-02-14


being determined from the optimization speed; (3) a strict

convergence criterion is defined on the basis of the estimated

data uncertainty; and (4) standard deviations are calculated on

the result through repetitive application of the MC method. A

summary of the MC method is given below.

2.1. Step 0: determination of the feature size limits

If not explicitly defined, a reasonable estimate has to be

made for the radius range of the determinable features in the

scattering pattern. This estimate is based on the measured data

set, in particular the minimum measured q and the spacing

between subsequent data points in q. Here, q is defined as

q ¼ ð4�=�Þ sin �, with � the wavelength of the radiation and 2�
the scattering angle. The radius of the maximum detectable

feature Rmax in a small-angle scattering measurement is mostly

defined by the size of the direct beam spot on the detector. As

this is often wholly (but just) obscured by the beamstop, a

reasonable assumption for Rmax ’ �=qmin, where qmin is the

smallest measured value of q in the corrected data set. If,

however, the beamstop is oversized compared to the actual

beam size, Rmax may be more closely related to the spacing

between q data points, so that Rmax ’ �=�q, where �q is the

smallest distance between two neighbouring q points in the

data set.

Similarly, a reasonable estimate for the minimum radius of

distinguishable features Rmin can be defined. As above, this

can be related to the largest available q value in the data

points of the measured data set. It thus can assume the value

of Rmin ’ �=qmax, where qmax is the largest measured value of

q in the corrected data set. Any value for Rmin smaller than

about 0.3 nm, however, would define features approaching the

length of chemical bonds, where the commonly used

assumption of uniform electron density no longer applies. In

the interest of generality in the MC method, Rmin is set to zero,

but it is of importance to consider these fundamental limita-

tions when interpreting features in the result.

If no a priori information on the bounds is supplied, the

radius range is thus set to 0<R � Rmax, where Rmax is the

largest of the two aforementioned alternatives.

2.2. Step 1: preparation of the procedure

The initial guess of the total scattering cross section is

calculated for a fixed number of contributions ns (typically

200–300) from spheres whose radii R are randomly sampled

from a bound uniform distribution (bound by the radius range

described in the previous section). These radii can therefore

assume any value within the size bounds. This initial guess is

calculated using the general equation

IMCðqÞ ¼ bþ A
Pns

k¼1

jFsph;kðqRkÞj
2 4

3�
� �2

R
ð6�pcÞ

k ; ð1Þ

where the sum runs over all spheres in the finite set and

Fsph;kðqRkÞ is the Rayleigh form factor for sphere k, normal-

ized to 1 for q ¼ 0. Rk is the radius for sphere k. pc is a

parameter adjustable in the range 0 � pc � 6, biasing the

volume weighting of the contributions, and will be discussed in

detail hereafter. b is a constant background term, and A is a

scaling factor, which is related to the volume fraction ’ of the

scatterers through

A ¼ ’��2
Pns

k¼1

1
�

4
3�R

ð3�pcÞ

k

h i
: ð2Þ

Here the sum runs over all spheres in the finite set and �� is

the scattering contrast. The volume fraction of the scatterers ’
is defined as

’ ¼ Vscatt=Virr; ð3Þ

where Virr is the irradiated sample volume and Vscatt is the total

scatterer volume in Virr.

Given the limited (fixed) number of spheres used for the

calculation of the scattering cross section, a large sphere could

easily dominate if normal volume-squared scaling is used for

each sphere contribution (i.e. pc ¼ 0). As an example, a sphere

of 10 nm would require a million spheres of 1 nm for an

equivalent contribution (at q ¼ 0). It is evident, therefore, that

describing the scattering from polydisperse sets of spheres

would require very large numbers of smaller sphere contri-

butions to have any distinguishable impact on the scattering

on top of that originating from a few large scatterers. The

factor pc in equation (1) is thus used as a computational aid to

partially suppress this effect of the volume-squared sphere

contribution scaling, by increasing the contribution from the

smaller spheres in the set. The recommended value for pc ¼ 3,

but in practice it can be freely varied in the range 2 � pc � 3:3
as shown in x2.5.

The choice of pc only affects the speed of the calculation

and does not affect the result as it is compensated for in A

[equation (2)] and therefore also when visualizing the results

(it can, as will be discussed later, also slightly affect the stan-

dard deviation of the result when set to extreme values, as

shown in the supplementary information1). Setting pc ¼ 3

results in the internal calculation using volume-weighted

spheres (as opposed to volume-squared-weighted spheres for

pc ¼ 0), and setting pc ¼ 2 makes each sphere in the MC

procedure assume an identical ‘observability’, which is a

proposed measure for the maximum visibility of a scatterer in

a polydisperse system, defined and explored in x3. Lastly,

pc ¼ 0 removes this compensation altogether from the

procedure; this approach is suitable only for very narrow

distributions owing to the limited number of spheres used in

the MC calculation.

A and b are tuned to the measured scattering through

optimization using a least-squares residual minimization

procedure, minimizing the reduced chi squared �2
r (Pedersen,

1997):

�2
r ¼

1

N �M

XN

i¼1

ImeasðqiÞ � IMCðqiÞ

�ðqiÞ

� �2

; ð4Þ
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1 Supplementary material is available from the IUCr electronic archives
(Reference: CE5145). Services for accessing this material are described at the
back of the journal.



where N denotes the number of data points and Imeas and IMC

the measured and calculated model scattering cross section,

respectively. �ðqiÞ is the estimated error on each measured

data point, whose estimation method is detailed in x4. M is the

number of degrees of freedom in the fitting model, but is

unfortunately ill-defined in an MC model and is thus set equal

to 2 to account for the scaling parameter A and background

contribution parameter b.

2.3. Step 2: optimization cycle

After random selection of the ns sphere radii and the

subsequent calculation of the initial guess, the Monte Carlo

optimization cycle then begins. A random sphere is selected

from the set of ns spheres, and a change of its radius to another

random value within the previously discussed radius bounds is

suggested. The intensity after this suggested change is calcu-

lated by subtracting the contribution of the previous sphere

radius and adding the contribution of the new sphere radius,

and re-optimizing the scaling factor A and background level b.

The suggested radius change is accepted if it improves the

agreement between measured and MC intensity, i.e. if the

change reduces the �2
r value. Similar to the SIM and the

Martelli method, a rejection–acceptance mechanism that

occasionally accepts ‘bad moves’ was found not to be neces-

sary (Krauthäuser et al., 1996; Martelli & Di Nunzio, 2002; Di

Nunzio et al., 2004).

This method differs from the Martelli method in that the

Martelli method continually attempts to add new sphere

contributions to an ever growing set, leaving the prior estab-

lished set of contributions untouched. Conversely, the adap-

tation presented here leaves the number of sphere

contributions in the set unchanged and repeatedly tries to

change the radius of a random contribution in the set. An

attempt was made to adjust the MC method here to add

spheres instead of changing sphere radii, more closely

following the method presented by Martelli. It was found,

however, that such a modification would occasionally prevent

convergence.

2.4. Step 3: convergence and post-optimization procedures

The optimization is ceased once the condition �2
r < 1 has

been reached (cf. x4). If convergence has not been reached

within a certain number of optimization cycles (here set to one

million), and fails to do so repeatedly, the pattern is consid-

ered unsuitable for fitting with this method.

After convergence has been reached, the partial volume

fraction for a sphere contribution k, ’k, is then calculated

through reformulation of equation (2):

’k ¼ A 4
3�R

ð3�pcÞ

k =��2; ð5Þ

where A is known through least-squares fitting from step 2. If

this equation is calculated for all ns sphere contributions, the

volume fraction of the scatterers ’ can be calculated as

’ ¼
Pns

k¼1 ’k.

For visualization and analysis purposes, the obtained partial

volume fractions ’k can be distributed over a number of radius

bins to form a histogram or a volume-weighted size distribu-

tion (an example of which is given in x7). In this histogram,

each radius bin (denoted with the subscript Rbin) is defined by

its bin edges, Rn and Rnþ1, also known as the class limits. If a

particular sphere contribution radius falls within the bin, its

volume fraction ’k is added to the contents of the bin. In other

words, each radius bin defined by its edges Rn and Rnþ1 will

assume the value that is the sum of all partial volume fractions

of contributions whose radii fall within that bin to make up the

bin volume fraction ’Rbin. If instead of the volume-weighted

size distribution a number-weighted size distribution is sought,

this procedure is identical except that each contribution adds

’kVirr=ð
4
3�R3

kÞ to the bin.

Accurate mean and standard deviations for the final

volume-weighted size distribution are calculated from the

results of several tens of independent repetitions of the whole

MC procedure. This is considered to provide a reasonable

check for ambiguity, and such standard deviations may aid in

the comparison of the size distribution obtained with small-

angle scattering with those obtained using other methods.

2.5. Determination of the number of contributions ns and
compensation parameter pc

A suitable value must be found for the number of contri-

butions ns in the MC method. Too large a number of contri-

butions will result in excessive computation time and may

effect an overly smooth solution and underestimated standard

deviations on the result (an effect shown in the supplementary

information). Too few contributions will also lead to a long

computation time as the few contributions need to assume

increasingly strict radii. Furthermore, the number of required

contributions is dependent on the data quality, with data of

higher quality requiring more contributions to achieve

convergence.

It is therefore suggested that ns is set so that convergence is

achieved in as few MC iterations as possible, i.e. an efficiency-

maximizing approach. Plotting the number of iterations

required for convergence versus ns will show what value

should be used for a particular data set (Fig. 1). For consis-
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Figure 1
Optimization of the number of MC contributions ns (main figure) and pc

(upper right, calculated for 300 contributions) for the Boehmite example
data (see x6) by selecting the values requiring the least number of steps.
Lines are added to guide the eye.



tency in series of measurements, such as time or temperature

series, it is recommended to fix ns to a single value suitable for

the majority of the measurements.

A similar approach can be used to fine-tune pc. As shown in

Fig. 1, however, there are a wide range of values with nearly

identical calculation efficiencies. This indicates that suitable

choices for this example lie within the range 2:1 � pc � 3:2.

3. Observability of isolated spheres in a polydisperse set

As the scattering power of particles scales proportionally to

their volume squared, the scattering of smaller particles in a

polydisperse set is quickly drowned out by the signal of the

large particles. This effect, however, is partially compensated

for by the different q dependence of the scattering of the

smaller particles.

To investigate how large this compensatory effect is, we

define the ‘maximum observability’ Obsmax;i of a particle i in a

set N as the maximum of the ratio of its individual contribu-

tion IiðqÞ to the total intensity ItotðqÞ in the range [qmin; qmax]

[equation (6)]. The location of the maximum is denoted as qm.

Obsmax;i ¼
IiðqmÞ

ItotðqmÞ
¼ max

q2½qmin;qmax�

IiðqÞ

ItotðqÞ

� �
: ð6Þ

The individual contribution IiðqÞ of sphere i with radius Ri is

given by equation (1) with pc ¼ 0.

The maximum observability has been calculated for three

separate unimodal distributions, with each number-weighted

size distribution P(R) sampled using 50 000 sphere radii in the

range 0:01 � R � 35 nm. There are three distributions: (1) a

uniform distribution, (2) a ‘trailing’ triangular distribution

with its mode set to 0.01 nm and (3) a ‘leading’ triangular

distribution with its mode set to 35 nm (as shown in the inset

of Fig. 2). Fig. 2 shows the maximum observability to be

unaffected by the choice of distribution. From the figure, it is

evident that the maximum observability scales as Obsmax;i /

R2 for particles with sizes larger than Rlim ’ �=qmax. Particles

smaller than Rlim exhibit an observability scaling in line with

the volume-squared intensity scaling (R6). A similar, inde-

pendently determined lower limit has been obtained through

MC size distribution retrieval exercises (available in the

supplementary material).

The information on the observability can be used for three

purposes. First and foremost, there is a clear indication of the

limits of small-angle scattering for resolving the smaller sizes,

which can be linked to the maximum measured q. This is

evident from Fig. 2 as observability scales with radius to the

sixth power for particles with radii smaller than Rlim ’ �=qmax,

which renders their contribution rapidly indistinguishable.

This reinforces the point that the minimum detectable feature

radius Rmin can be estimated to be �=qmax, as discussed in x2.

Secondly, this information directly gives us a value of 2 for

pc, which will result in an equal maximum observability for

every contribution in the MC method, provided that the

contribution radii fall within the bounds imposed by the

angular limits of the measurement. It is still considered

preferable, however, to tune pc for each sample (series)

according to the method described in x2.5.

Thirdly, the concept of observability can be used to deter-

mine whether a particular feature in a size distribution is

significant or not. To be more precise, we can calculate what

level is required in any radius bin (cf. step 3 of x2) in order to

contribute scattering that can be distinguished in the fitted

scattering pattern above the scattering pattern uncertainty

�ðqÞ. In the MC calculation, a model component k contributes

scattering IkðqÞ which is proportional to its partial volume

fraction ’k [where IkðqÞ is calculated using equation (1) for a

single contribution and with b ¼ 0]. Its scattering contribution

can be considered to become distinguishable at a minimum

partial volume fraction ’min;k where it contributes at least as

much as the data uncertainty:

IkðqÞ=’k

� �
’min;k � �ðqÞ: ð7Þ

This allows the calculation of ’min;k in two ways: (1) as the

minimum of all values calculated over q 2 ½qmin; qmax� or (2) as

the value at qm, where the contribution from k is strongest

[equation (6)], which in practice turns out to be a good

approximation for (1):

’min;k ¼ min
q2½qmin;qmax�

�ðqÞ’k

IkðqÞ

� �
’
�ðqmÞ’k

IkðqmÞ
: ð8Þ

For a given radius bin in the visualization (as defined in step 3

of x2), we can then estimate the minimum visibility threshold

’min;Rbin of that bin. This can be estimated as either the average

of the ’min;k values of the components that fall into this bin or

– to be on the safe side – the largest value of ’min;k in that bin.

Likewise, if the visualization choice was of a number-weighted

distribution following the procedure described above, the

minimum number required to make a measurable impact can
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Figure 2
Observability for three unimodal number-weighted size distributions
sampled using 50 000 spheres within 0:01 � q � 0:35. The number
frequency plot of the size distributions is shown in the inset, with the
distributions divided over 50 radius bins and normalized to
1 ¼

R
PðRÞ dR. A change in slope between R6 and R2 is observed for

all three distributions at Rlim ’ �=qmax.



be calculated from the minimum ’min;k through nmin;k ¼

’min;kVirr=ð
4
3�R3

kÞ.

In this way, any size distribution visualization (e.g. number-

weighted or volume-weighted size distributions) can contain a

line indicating a rough estimate for the minimum detectability

threshold (an example is shown in x7). Inclusion of this line

can prevent the drawing of erroneous conclusions.

4. Data point weighting and convergence criterion

In most small-angle scattering measurements, the many data

points Ip collected from each pixel p on the detector are

reduced into a small number of q bins, Iqbin, before the data

analysis procedures. In this reduction step, each measured

data point collected between the bin edges qn and qnþ1 is

averaged and assumed valid for the mean q ¼ hqn; qnþ1i, in a

process known colloquially as ‘radial integration’ or ‘radial

averaging’. In other words, IqbinðqÞ ¼ hIpðqn � q � qnþ1Þi.

Keeping track of the uncertainties during this process (and

other steps in the data correction and reduction methodology)

will result in the availability of uncertainties on the binned

intensity data points.

These estimates of the level of uncertainty or ‘errors’ on

each given data point are invaluable in assessing the veracity

of model fitting results: to determine whether the analysis

provided a solution to within the uncertainty estimate. Addi-

tionally, knowledge of the uncertainty can help unlink the

model fitting result from more arbitrary parameters such as

the number or spacing of the integration bin edges. By

weighting of the goodness-of-fit parameter used in the least-

squares minimization function by this error [cf. equation (4)]

uncertainties on the MC solution can be established.

The counting-statistics-based Poisson error � ¼ I1=2, where

I is the number of detected counts in the raw data, gives the

lower limit of the uncertainty estimate. These errors need to

be appropriately propagated through the binning procedure

and various data corrections such as dead time, dark current

and background. Furthermore, if this estimate is exceeded by

the sample standard error of the mean of the values contained

in each individual q bin, the sample standard error should be

the preferred error estimate for that bin as it can account for

some detector irregularities. This sample standard error for

each bin Eqbin is defined as

Eqbin ¼
1

Nqbin � 1

XNqbin

p¼1

Ip � Iqbin

� �2

" #1=2

; ð9Þ

where Iqbin is the mean intensity in the q bin, Ip the intensity of

data point p in the bin and Nqbin the total number of data

points in the bin.

Lastly, it is commonly challenging to get the absolute

uncertainty of the measured intensity below 1%, even with the

most elaborate data corrections in place, as shown by Hura et

al. (2000), who achieved an overall uncertainty of about 2%.

Thus, the uncertainty should be taken to be 1% of the

measured intensity if this value exceeds the other two estimates.

These errors can then be used in equation (4) to determine the

goodness-of-fit parameter for an MC proposition.

The advantage of using these errors in the expression for �2
r

is that, if this parameter drops below one, the deviations

between model and measured intensities are on average

smaller than the statistical uncertainties. This thus provides a

cutoff criterion for the MC method, allowing for the estima-

tion of the mean and standard deviations of the final particle

size histogram (as shown in x7). Additionally, by using these

errors in the expression for the goodness-of-fit parameter, the

intensities are weighted by their relative errors in the fitting

procedures and thus become less sensitive to arbitrary values

such as bin widths or number of data points used in the fit.

Since the MC method does not provide us with an intensity

at the same level as the measured intensity, and as there often

is a constant background associated with small-angle scat-

tering patterns as described by Ruland (1971) and Koberstein

et al. (1980), these two parameters will have to be determined

separately. Thus, after every MC proposed change, but before

calculation of the goodness of fit, an intermediate least-

squares minimization routine is applied to optimize the model

intensity scaling A and background parameter b [equation

(1)]. As A does not affect the shape of the scattering pattern,

the MC result remains unaffected. The addition of the back-

ground term may affect the presence of MC contributions with

an effectively flat scattering profile, whose radii will be much

below the radius limit imposed by the maximum measured q.

If required, the least-squares minimization method may be

expanded to include more terms, at the cost of speed and

stability. One example of such an inclusion could be to include

a power-law slope (with optional cutoff) to compensate for

scattering from large structures or some interparticle scat-

tering effects (Pedersen, 1994; Beaucage, 1995, 1996).

5. Uncertainties on the resulting distribution

One common criticism of MC methods is the potential for

ambiguity in the result, i.e. the possibility to arrive at any

number of equally valid but unrelated solutions. This MC

implementation addresses that issue in two ways, firstly by

limiting the number of sphere contributions through associa-

tion with data quality, and secondly through determination of

the variance between several tens of independent solutions,

each time optimizing until �2
r < 1 has been achieved. As it is

difficult to compare and visualize sets of radii, each resulting

set is converted using a histogramming procedure to a density

map or a volume-weighted size distribution. The variance

between the histograms of the independent solutions will

provide a mean and standard deviation for each histogram bin.

The visualization of the resulting data set in a histogram can

be fine-tuned to some degree by adjustment of the number

and spacing of the histogram radius bins. A greater number of

radius bins (Nb) will result in more detail at the cost of larger

standard deviations on the bin values. A good estimate for Nb

can be found by means of the sampling theorem rres ¼ �=qmax,

Nb ’ qmax=qmin, assuming the largest measurable dimension is

identical to the measurement limit (Hansen & Pedersen, 1991;

Moore, 1980; Taupin & Luzzati, 1982). However, Nb also has

to be dependent on the uncertainty of the underlying data set:
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high-quality data with small uncertainties will result in smaller

standard deviations on the visualized result, indicating that Nb

can be doubled for more detail. A lot of noise or a large

uncertainty in the measured data, on the other hand, will

result in a large standard deviation on the histogram, indi-

cating that Nb should be halved. While none of this affects the

result of the MC optimization, the balance between detail and

accuracy of the result visualization cannot be strictly defined.

Lastly, the spacing between the bin edges can be adjusted in

the visualization, which can be necessary if the result spans

several decades in size (for which logarithmically spaced bin

edges can be applied) or has sharp features [for which a

natural binning has been suggested by Ilavsky & Jemian

(2009)]. It is important to emphasize that none of these

adjustments to the spacing or number of bins affect the MC

result, and that there is an inherent link between the standard

deviation and the choice of visualization parameters.

It should be noted, however, that while the standard

deviations on the histogram are linked to the data uncertainty,

there remains room for improvement as the standard devia-

tion (but not the mean) on the resulting histogram can be

affected slightly by the choice of pc (especially when set to

pc ¼ 0 or pc ¼ 6, as shown in the supplementary information).

Despite this, the procedure does provide the user with a

reasonable estimate of the standard deviation, which can be

coupled with the observability information to obtain a size

distribution with statistics.

6. Experimental

6.1. Synthesis

Boehmite (AlOOH) particles were synthesized in situ using

an automated and modified version of a high-pressure high-

temperature reactor (Becker et al., 2010). The sapphire

capillary in which the reaction takes place has an inner

diameter of 1.0 mm and an outer diameter of 1.57 mm. The

particles were synthesized from a solution of 0.5 M Al(NO3)3

precursor in water. The start of the reaction was considered to

be the moment at which the pressurized solution [maintained

at a pressure of 250 bar (25 MPa)] is heated to its reaction

temperature of 548 K. The measurement used in this paper

was obtained 1700 s from the start of the reaction. Further

details and results will be presented in a forthcoming paper.

6.2. Beamline details

Synchrotron SAXS experiments were performed at the

BL45XU beamline of the SPring-8 synchrotron in Japan. The

beam was collimated to a 0.4 � 0.2 mm beam (horizontal by

vertical, respectively), with photons with a wavelength of

0.09 nm. The sample-to-detector distance was 2.59 m. The

scattering patterns were recorded on a Pilatus 300k detector

whose total surface area covers 33.5 � 254 mm, consisting of

195 � 1475 pixels measuring 0.172 � 0.172 mm. Transmission

values were determined using in-line ionization chambers. The

polarization factor was assumed to be 0.95. The measurements

were collected at a rate of 1 Hz.

6.3. Data correction

The data were corrected for background (water at 548 K

and 250 bar), incoming flux, measurement time, transmission,

polarization and spherical correction and calibrated to abso-

lute units using a glassy carbon sample from series H, supplied

by Dr J. Ilavsky from the Advanced Photon Source (Zhang et

al., 2009). Statistics were calculated according to the proce-

dure outlined in x4, with the minimum possible error set to 1%

of the measured intensity. The scattering contrast ��2 is set to

2:713� 1030 m�4.

7. Results and discussion

The collected data set, consisting of 200 data points, the errors

and the MC fit are shown in Fig. 3, where the MC fit intensity is

the average of 100 repetitions of the MC procedure. While not

as fast in its current implementation as some of the alternative

ITMs, the calculation of all 100 repetitions takes about 30 s on

a single core of an Intel Core i7 processor running at a clock

speed of 1.8 GHz. This performance can be improved by an

estimated factor of 50 through compilation of selected parts of

the code, as well as exploitation of multicore processing. Given

that the speed is not yet a limiting factor in the overall

methodology, no steps have been made in this direction.

While a single run also delivers a model intensity on

average to within the determined error, the mean intensity is

shown here as it matches the mean of the size distributions

shown in Fig. 4. The error bars indicate the standard deviation

of the histogrammed values for each of 100 repetitions. This

figure also contains the estimate of the minimum visibility

threshold ’min;Rbin.

The volume-weighted size distribution shows a distinctly

triangular size distribution between 5 and 30 nm, with the

distribution maximum at 10 nm. The total volume fraction of

measurable precipitates is 0.88%, which is close to, but not
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Figure 3
Data (black) and MC fit [grey (red in the electronic version of the
journal), using ns ¼ 300 and pc ¼ 3] for a 1 s measurement in a time
series of AlOOH nanoparticles in aqueous solution. The MC fit is at
convergence. The background value resulting from the optimization is
2.4 (2) m�1 sr�1.



quite, the 0.99% expected for full conversion of the precursor.

This deviation may be attributed to large uncertainties on

some of the values used in the data reduction (e.g. transmis-

sion factor, capillary diameter), partial precipitation of the

nanoparticles at the bottom of the capillary or even precipi-

tates growing beyond the coherence limit (which then no

longer contribute to the scattering pattern).

In this example, the number of histogram bins is 40, the

recommended number of divisions dictated by the sampling

theorem, but one can choose more or fewer bins. The effect of

this is shown in the subplots in Fig. 4 for 20 and 160 histogram

bins, which clearly show the relation between the standard

deviation in the bins and the minimum visibility threshold

’min;Rbin. If the number of histogram bins is high, the uncer-

tainty for each value is equally large and the minimum visi-

bility threshold increases. If the number of bins is reduced,

both the uncertainty and ’min;Rbin reduce, at the cost of a loss

of detail.

8. A final comment

All the above results were obtained assuming that the scat-

terers are spherical in shape. This does not have to be the

correct particle shape for the method to arrive at a solution, as

the size distribution and shape cannot both be uniquely

distinguished from scattering patterns alone (which has been

tested for simulated isotropic scattering patterns from poly-

disperse sets of prolate and oblate ellipsoids, as shown in the

supporting information). The solution from the MC method,

then, shows the user what the size distribution would be if the

scattering pattern originated from spherical particles.

If the shape of the scatterers is known from other investi-

gations such as electron microscopy, and deviates from a

spherical shape, this information can be used to obtain the

correct size distribution for that particular shape (Pedersen et

al., 1996). This can be done either by adjusting the particular

scattering function in the MC method [as recently shown for

rod-like precipitates in MgZn alloys by Rosalie & Pauw

(2012)] or by analysis of the shape-independent correlation

function �ðrÞ, which can be calculated from the sphere-based

MC method result (Feigin & Svergun, 1987).

9. Conclusions

Discussed in this paper are modifications to the Martelli MC

method, the general veracity of the result and the application

of it to a SAXS measurement. It is shown that by using the

methodology described in this paper a particle size distribu-

tion can be retrieved from a scattering pattern, uncertainties

can be estimated for the particle size distribution and the

minimum number of particles required to make a measurable

impact on the scattering pattern (the minimum visibility

threshold) can be indicated for each feature in the distribution.

The MC code is available for inspection, improvements and

application under a Creative Commons Attribution-Share-

Alike license and the latest copy will be freely supplied by the

author upon request.

SPring-8, RIKEN and Dr T. Hikima are acknowledged for

their beamtime and support. Dr J. Becker and Dr J. Eltzholtz

have been instrumental in the success of the measurements.
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Figure 4
Volume-weighted size distribution as used for the MC fit shown in Fig. 3,
for Nb ¼ 40. Error bars indicate sample standard deviation over 100
repetitions. The minimum visibility threshold ’min;Rbin is shown as a thick
grey (red in the electronic version of the journal) line. The right-hand
figures show the effect of selecting Nb ¼ 20 and Nb ¼ 160, with a clear
effect on ’min;Rbin as well as the uncertainty estimates.
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