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General algorithms to convert scattering data of linear and area detectors

recorded in various scattering geometries to reciprocal space coordinates are

presented. These algorithms work for any goniometer configuration including

popular four-circle, six-circle and kappa goniometers. The use of commonly

employed approximations is avoided and therefore the algorithms work also for

large detectors at small sample–detector distances. A recipe for determining the

necessary detector parameters including mostly ignored misalignments is given.

The algorithms are implemented in a freely available open-source package.

1. Introduction
Elastic X-ray scattering is a very widely applied technique to

study the structure of materials ranging from single crystals,

powders and other forms of hard condensed matter to biolo-

gical tissues and organic molecules. Crystalline as well as

noncrystalline matter such as liquids and amorphous materials

can be studied by techniques like X-ray diffraction and

reflectometry. A variety of approaches exist to analyze the

scattering data. Some quantities can be directly determined

from the measurements [e.g. lattice parameters (Bond, 1960;

Fewster, 1999), layer thicknesses (Warren, 1969; Pietsch et al.,

2004)]. Other types of analysis involve simulation of the

scattering signal to determine strain and material composition

(Stangl et al., 2004; Wintersberger et al., 2010), or the model-

free determination of real space structure using phase

retrieval algorithms (Fienup, 1982; Miao et al., 1998; Diaz et al.,

2009; Minkevich et al., 2011). All of those approaches have in

common that the analysis is most of the time performed in

reciprocal space and hence requires a conversion of experi-

mentally measured data into reciprocal space. While the

particular analysis steps differ for different experiments, the

conversion itself is a common step, which needs to be

performed for a lot of different techniques. This has been

treated very well for the case of point detectors (Busing &

Levy, 1967; Lohmeier & Vlieg, 1993; You, 1999; Bunk &

Nielsen, 2004). For one-dimensional and two-dimensional

detectors, which are used more and more frequently, several

issues related to the detector geometry and detector alignment

complicate a correct conversion.

For some applications like protein crystallography or

powder diffraction, experimental and analysis schemes are

standardized. Examples are software packages to extract peak

positions and intensities in protein crystallography (Leslie,

2006) and powder diffraction (Lutterotti et al., 1999; Rodri-

guez-Carvajal, 2001; Hammersley, 2013), or the PDB Protein

Data Bank (http://www.pdb.org/) format and the CIF crystal-

lographic information file format established by the Interna-

tional Union of Crystallography for exchange of structure files

and experimental data.

For most other cases, only very specialized solutions to

particular experiments exist, each containing solutions for

some aspects important for the respective case; for example,

the experimental control software spec (Certified Scientific

Software, 2013) used at various synchrotron sources is able to

perform reciprocal space conversion for several goniometer

geometries but only for point detectors. Commercial software

supplied with several diffractometers is optimized for certain

geometry/detector combinations.

A particular problem of one- and two-dimensional detec-

tors is misalignment with respect to the ideal case: at zero

detector angle, the line or plane of the detector should ideally

be perpendicular to the incident X-ray beam. In practice, this

will not be the case, even if deviations will usually be very

small. For two-dimensional detectors, in addition a rotation of

the detector around the incident beam direction can occur. In

most cases, these misalignments will be unintentional and

rather small; they are difficult to measure and hence often

neglected. However, considering these effects is actually

important to obtain correct and accurate reciprocal space

coordinates.

We present a generally applicable algorithm for the

conversion of experimental data recorded with point, linear

and area detectors, and for any diffractometer with an arbi-

trary number and sequence of axes. For this purpose, we

generalize the algorithms presented in several papers (Busing

& Levy, 1967; Lohmeier & Vlieg, 1993; You, 1999; Bunk &

Nielsen, 2004) to arbitrary goniometer geometries without

approximations: we consider the fact that most one- and two-

dimensional detectors are flat and hence the relation between

channel number and scattering angle is nonlinear. Further-
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more, we provide recipes to determine the necessary detector

parameters from a set of simple scans around the primary

beam. These scans also enable the user to determine the

above-mentioned and several other misalignment parameters.

To keep our solution as general as possible, we have

implemented it within a freely available software package,

xrayutilities (Kriegner & Wintersberger, 2013). This general-

ized algorithm is also particularly useful for automatized tool

chains as planned by several synchrotron facilities right now

(Passerelle, 2013). In addition to the reciprocal space conver-

sion described in this article, xrayutilities includes routines to

read various data formats and methods to calculate experi-

mental parameters from material properties. More informa-

tion on those parts can be found on the xrayutilities web site

(Kriegner & Wintersberger, 2013). This article focuses on the

reciprocal space conversion part. After the introduction of the

applied algorithms following the approach of You (1999), we

show the extension for linear and area detectors and explain

the use of our algorithms and how necessary parameters can

be determined. We demonstrate the application of our

approach for a few selected examples of both laboratory

diffractometers and synchrotron beamlines. In an appendix we

discuss one complete example, including the particular entries

into the xrayutilities package required to define the diffract-

ometer geometry, correctly initialize a two-dimensional

detector setup, and convert a two-dimensional detector frame

into reciprocal space.

2. Angular to reciprocal space conversion

Conversion of angular coordinates to reciprocal space can be

tedious since one needs special equations for every diffract-

ometer/detector geometry. For several diffraction geometries

explicit formulas are given, for example, by Pietsch et al.

(2004). However the conversion can be performed in a general

way as long as the information about the goniometer geometry

is available together with the experimental angles. The algo-

rithm presented below therefore needs not just the experi-

mental angles as input parameters but also a description of the

goniometer. To work for arbitrary goniometers the physical

order of the cradles, i.e. how they are mounted on each other,

and the orientation of the rotation axes are needed. An

example is given below. To unambiguously specify the rotation

axes of the goniometer circles, a reference coordinate system

is fixed to the laboratory frame. It is useful to choose this

coordinate system in a way that the primary X-ray beam

propagates along one of the coordinate axes.

The reciprocal space coordinates we want to know for each

measured point are coordinates of the scattering vector

q ¼ kf � ki, where ki is the wavevector of the incident X-ray

beam and kf the wavevector of the scattered beam towards a

particular detector (pixel) position. The coordinates of q we

are interested in are those in a coordinate system fixed to the

sample under investigation. The coordinates of ki in the

laboratory system are fixed by our choice of the coordinate

system. The coordinates of kf are given by the angle positions

of the detector arm. To describe q in the sample coordinate

system, we also need all goniometer angles changing the

sample orientation.

A minimal two-dimensional example illustrating the defi-

nition of our laboratory coordinate system (blue) is shown in

Fig. 1. The coordinate system attached to the sample is indi-

cated in green in Fig. 1. So what we have to deal with are

coordinate transformations between the different involved

coordinate systems. Those coordinate transformations can be

written as matrix equations. We will reproduce some of the

essential equations of earlier papers (Busing & Levy, 1967;

You, 1999) so that the reader can follow the further general-

ization for one- and two-dimensional detectors. We consider

just a point detector for the moment; the generalization for

one- or two-dimensional detectors is shown in x3 below.

For the following derivations we assume that the primary

beam is perfectly aligned with respect to the center of rotation

of the goniometer and that the different goniometer axes are

homocentric. Furthermore the sample needs to be positioned

in the center of rotation of the goniometer. Deviations from

these conditions will lead to inaccuracies in the measured

scattering and diffraction angles and therefore introduce

errors in the reciprocal space conversion described below. For

further discussion on high-accuracy measurement of diffrac-

tion angles the reader should refer to Fewster (1999) and

references therein.

The sample coordinate system we have been talking about

is actually the coordinate system attached to the innermost

goniometer circle (because this is what the goniometer angles

describe). Of course, the sample can in addition have a certain

orientation with respect to this circle. This is most evident in

the case of a crystalline sample, where the directions of the

reciprocal space of the crystal have a certain orientation with

respect to the sample holder. This and the coordinates of the

scattering vector in the reciprocal space of the crystal are

described below by the orientation matrix U and the ortho-

normalization matrix B, respectively. In the following, we

describe this ‘most complicated’ case of a single-crystalline

sample. For amorphous or powder samples etc., U and/or B

can be replaced by identity matrices.

In the crystal lattice a scattering vector might be described

by the column vector
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Figure 1
Two-dimensional sketch of the scattering process and the coordinate
systems attached to the laboratory (xL,yL) and sample (xs, ys). Shown are
the incidence and exit wavevectors ki;f as well as the scattering vector q.
The laboratory coordinate system is chosen to have the x̂x direction
coinciding with the primary beam direction.



hc ¼
P3

j¼1

hj bj ¼ B h; ð1Þ

with bj the reciprocal lattice vectors, the matrix B being

formed from those vectors, and hj generally referred to as h, k,

l. In the case where h, k, l are integer values they are called

Miller indices. An explicit representation of B is for example

given by Busing & Levy (1967) and Helliwell (2006).

To connect the scattering vector in the crystal with the

scattering vector in the coordinate system attached to the

sample goniometer the orientation matrix U is introduced:

hs ¼ Uhc ¼ U B h: ð2Þ

This scattering vector converted to the laboratory frame is

equal to q. The conversion of the scattering vector is achieved

by another coordinate transformation (described by matrix S),

which solely depends on the sample orientation and therefore

the goniometer angles that move the sample:

q ¼ kf � ki ¼ S hs: ð3Þ

In the case of integer h, k, l, the former equation basically is

the Laue equation.

Also any detector rotation can be expressed as a coordinate

transformation described by D, and therefore the exit wave-

vector is given by

kf ¼ D ki: ð4Þ

Combining equations (2)–(4) one obtains the scattering

vector in the crystal coordinate system:

hc ¼ S U
� ��1

D� 1
� �

ki; ð5Þ

with the identity matrix 1. Note that all of the used coordinate

transformations are transformations between two orthogonal

coordinate systems and therefore yield orthogonal matrices,

which are invertible. The matrix B, which is formed from the

reciprocal space vectors bj which are linearly independent, is

also invertible. Since the above conversion involves a matrix

inversion this is important for the algorithm to work.

The rotation matrices S and D can be deduced from the

description of the goniometer by multiplying the rotation

matrices from each circle starting with the outermost circle:

D; S ¼ ðouter mostÞ: . . . :ðinner mostÞ: ð6Þ

For that purpose the goniometer rotation axis needs to be

defined in the laboratory coordinate system for the case when

all circles are set to zero. It is therefore useful to choose the

coordinate system in a way that allows this description to be as

simple as possible. Keep in mind that later also the detector

directions need to be determined in this coordinate system. In

addition to the direction of the rotation axis, the rotation sense

needs to be described. We use the mathematical definition of

rotation sense. For most goniometers (except for special

geometries like the � goniometer, treated separately below)

the rotation axes point along primitive directions. When

looking at the rotation from the positive side of the corre-

sponding direction, clockwise rotation is left handed, i.e.

negative, and anticlockwise rotation is right handed (positive).

For example, we will call a clockwise/left-handed/negative

rotation of angle � around the x axis an ‘x-’ rotation,

described by the following rotation matrix:

R x�ð�Þ ¼

 
1 0 0

0 cos � sin �
0 � sin � cos �

!
: ð7Þ

2.1. Example of a goniometer definition

To elucidate the definition of a goniometer we use the

goniometer shown in Fig. 2. The goniometer has a 3S + 2D

geometry, which means it offers three degrees of rotation for

the sample and two independent degrees of freedom for the

detector. The goniometer axes are specified by their axis

direction and rotation sense. The coordinate system is chosen

to have x pointing downstream along the primary beam, z is

pointing upwards and y is pointing backwards to have a right-

handed reference frame. In xrayutilities we describe each

rotation axis with one character giving the axis direction

(either x, y or z) and another the rotation sense (either þ or

�). This description needs to be supplied for the sample and

detector circles for the case where all axes are at zero position

starting with the outermost circle. The goniometer in Fig. 2 has

three sample circles (�, �, ’) with the indicated rotation

directions. The outermost angle � turns clockwise around the

z axis and thus is described by ‘z�’. The complete sample

goniometer is described by the following set of rotations:

(‘z�’, ‘x�’, ‘yþ’). For the detector circles turning around the

z- and y-axis directions, the corresponding definition is (‘z�’,

‘y�’). A full example of how to insert these definitions into

xrayutilities is given in Appendix B.

research papers

1164 Dominik Kriegner et al. � xrayutilities J. Appl. Cryst. (2013). 46, 1162–1170

Figure 2
Sketch of a goniometer with three sample axes (�, �, ’) and two detector
rotations (�, �). The red and blue planes circumscribed by a dashed and a
solid line, respectively, indicate the detector rotation planes of the inner
detector rotation for two different positions of the outer detector arm
rotation.



2.2. Special rotation directions (kappa goniometer)

In addition to rotations around axes of the coordinate

system, an often used goniometer geometry is the so-called �
geometry (Poot, 1972; Thorkildsen et al., 1999), in which one

of the rotation axes has an angle of typically 45–60� with one

of the other axes. In xrayutilities we define such an axis by kþ

or k�. The plane of the � rotation axis and its angle with

respect to a reference direction are specified in a configuration

file by the options kappa plane and kappa angle. The

rotation matrix needed in matrix S can be determined easily

using the general equation given in Appendix C.

3. Angular to momentum space conversion for one- and
two-dimensional detectors

Equation (5) describes the conversion from angular coordi-

nates of a general goniometer to reciprocal space for a point

detector only. The generalization for a linear or area detector

requires information about the pixel size and distance, and the

direction into which a pixel row extends. Usually in the data

files only one angular position is stored for every data point

recorded with a multidimensional detector. This angular

coordinate corresponds to the position of the so-called center

channel/pixel (n0), which is the pixel hit by the primary beam

when all the angles are set to zero. For all other detector pixels

their position needs to be determined. This is easiest for the

case of a curved one-dimensional detector in which every

detector channel or pixel covers the same detector angle

segment. Every detector pixel (identified by the channel

number n) corresponds to a detector angle 2� given by

2�ðnÞ ¼ 2�0 þ ðn� n0Þ=N; ð8Þ

where N is the number of channels per unit of angle of the

detector circle and 2�0 the detector angle of the center channel

n0. When the detector angle is expressed in degrees, N equals

the number of channels per degree of rotation.

Most modern detectors are, however, straight as shown in

Fig. 3 and not curved, and therefore equation (8) is not

generally applicable. It is only in the limit of a large sample–

detector distance that the curved and straight detectors

become indistinguishable. Nevertheless the channel per

degree approximation is frequently used in practice. In

xrayutilities one-dimensional detectors are treated as straight

detectors and equation (5) is adjusted accordingly. For each

detector pixel n, the corresponding direction of a scattered

beam hitting this pixel is calculated, replacing equation (4) by

kfðnÞ ¼ ki

�� ��D k̂ki þ d̂dðn� n0Þw=L
� ��

kk̂ki þ d̂dðn� n0Þw=Lk;

ð9Þ

where w and L are the size of a detector pixel and the distance

from sample to detector, as shown in Fig. 3. The direction in

which the detector channel number increases is given by d̂d. A

‘hat’ on a vector indicates a unit vector. The fraction w=L is in

the case of large sample to detector distance equal to 1=N,

where N is the number of channels per radian, and equation

(9) effectively simplifies to the form of equation (8). For a two-

dimensional detector with channel directions d̂d1 and d̂d2 we can

write an equivalent equation for the exiting wavevector of

channel (n1, n2) including the width of the detector pixels w1;2

as

kfðn1; n2Þ ¼ ki

�� ��D k̂ki þ d̂d1½n1 � n
ð0Þ
1 �w1

�
Lþ d̂d2½n2 � n

ð0Þ
2 �w2=L

n o
�
k � � � k; ð10Þ

Using the description of the detector in real space we

therefore avoid the ‘channel per degree’ approximation, which

implicitly assumes that a detector is curved and therefore does

not work for small sample–detector distances with large

detectors. Inserting equations (9) and (10) into equations (2)

and (3) yields general equations for the reciprocal space

conversion of linear and area detectors. The possible misalign-

ments are included in those equations via the pixel directions

d̂d for the one-dimensional and d̂d1;2 for the two-dimensional

detectors.

3.1. Detector parameters of one-dimensional detectors

For the conversion algorithms described above several

detector parameters are needed, among them the detector

distance L and width of one detector channel w. Since neither

the detector distance nor the width of one channel can be

easily measured very accurately, we use the fact that only their

ratio is needed, which can be determined from an angular scan

through the primary beam. Assume a linear detector is

mounted along the direction in which the detector arm of the
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Figure 3
Sketch of a linear detector mounted at distance L from the center of
rotation of the goniometer. In (a) the detector direction specifying the
direction along which higher channel numbers are found is given by d̂d.
Also indicated is the width of one channel w and the center channel n0,
which is the channel where the primary beam is centered at zero detector
angle. Part (b) shows the possible detector tilt 	 (misalignment) resulting
if a detector is not mounted perfectly perpendicular to the X-ray beam.



used instrument moves. Scanning the detector angle will move

the primary beam over the detector, and by modeling this

movement we are able to determine the needed quantities.

Therefore assume a linear detector mounted at a distance L

like the one shown in Fig. 3. Neglecting for the moment a

possible detector tilt, i.e. when a detector is not mounted

perfectly perpendicular to the X-ray beam, the detector

channel at which the detector is hit for a detector arm angle 2�
is given by

nð2�Þ ¼
L

w
tan 2� þ n0: ð11Þ

If a detector tilt 	 as shown in Fig. 3 is included, the above

equation needs to be modified, and one finds

nð2�; 	Þ ¼
L

w

sin 2�

cos 2� � 	ð Þ
þ n0: ð12Þ

By fitting one of the two models one can find the detector

parameters needed for the reciprocal space conversion of a

linear detector. For this purpose, a scan through the primary

beam should be performed with the linear detector, and the

detector spectra should be saved at every position. Since not

only the slope is determined (which only needs two spectra), it

is necessary to acquire several spectra: we suggest typically
>
�10. For the determination of the parameters two functions

are provided in xrayutilities. One of them automatically

processes the spectra of a linear detector acquired during a

scan through the primary beam and determines the position of

the primary beam in every spectrum by fitting a Gaussian

peak. From this fitting the position of the primary beam is

found with sub-pixel precision. The second function needs the

user to determine the channel number of the primary beam

and supply it to the function, which should be used only in

cases where the first function is not applicable. Calling one of

the two functions will produce a plot like the one shown in

Fig. 4, which shows the channel number at which the beam hit

the detector together with the variation expected from the

model(s). A second plot shows the comparison of model and

measured data with the linear trend subtracted, for two

different detector distances of 380 and 250 mm for a straight

linear detector with a pixel size of 50 mm. The different

distance shows up as a different slope in the upper plot. When

the linear trend is subtracted the nonlinearity due to the

trigonometric functions in equations (11) and (12) can be seen.

The fit is also sensitive to a tilt of the detector from the

direction perpendicular to the primary beam, as can be seen

from the comparison of the model without tilt [equation (11),

dashed lines] and the model with tilt [equation (12), full lines].

For the measurements shown in Fig. 4 an artificial tilt of 0.3�

was introduced, which was also determined by the fit. Note

that a tilt of the detector can result not only from a not

perfectly mounted detector but also from the fact that

experimentalists choose to use a center channel that does not

correspond to the true center of the detector and do this by

redefining the zero position of the detector arm rotation,

which introduces a tilting of the detector by exactly the angle

by which the detector arm angle changed. Using a translation

of the detector perpendicular to the beam (mounted on top of
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Figure 4
Determination of the ratio w=L and center channel for a linear detector
with pixel size of 50 mm from the variation of the beam position during a
scan through the primary beam. The upper plot shows the channel
numbers at which the primary beam is observed during the scan versus
the detector angle. Furthermore the fits of equation (12) to the recorded
data are shown by black lines. The lower plot shows the same data set and
fits but with the linear trend subtracted. A fit with (full line) and without
(dashed line) considering a detector tilt is shown for two detector
distances of 250 and 380 mm. In the upper plot these two fits are
indistinguishable.

Figure 5
Three reciprocal space maps recorded around the Si (331) Bragg peak
using the same sample movement but using three different parts of a
linear detector for detection and two different descriptions of the linear
detector for reciprocal space conversion. The white cross marks the
nominal position of the Si (331) Bragg peak. Panels (a)–(c) were
converted using the exact reciprocal space conversion described in the
text, whereas for panels (d)–( f ) the same measurements were converted
using the ‘channel per degree’ approximation, leading to errors in the
observed peak positions. The measurements shown in panels (a), (d) were
recorded when the detector was offset to lower angles, and those in panels
(c), ( f ) with an offset to higher angles, whereas the reciprocal space maps
in panels (b), (e) were recorded with the signal centered on the detector.



the detector arm) would prevent such a tilt; this option is,

however, very often not available.

Basically the discussion so far shows the necessity of

nonlinear models instead of the simpler linear fitting, which is

a reasonable approximation only in the case of a large sample

to detector distance. If a linear or area detector covers an

angular range of >�8� it becomes absolutely necessary to use

the above treatment since deviations would exceed one

channel for typical channel sizes of around 50 mm. Using large

linear detectors at moderate sample–detector distances this

limit is frequently reached, especially in modern laboratory

diffractometers. To further highlight the necessity of the

nonlinear models we show an example of an X-ray diffraction

reciprocal space map measurement of the Si (331) Bragg peak

of an Si(111)-oriented single crystal in Fig. 5. The measure-

ment was performed with the above-mentioned linear

detector at a distance of 250 mm using a laboratory diffract-

ometer with Cu K�1 radiation produced by a Ge(220)

channel-cut monochromator. The same measurement was

repeated three times; however, different parts of the detector

were used for the detection of the diffracted signal. We

compare the reciprocal space maps obtained using our exact

conversion formalism with the ‘channel per degree’ approx-

imation, which assumes a curved detector as described by

equation (8). Using this approximation (Figs. 5d–5f) we find

that only the measurement using the central part of the

detector gives the correct peak position in reciprocal space/

lattice parameter. The measurements performed with the

detector offset to higher or lower angles would result in a

lattice parameter wrong by approximately 0.04%; this is far

beyond the usual sensitivity of the experimental setup, which

is said to be <1 � 10�4 and can be increased further, as for

example outlined by Fewster (1999). Using the accurate

conversion no such shifts are observed and the three

measurements (Figs. 5a–5c) are indeed equivalent.

3.2. Detector parameters of two-dimensional detectors

For two-dimensional detectors a similar determination of

the w1;2=L ratio can be performed if the detector rotation and

other misalignments (see below) are negligible, by decom-

posing the problem into two separate one-dimensional

problems. In the case where the detector is rotated around the

primary beam the problem can no longer be decomposed. In

particular one more problem specific to two-dimensional

detectors arises. Very often the true zero of the outer detector

arm rotation is not known. For the inner detector rotation this

does not imply any particular problem since it shows up only

as additional tilt, which can be easily corrected. However, an

offset in the outer detector rotation implies a rotation of the

rotation axis of the inner detector rotation. If the outer motor

is not at the true zero the inner rotation will no longer rotate

perpendicular to the primary beam, as indicated by the two

rotation planes shown in Fig. 2. If the outer motor were at its

true zero the detector would rotate in the blue plane; owing to

an offset in the outer rotation the detector instead rotates in

the red plane. This means that the offset of the outer motor

needs to be determined from alignment scans as well.

In general one needs to determine eight parameters for a

two-dimensional detector: the center channels [n
ð0Þ
1 , n

ð0Þ
2 ], the

ratios w1=L and w2=L, and the directions of the vectors d̂d1;2,

which are specified by the tilt, tilt direction and rotation of the

detector around the primary beam and the outer angle offset

described above. The untilted directions of the vectors d̂d1;2 can

be determined unambiguously by knowledge of the primary

beam and detector rotation directions and therefore do not

need to be included in the fit. Similarly as for the one-

dimensional detector, these parameters can be determined

from scans through the primary beam. It is necessary to use at

least two scans, one with the inner and one with outer detector

arm rotation with sufficient points around the primary beam,

and to acquire a detector image at several positions. From the

primary beam position observed in those images the detector

directions and other necessary parameters can be determined

by a fitting routine. As quality criterion of the fit the average

kqk value of the pixel at which the primary beam is observed is

used. This position is calculated using equations (3) and (10).

Since we observe the primary beam in all the images, this kqk

value should be zero when the correct detector parameters are

found. xrayutilities provides a function that takes the detector

images and performs a fit of the eight described parameters.

Since several of these parameters, e.g. the offset of the outer

motor with one of the center channels, are coupled with each

other, the fit is performed in such a way that it starts from

several starting parameters to find the global minimum in the

parameter space. An example of such a fit is shown in Fig. 6.

The detector parameters have been determined from two
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Figure 6
Determination of detector parameters. Shown is the optimization error
versus the eight considered parameters: the center channels of the
detector and the width of the pixels in both directions, the detector tilt
(azimuth and tilt angle), the detector rotation, and the offset of the outer
goniometer stage. The found optimum is marked by a black circle. All
other points correspond to fits that did not reach the global minimum;
these were produced from various different starting parameters of the fit.
Green lines are guides to the eye to visualize the minimum found in all
the parameters. The points of the fits are colored to enable the
identification of correlations.



perpendicular scans through the primary beam using a

Maxipix detector with effectively 516� 516 pixels at beamline

ID01, ESRF, Grenoble, France (ESRF, 2013a). One scan was

performed using the outer detector arm motor (moving

horizontally) and the other one with the inner detector circle

(moving vertically). In each scan we used 70 points, which

means that in total 140 images were used. Note that using

considerably fewer points does reduce the quality of the fit

until no reliable statement can be made about the misalign-

ment parameters. It is therefore suggested to use a comparable

number of points to that used in this example. Furthermore

the images were manually selected to use just those with the

full primary beam in the active area of the detector. These

images were fed into the algorithm described above, and the

detector rotation, tilt, tilt azimuth and outer angle offset along

with the center channels and detector pixel size were deter-

mined. This determination is shown in Fig. 6, where the

average kqk deviation of the detector pixel positions asso-

ciated with the primary beam in the performed scans is shown.

The value of this deviation is approximately the offset of the

absolute value of the scattering vector in reciprocal space. This

deviation shows a clear minimum in all eight parameters.

These eight parameters are as follows:

(1, 2) cch1,2 are the center channels of the detector in both

directions. This is the pixel number where the primary beam is

hitting the detector at the true zero position of the detector

arm (including the outer angle offset).

(3, 4) pwidth1,2 are the pixel widths of the pixels in the two

detector directions. The unit of these values in the plot is the

size of the pixels in micrometres, assuming a detector distance

of 1 m. This corresponds to the parameter w=L from above. If

the pixel size is known, the detector distance can be calcu-

lated, or vice versa.

(5) tiltazimuth is an angle giving the direction of the

detector tilt. Values of 90 and 270� correspond to a tilt rotation

around the first pixel direction and 0 and 180� to rotation

around the second pixel direction.

(6) tilt is the tilt angle of the detector plane around the

direction given by tiltazimuth; since tiltazimuth runs from 0 to

360�, only positive tilts are used.

(7) detrot is the detector rotation around the primary beam

direction in degrees.

(8) outerangle offset is the offset of the outer detector arm

rotation in degrees.

For the determination of these parameters, fits with various

different starting parameters are performed. This is absolutely

mandatory since several of the parameters are correlated, and

therefore a single fit would not necessarily find the global

optimum. One correlation that can be easily imagined is the

correlation of one of the center channels with the outer

rotation offset. Since the detector orientation is not given to

the script and is automatically determined from the given scan

data, it is not a priori clear if this is center channel 1 or 2. In

Fig. 6 this correlation can be seen in the plot showing center

channel 2 (cch2) and the outer angle offset. The cloud of

points from center channel 2 is rather broad since this value

changes when the outer angle offset is changed. In fact the

coloring of the cloud of points of center channel 2 reveals that

it is only mirrored with respect to the data of the outer angle

offset. A not so intuitive correlation is that of the detector tilt

with the outer angle offset. Imagine a not tilted detector,

which is however offset in the outer angle. Such an offset will

effectively tilt the detector by exactly the offset in the outer

angle with a tilt azimuth of 90 or 270�. If the detector is already

slightly tilted in an arbitrary direction without outer angle

offset, the tilt due to an outer angle offset will overlay with the

initial tilt and influence the tilt azimuth and tilt in a nontrivial

manner. The optimal set of parameters for the area detector of

beamline ID01 was determined from the point with the lowest

error (global minimum in the parameter space) of 2:70� 10�9.

To elucidate the benefit of considering these ‘misalignment’

parameters, which are usually omitted, we also give the

obtained errors when several of the quantities are fixed. When

only the center channels and pixel widths are fitted we obtain

an error of 1:68� 10�6, which is orders of magnitude higher

than our optimal error. In the present example the most

important parameter is the detector rotation, which brings the

error down to 3:65� 10�9. The second most important para-

meter is the outer angle offset, which brings down the error

further to 2:81� 10�9. If only the tilt (tilt azimuth and tilt

angle) or the outer angle offset are fitted without the detector

rotation, the error can only be reduced by less than 10% from

the value without considering any misalignment. Only when

all parameters are considered in the fit can the error be

reduced to the optimum. This clearly shows that all these

parameters should be considered to obtain the correct reci-

procal space positions of the full area detector.

It should be noted that some of the parameters like the

offset of the outer detector arm rotation and detector tilt can

only be determined when the detector is spanning a certain

angular range; the user is therefore urged to check the

resulting plots in order to see if the parameters are reasonable.

In cases where the detector distance is large the outer angle

offset can only be determined with large error, and it might be

better to fix the corresponding parameter during fitting. In

cases when the detector tilt is small the tilt azimuth will not

have a clear minimum and is therefore an indeterminable

parameter. The script also outputs the code needed for initi-

alization of the area detector, which considers the determined

tilts and rotations as shown in Appendix B. These detector tilts

of linear and area detectors are then included in the reciprocal

space conversion. When the detector pixel position is calcu-

lated as described in equations (9) and (10), the detector

direction d̂d or d̂d1;2 needs to be rotated accordingly before the

detector position is calculated.

If no detector rotations are available, e.g. when using an

area detector for powder diffraction, we refer to the Fit2D

software (Hammersley, 2013) for determining the necessary

parameters.

Note added in proof. The sensitivity of our method with

respect to the outer angle offset can be increased significantly

when, in addition to scans in the primary beam, also the

movement of a known Bragg peak of a reference crystal is

analyzed. We have added a function enabling this, and refer
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the reader to the documentation of our package for more

details.

4. Conclusions

In conclusion, we present algorithms for reciprocal space

conversion of X-ray diffraction data. We generalize the

equations given by Busing & Levy (1967) and You (1999) for

the use of linear and area detectors. Using our approach we

can convert angles from arbitrary goniometers to reciprocal

space coordinates. For the conversion of linear and area

detectors several detector parameters, including all possible

misalignments, are needed. Recipes were presented allowing

these parameters to be determined from alignment scans for

both linear and area detectors. The software package

including the presented algorithms is available at http://

xrayutilities.sourceforge.net. The algorithms were shown to

determine detector parameters of one- and two-dimensional

detectors that are otherwise not determinable.

APPENDIX A
Implementation details

The software package is available from http://xrayutilities.

sourceforge.net and is mainly coded in the popular scripting

language Python with some performance-critical parts written

internally in the C programming language. The user needs to

use only the Python package. It is worth noting that Python

has recently gained a lot of attention and that several other

diffraction-oriented packages have also been written in

Python and published as open-source software (Sørensen et

al., 2012; Kieffer & Karkoulis, 2013; Juhás et al., 2013; Micha,

2013; ESRF, 2013b). Installation of xrayutilities is possible on

all major platforms (Windows, Mac, Linux/Unix). In addition

to the reciprocal space conversion the package offers several

functions to read data from spec files, from spectra files, and

from laboratory diffractometers of Panalytical (xrdml) and

Seifert (nja) as well as several CCD data files (edf, tiff) and

other functions, which are described in the documentation

found at the web site.

The reciprocal space conversion’s performance-critical part,

which implements equation (5) and equivalents for linear and

area detectors, is coded in C. As can be seen from equation

(5), this part mainly consists of 3� 3 matrix operations. For

the conversion of angular positions the matrices of the sample

rotations need to be set up, for which rotation matrices like the

one shown in equation (7) are used. These matrices are

multiplied in the order given in equation (6). Furthermore, the

conversion involves one matrix inversion, which is performed

using the adjugate matrix formula. For matrix A this means

the inverse is given by

A�1
¼ adj A=det A: ð13Þ

Depending on the number of samples (ns) and detector

circles (nd) to be considered in the conversion for a point

detector, ns þ nd þ 2 matrix multiplications, the matrix

inversion and one matrix–vector multiplication as well as one

matrix–matrix subtraction need to be performed for every

data point.

However, for linear and area detectors the complete

conversion does not need to be done for every detector pixel.

For one spectrum or image all the sample and detector angles

are considered to be constant and therefore the ns þ nd þ 1

matrix multiplications as well as the matrix inversion need to

be performed only once. Only two matrix–vector multi-

plications and some vector arithmetic to set up the pixel

position need to be performed for every detector channel/

pixel, which enables a fast conversion even for large area

detectors. Furthermore, the conversion for multiple data

points is independent and can therefore be easily performed in

parallel on modern multiprocessor computers.

APPENDIX B
Example script for the reciprocal space conversion

In the following an example script for the conversion of an

image from an area detector recorded using the goniometer

shown in Fig. 2 is given. This goniometer has the sample angles

�, � and ’ and detector angles � and �. The rotation axes of

this goniometer are as given in the main text [sample circles:

(‘z�’, ‘x�’, ‘yþ’); detector circles: (‘z�’, ‘yþ’)] and the

primary beam propagates along the positive x-axis direction.

The script is written in the Python script language.

All the detector parameters (such as center channels,

number of pixels, size of the pixels and the distance as well as

possible tilts and rotations of the detector) need to be given to

the init area function. These parameters are the result of a

fit like the one shown in Fig. 6. The conversion is then

performed by calling the area method of an experiment class

object, where also the outer angle offset needs to be consid-

ered. An experiment object holds information about the

experiment, such as the orientation of the crystal on top of the
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innermost sample circle, the goniometer geometry and the

X-ray energy. Here the object is initialized for an experiment

performed using X-rays with an energy of 9000 eV and a

silicon crystal with the [100] direction along the primary beam

at zero position and [010] along the z axis. The second argu-

ment [010] gives the reference direction perpendicular to the

primary beam in the plane spanned by the innermost detector

direction. Dummy values for the reference directions can be

used when the Ang2HKL function is not used.

After execution of this script the variables qx, qy and qz

hold the reciprocal space position of the detector pixels

specified by the region of interest variable. In the case above

these variables will have a shape of 400 � 400, holding the q

position of the pixels 100–500 in both detector directions. The

variable Nav could be used to reduce the number of data by

block averaging. Using Nav ¼ ð2; 2Þ effectively quadruples the

area covered by one pixel and therefore reduces the number

of returned q positions to 200 � 200 per coordinate.

Furthermore the use of the algorithms to directly convert

angles to reciprocal space indices h, k and l is shown. A

function named Ang2HKL is called together with the orienta-

tion matrix to convert the experimental angles directly to the

indices h, k, l instead of the scattering vector in units of Å�1.

Instead of specifying the orientation matrix one can also use

the crystallographic orientation of the sample to determine

the matrix U, which is the default if no U matrix is explicitly

given. Special algorithms also exist for determining the matrix

B from unit-cell vectors. In the example, the matrix B is

determined directly from the built-in material properties of

silicon. In the present case (horizontal diffraction) the scat-

tering vector for the area detector has mainly a component

along the negative y-axis direction, whereas the h, k, l

components have their largest components along l.

Experimental angles, of course, do not need to be entered

manually. They can be read from several different data

formats as mentioned above. Details are given in the docu-

mentation found online.

APPENDIX C

Rotation matrix for arbitrary axis direction

Several rotations need to be performed around non-primitive

directions, e.g. in the case of � goniometers or when calculating

detector tilts. In such cases the rotation axis and the angle of

rotation are known, and rotation matrices are generated using

a formula given by Lang & Pucker (1998). The components rij

of the rotation matrix R for a rotation of angle � around the

axis e are given by

rij ¼ eiej þ ð�ij � eiejÞ cos �� "ijkek sin �; ð14Þ

with the Kronecker delta �ij and the Levi–Civita symbol "ijk.
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