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Modeling of the X-ray diffractometer instrumental function for a given optics

configuration is important both for planning experiments and for the analysis of

measured data. A fast and universal method for instrumental function

simulation, suitable for fully automated computer realization and describing

both coplanar and noncoplanar measurement geometries for any combination

of X-ray optical elements, is proposed. The method can be identified as semi-

analytical backward ray tracing and is based on the calculation of a detected

signal as an integral of X-ray intensities for all the rays reaching the detector.

The high speed of calculation is provided by the expressions for analytical

integration over the spatial coordinates that describe the detection point.

Consideration of the three-dimensional propagation of rays without restriction

to the diffraction plane provides the applicability of the method for noncoplanar

geometry and the accuracy for characterization of the signal from a two-

dimensional detector. The correctness of the simulation algorithm is checked in

the following two ways: by verifying the consistency of the calculated data with

the patterns expected for certain simple limiting cases and by comparing

measured reciprocal-space maps with the corresponding maps simulated by the

proposed method for the same diffractometer configurations. Both kinds of tests

demonstrate the agreement of the simulated instrumental function shape with

the measured data.

1. Introduction

Modeling of the X-ray diffractometer instrumental function

for a given optics configuration is crucial both for planning

experiments and for analyzing measured data. For practical

applications, it is desirable to have a fast method of instru-

mental function simulation, suitable for fully automated

computer realization and for the description of coplanar and

noncoplanar measurement geometry for any combination of

X-ray optical elements in a single universal way.

There are a number of approaches to the problem of

instrumental function simulation. The fundamental para-

meters approach (Cheary et al., 2004; Zuev, 2006; Masson et al.,

2003), based on analytical profile shape generation from

physically based models, depending on principal parameters,

has advantages such as adaptivity to any laboratory diffract-

ometer and high speed of calculation. However, explicit

expressions provided by this approach are only valid under a

number of assumptions about measurement geometry (usually

coplanar ones) and diffractometer configuration, and require

a manual adaptation for new systems. Ray tracing (Lambert &

Guillet, 2008; Rebuffi & Scardi, 2014), consisting of numerical
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consecutive tracing of rays from one optical element to

another, represents a universal approach, well suited for

computer implementation. Its main drawback is computa-

tional expensiveness, especially pronounced when a three-

dimensional problem is considered (restriction of rays to the

diffraction plane is not imposed). Another approach is

empirical modeling of the diffractometer instrumental func-

tion by a simple fixed analytical function (Brügemann et al.,

1992; Sluis, 1994) or as a convolution of several simple (usually

Gaussian) analytical functions (Gozzo et al., 2006; Sabine,

1987) with optimizable parameters. This option provides

simple analytical expressions and high speed of calculation

at a cost of limited accuracy and applicability of simple

models, and the need for model calibration using a reference

sample.

Most of the research on instrumental functions is devoted to

powder X-ray diffraction [see, for example, Masson et al.

(2003), Cheary et al. (2004), Zuev (2006), Gozzo et al. (2006),

Lambert & Guillet (2008), Rebuffi & Scardi (2014)]. This

paper is focused on the less intensely discussed case (Brüge-

mann et al., 1992; Sluis, 1994; Boulle et al., 2002; Kaganer et al.,

2001) of instrumental function modeling for high-resolution

X-ray diffraction (HRXRD). The main aim is to design an

instrumental function calculation procedure, combining

advantages of both ray tracing and analytical approaches:

universality and high speed of calculation. These features are

encapsulated in a calculation algorithm that can be char-

acterized as semi-analytical backward ray tracing. The

detected signal is calculated as an integral of X-ray intensities

for all of the rays reaching the detector. The integration is

carried out over all spatial points of the detector and all the

possible propagation directions of the rays. Taking into

account not only angular but also spatial coordinates enables

one to include the effects of finite source, sample and detector

sizes and significantly improves the accuracy of the signal

description for a two-dimensional detector. In order to

provide method applicability for noncoplanar measurement

geometry, the propagation of the rays in three-dimensional

space is considered (without restricting the positions of the

rays to the diffraction plane). To provide a high speed of

calculation, the integration over two spatial coordinates

describing the detection point is performed analytically, thus

leaving for numerical treatment only two-dimensional inte-

gration over the ray directions. These principles provide a fast

method for instrumental function calculation, applicable for

noncoplanar as well as coplanar geometry, and for any

combination of X-ray optical elements.

The paper is organized as follows. First, the main ideas

underlying the proposed algorithm of instrumental function

simulation are formulated. Then, a more detailed mathema-

tical treatment of the problem is presented and the expres-

sions for instrumental function calculation are derived. x4

provides a comparison of simulated reciprocal-space maps

with their expected appearance for several simple limiting

cases (open detector, highly divergent incident beam,

nonmonochromatic beam). In x5, a comparison of the simu-

lated and the measured reciprocal-space maps is presented.

2. Main principles
2.1. Parameterization

In the considered model, the X-ray radiation in the

diffractometer is characterized by the intensity distribution at

each cross section of the beam. The coordinate system for

beam cross sections is defined in the following way (Fig. 1a).

The axis x corresponds to the longitudinal direction of the

beam (propagation direction of the central ray, which would

be the only ray in the case of a nondivergent beam). The axes y

and z correspond to the two transverse directions. For

formulation of the proposed algorithm for simulation of the

instrumental function their choice is irrelevant, but they must

be fixed in a unique way for each cross section of the beam. In

further consideration we fix these axes to represent the width

(size in the diffraction plane) and height (or length, size

perpendicular to the diffraction plane) of the beam, respec-

tively, and to be parallel to corresponding dimensions of the

source for the incident beam or the detector for the diffracted

beam.

For such a choice of coordinate systems, the position of the

cross section point is characterized by two variables, y and z.

The propagation direction of a ray can be described by a

normalized vector e = k=jkj = 1, |e| = 1, where k is the wave-

vector associated with the ray. Because of the normalization,

only two projections of the three-dimensional vector e are

independent. In this paper, the projections ey and ez are used

for ray characterization. Finally, the intensity per unit area of

each cross section is represented as a function of two spatial

and two angular coordinates, characterizing the considered

spatial point (y, z) and propagation direction:
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Figure 1
(a) Parametrization of radiation: for each cross section of the beam
(planes 1 and 2 shown as examples), the axis x is parallel to the beam
propagation direction; the axes y and z are perpendicular to the axis x and
belong to the considered cross section. Each ray is characterized by its
direction e and the coordinates y, z of the point where the ray hits the
cross section. S is the X-ray source, D is the detector. (b) Idealized sample
model: fixed scattering vector q provides complete determination of
incident ray direction ein by the diffracted ray direction eout. (c) Detected
signal. SD is the irradiated region of detector D; �D is the solid angle from
which radiation reaches the detector.



Iðy; z; ey; ezÞ: ð1Þ

2.2. Optical elements

For a vast number of X-ray optical elements, including all

the elements commonly used for HRXRD, the beam intensity

transformation has the form

Iafterðy; z; ey; ezÞ ¼ Tðy; z; ey; ezÞIbeforeðy; z; ey; ezÞ; ð2Þ

where Ibeforeðy; z; ey; ezÞ and Iafterðy; z; ey; ezÞ describe intensity

distribution for cross sections closely before and after the

considered optical element, and Tðy; z; ey; ezÞ is the trans-

mission function of the element.

Elements similar to a single-crystal (one-bounce) mono-

chromator can also be taken into consideration by modifying

the arguments of Ibefore (in the same way as is done for the

sample below). However, these elements are not used in the

experimental setups considered in this paper. Therefore, for

simplicity, we assume that equation (2) is valid for all the

optical elements of the diffractometer. The parabolic multi-

layer mirror, used for collimation of the incident beam, does

not fit this consideration in the form of a separate optical

element and is described as a part of the X-ray source by

modeling the source intensity distribution after the collima-

tion (after the cross-beam optics unit) rather than immediately

after the tube.

An important description property of optical elements

commonly used in laboratory diffractometers for HRXRD

(slits, Soller slits, monochromators) is their influence function

on either the spatial or the angular part of the intensity

distribution: for each element the transmission function

depends either on y and z or on ey and ez, but not simulta-

neously on all the four variables. This fact enables the classi-

fication of the elements as direction limiting (monochromator,

Soller slits), for which Tðy; z; ey; ezÞ ¼ Tðey; ezÞ, and coordi-

nate limiting (slits) with Tðy; z; ey; ezÞ ¼ Tðy; zÞ. It is worth

noting that this description is also suitable for a more general

class of elements with a factorizable transmission function

Tðy; z; ey; ezÞ = T1ðey; ezÞT2ðy; zÞ: such elements can be

represented as a combination of direction-limiting and coor-

dinate-limiting elements with Tðy; z; ey; ezÞ = T1ðey; ezÞ and

Tðy; z; ey; ezÞ = T2ðy; zÞ, respectively.

The X-ray radiation source can be described in the same

way. Formally, it can be considered as a dummy source of

constant intensity Iðy; z; ey; ezÞ = I0 = constant, followed by an

optical element with a transmission function corresponding to

the real intensity distribution of the source: Tsourceðy; z; ey; ezÞ=

Isourceðy; z; ey; ezÞ=I0. The introduction of a dummy constant

intensity source is just a mathematical device for unification

of the description of the elements, but it is not a real

physical approximation: the equality Isourceðy; z; ey; ezÞ =

Tsourceðy; z; ey; ezÞI0 holds for any X-ray source according to

the introduced definitions. Assuming the factorization of the

source intensity as Isourceðy; z; ey; ezÞ = I1ðey; ezÞI2ðy; zÞ, the

optical element simulating intensity distribution can be

represented as a pair of direction-limiting and coordinate-

limiting elements.

To summarize, we make the following two assumptions

about the optical elements used: (i) each element does not

change ray directions and distances of all the rays from a

certain central ray [equation (2)], and (ii) any element can be

represented as a finite combination of direction-limiting and

coordinate-limiting elements with a sufficient accuracy. The

slits, apertures, Soller slits, two- and four-bounce channel-cut

monochromators, X-ray sources with parabolic collimating

mirrors, and cross-beam selection slits satisfy these conditions

(or at least are equivalent to a set of optical elements satis-

fying these conditions). Single-crystal monochromators,

dispersive double-crystal monochromators and beam

compressors (Pietsch et al., 2004) do not satisfy the first of the

assumptions. These elements can be taken into consideration

by adding a modification argument to equation (2). This

modification influences the calculation speed insignificantly,

but leads to a more complicated formulation of the simulation

algorithm for the instrumental function and, for simplicity, is

not included in this paper. Focusing capillary and bent-crystal

optical elements (except for a Göbel mirror which is consid-

ered as a part of the X-ray source) do not satisfy the second

condition. These elements are rarely used in HRXRD (they

are used in powder diffraction and micro X-ray fluorescence

analysis) and, therefore, we do not include them in the

proposed simulation method here.

Within the discussed assumptions, equation (2) provides the

unified description of all diffractometer elements (including

source), except for the sample and the detector, which both

need to be considered separately.

2.3. Idealized sample

For calculation of the instrumental function, we consider an

idealized model of a sample dealing with only a fixed scat-

tering vector (Fig. 1b)

q ¼ kout � kin: ð3Þ

The diffraction pattern of a real sample can be reconstructed

by convoluting the instrumental function, calculated for a

fixed vector q, with the diffracted intensity depending on this

vector.

For making the dependence between incident and

diffracted wavevectors explicit, it is convenient to para-

meterize these vectors in the following way:

kin ¼ ein=�; kout ¼ eout=�; ð4Þ

where � is the wavelength associated with the considered ray

(a nonmonochromatic beam may include rays with different

values of �), and ein and eout are unit vectors characterizing the

direction of the ray before and after diffraction at the sample.

Equations (3) and (4) together with normalization condi-

tions for unit vectors ein and eout imply that for a fixed scat-

tering vector q both the direction of the incident ray ein and

the wavelength � are determined in a unique way by the

direction of the diffracted ray:

ein ¼ eout � 2
ðq � eoutÞ

q2
q; � ¼ 2

q � eout

q2
: ð5Þ
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Therefore, in the considered model the wavelength and the

propagation direction at any cross section for each ray are

completely defined by specifying the propagation direction of

the ray in the detector arm of the diffractometer.

2.4. Detected signal

The detected signal is proportional to the radiation flux

irradiating the detector, which in its turn is equal to the

integral of the intensity distribution Iðy; z; ey; ezÞ at the beam

cross section at the detector window over the area of the

detector and over all possible propagation directions (Fig. 1c):

ID ¼
R

�D;SD

d2eout dyD dzDIðyD; zD; eout y; eout zÞ; ð6Þ

where �D is the solid angle from which radiation penetrates

the detector and SD is the irradiated area of the detector. From

a physical point of view, this expression can be interpreted as

the sum of intensities of all the beams reaching the detector.

The transverse size of the detected beam is limited by the

receiving optics rather than by the size of the detector itself.

The detected beam divergence is also restricted by the

receiving and (or) the incident optics and is rather a small

value. Therefore, it is strongly inefficient to carry out the

numerical integration in equation (6) over the whole area of

the detector and the whole solid angle from which the radia-

tion can reach the detector in principle. To reduce this inef-

ficiency, the actual integration limits in further calculations are

provided by a spatial and angular beam shape estimation for

the considered diffractometer configuration. This estimation

can be carried out by gathering inequalities, imposed by each

optical element on the variables y, z, ey, ez and, therefore, due

to the relations (5), on the integration variables yD, zD, eout;y,

eout z.

3. Mathematical formulation of calculation method

3.1. Description of optical elements

According to the procedure outlined above for the simu-

lation of instrumental function, each optical element of the

diffractometer is characterized by its transmission function

Tðy; z; ey; ezÞ and a set of inequalities, imposed by the element

on the variables y, z, ey, ez (the inequalities provide the

borders of the regions of the nonzero transmission function

values). The models for the optical elements provided below

describe the standard optics of a conventional commercial

diffractometer.

The transmission function of slits is modeled by a rectan-

gular distribution:

Tðy; z; ey; ezÞ ¼

n
1; jzj � w=2;
0; otherwise

ð7Þ

for a width-limiting slit of width w and

Tðy; z; ey; ezÞ ¼

n
1; jyj � h=2;
0; otherwise

ð8Þ

for a height-limiting slit of height h (here width corresponds to

the z direction, lying in the diffraction plane, and height

corresponds to the y direction, perpendicular to the diffraction

plane). This form of transmission function implies the

following inequalities for the beam-shape estimation after the

slits:

jzj � w=2 and jyj � h=2 ð9Þ

for width-limiting and height-limiting slits, respectively.

The Soller slits (including parallel slit analyzers and parallel

slit monochromators) are described by transmission functions

Tðy; z; ey; ezÞ ¼ max
�
0; 1� ð2ey;zÞ=�

�
; ð10Þ

where the index y or z depends on the orientation of the

parallel plates’ direction and � is the angular resolution of the

Soller slits. The inequalities describing beam shape after these

optical elements are

jey;zj � �=2: ð11Þ

The transmission functions of the monochromators are

modeled on the basis of the dynamical theory of diffraction

(Authier, 2001) and for a two-bounce monochromator the

transmission function is

Tðy; z; ey; ezÞ ¼
���� � sgn ðRe ��Þð�

2
� � 1Þ1=2

��2; ð12Þ

where

�� ¼
sin 2�B

�
� ez þ ð��=�0Þ tan �B

�
þ i Im�0

jCsjð�h��hÞ
1=2

: ð13Þ

�B is the Bragg angle of the used reflection h, �0, �h and ��h

are Fourier components of polarizability, Cs is the polarization

factor (C� ¼ 1 for � polarization and C	 ¼ cos 2�B for 	
polarization), and �0 is the average wavelength of the X-ray

beam; �� ¼ �� �0 describes the difference between wave-

length � associated with the considered ray and described by

equation (5) and the average wavelength �0. The þ sign

denotes (þ�) arrangement of the monochromator (Fig. 2),

whereas the� sign corresponds to (�þ) arrangement (usually

used for the analyzer). The region of nonzero values for this

kind of transmission function is described by the following

inequality:
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Figure 2
Scheme of the diffractometer configuration: S is the X-ray source
[including parabolic multilayer mirror (1) and a cross-beam optics unit
with selection slit (2)], M is the incident-beam crystal optics [a two-
bounce monochromator in (þ�) arrangement is shown], IS is the
incident slit, RS1 and RS2 are the receiving slits, A is the diffracted-beam
crystal optics [a two-bounce analyzer in (�þ) arrangement is shown], and
D is the detector.



j � ez þ ð��=�0Þ tan �Bj �
1

2
"1=4 jCsjjð�h��hÞ

1=2
j

j sin 2�Bj
; ð14Þ

where " is a threshold for effectively zero values (values that

are less than " are treated as zero). For an accurate simulation

of the laboratory diffractometer instrumental function the

value " ’ 10�8 is usually sufficient.

The transmission function of a four-bounce monochromator

is equal to

Tðy; z; ey; ezÞ ¼
���þ � sgn ðRe �þÞð�

2
þ � 1Þ1=2

��2
�

����� � sgn ðRe ��Þð�
2
� � 1Þ1=2

���2; ð15Þ

where the same notation is used as that given in equation (12).

The beam shape after this element is determined by the

following two inequalities:

jezj � 2�1=2"1=8

��Cs

�����ð�h��hÞ
1=2
���

j sin 2�Bj
; ð16Þ

���� ���0

���� � 1

2ð21=2Þ
"1=8
jCsj

���ð�h��hÞ
1=2
���

sin2 �B

: ð17Þ

The dependence of the transmission functions of mono-

chromators on the polarization of rays implies that the

calculation of the instrumental function must be carried out

separately for � and 	 polarizations. The diffraction profiles

from real samples depend on the polarization, too. Therefore,

the instrumental functions corresponding to two polarizations

must be convoluted with the diffraction profiles separately,

and after the convolution the result can be averaged over the

polarization of the incident beam.

For an X-ray source (including parabolic multilayer mirror,

if used) the angular and spatial intensity distributions are

assumed to be independent. The spatial part of the distribu-

tion is modeled by a rectangular shape (for example, corre-

sponding to the transmission function of the selection slit of

the cross-beam optics). The angular part of the distribution is

taken in the form of a Lorentzian contour for parallel beam

geometry (when a parabolic mirror is used) or a broad

rectangular distribution, limited by the width and height of the

selection slit of the cross-beam optics unit, in the configuration

without a collimating parabolic mirror.

The finite size of the sample is taken into account by its

transmission function (actually determining diffraction on the

sample)

Tsampleðx; yÞ ¼
n

1; jxj � Lx=2; jyj � Ly=2;
0; otherwise;

ð18Þ

where Lx and Ly are the dimensions of the sample, and x and y

are the coordinates of the point where the considered ray hits

the surface of the sample in the coordinate system, as defined

in Fig. 1(b). The ray is successfully diffracted by the sample

when

jxj � Lx=2; jyj � Ly=2: ð19Þ

These inequalities describe the influence of the finite size of

the sample on the shape of the beam.

3.2. Separation of integration variables for detected signal

In order to use the derived characteristics of the optical

elements for the detected signal calculation, one can represent

the integrand of equation (6) for the detected signal ID in the

following form:

IðyD; zD; eout y; eout zÞ ¼
Y

i:all elements

Tiðy
ðiÞ; zðiÞ; eðiÞy ; eðiÞz ÞI0

� Tsampleðxsample; ysampleÞ; ð20Þ

where for each optical element the spatial and angular coor-

dinates are determined in a unique way by the considered ray

(yD, zD, eout y, eout z):

eðiÞ ¼ eout;
yðiÞ

zðiÞ

� �
¼

yD

zD

� �
�

eout y

eout z

� ��
LD � Li

�
ð21Þ

for the elements of the detector arm of the diffractometer,

where LD is the position of the detector (distance from the

sample stage) and Li is the position of the ith optical element:

eðiÞ ¼ einðeoutÞ;

yðiÞ

zðiÞ

� �
¼ Qsample; in Qout; sample

yD

zD

� �

�Qsample; inQout; sample

eout y

eout z

� �
LD �

ein y

ein z

� �
Li;

ð22Þ

for the elements of the source arm, where the dependence of

ein on eout is provided by equation (5); matrices Qsample; in and

Qout; sample describe the transformation from the coordinates

(x, y) of the sample surface to the coordinates (y, z) of the

source arm cross section immediately before the sample and

from the coordinates (y, z) of the detector arm cross section

immediately after the sample to the sample coordinates (x, y)

as shown in Fig. 3(a). The coordinates of the ray diffraction

point at the sample, used for calculation of the sample trans-

mission function, are determined by the following expression:

xsample

ysample

� �
¼ Qout; sample

yD

zD

� �
�Qout; sample

eout y

eout z

� �
LD: ð23Þ

By separation of direction- and coordinate-limiting

elements, equation (20) can be transformed in the following

way:

IðyD; zD; eout y; eout zÞ ¼TspatialðyD; zD; eout y; eout zÞ

� Iangularðeout y; eout zÞ; ð24Þ

where

TspatialðyD; zD; eout y; eout zÞ ¼
Y

i:coordinate-limiting
elements

Tiðy
ðiÞ; zðiÞÞ

� Tsampleðxsample; ysampleÞ

ð25Þ

describes the total transmission function of the coordinate-

limiting elements and

research papers

J. Appl. Cryst. (2015). 48, 679–689 Mikhalychev et al. � Diffractometer instrumental function 683



Iangularðeout y; eout zÞ ¼
Y

i:direction-limiting
elements

Tiðe
ðiÞ
y ; eðiÞz ÞI0 ð26Þ

characterizes the intensity affected by direction-limiting

elements only. Here, the independence of parameters eðiÞy and

eðiÞz from yD and zD, provided by equations (21)–(23), is taken

into account.

Substitution of equation (24) into equation (6) provides the

following expression for the detected signal:

ID ¼
R

�D

d2eoutTspatialðeout y; eout zÞIangularðeout y; eout zÞ; ð27Þ

where, as it is shown below, integration in the spatial part of

the transmission function

Tspatialðeout y; eout zÞ ¼
R

SD

dyDdzDTspatialðyD; zD; eout y; eout zÞ

ð28Þ

can be carried out analytically.

3.3. Analytical integration of spatial part of transmission
function

The transmission function of all coordinate-limiting

elements mentioned above (slits, dummy optical element for

modeling source intensity distribution, finite-size sample) are

described by a rectangular distribution. The transmission of

any of these elements is either 0 or 1 for each ray. The same

property holds for the product of transmission functions of all

the coordinate-limiting elements TspatialðyD; zD; eout y; eout zÞ.

This means that the spatial part of the transmission function

Tspatialðeout y; eout zÞ is equal to the detector area irradiated by

the rays with fixed direction (eout y, eout z). This area can be

calculated as follows. For simplicity, we assume that the

transmission function of the ith coordinate-limiting element

has nonzero values in a rectangular region2

Si ¼ fðy
ðiÞ; zðiÞÞ : y

ðiÞ
min � yðiÞ � yðiÞmax; z

ðiÞ
min � zðiÞ � zðiÞmaxg: ð29Þ

For pinholes and apertures, which have nonrectangular

regions of nonzero transmission, only a slight geometrical

modification of the expressions derived below is required. A

certain ray direction (eout y, eout z) provides a singular one-to-

one correspondence between spatial points of different beam

cross sections. Therefore, all the regions from the source and

the detector arms, treated separately, can be projected along

rays onto certain fixed cross sections of the corresponding

arm. For the source arm we choose the cross section imme-

diately preceding the sample as the reference one (Fig. 3b).

For the detector arm, the reference cross section is chosen to

correspond to the window of the detector.

The projection of the points (y, z) of a cross section of the

source arm, situated at a distance L from the sample stage,

onto the reference cross section along the chosen direction for

the rays is described by the following transformation:3

RinðLÞ : ðy; zÞ 7! ðyþ ein yL; zþ ein zLÞ; ð30Þ

where the propagation direction ein is determined by equation

(5) in a unique way for fixed eout. The analogous projection for

the detector arm is defined as

RoutðLÞ : ðy; zÞ 7! ½yþ eout yðLD � LÞ; zþ eout zðLD � LÞ�:

ð31Þ

The shift transformations RinðLÞ and RoutðLÞ preserve the

rectangular shape of regions Si. The spatial part of the trans-

mission function for each of the two diffractometer arms, when

recalculated to the reference cross sections, has nonzero

values in rectangular regions4
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Figure 3
(a) The coordinate transformations between the sample coordinate
system and the coordinate systems of the reference cross section (1) of
the source arm (situated immediately before the sample) and the cross
section (2) of the detector arm situated immediately after the sample.
Transformations (3) and (4) are described by matrices Qsample; in and
Qout; sample, respectively. S is the X-ray source, D is the detector. (b)
Scheme for calculation of the detector area irradiated by rays with fixed
direction (eout y, eout z). Regions of nonzero transmission function values of
all coordinate-limiting elements of the source and the detector arms are
projected onto reference cross sections (1) and (2), respectively. Then the
regions of nonzero values of the transmission function for the source arm
Sin and the sample Ssample are projected onto the detector reference cross
section. The irradiated region of the detector is formed by the
intersection of the two projected regions and the region of nonzero
transmission function values for the detector arm Sout.

2 Notation fvalues: conditiong stays for the set of all values for which the
condition is satisfied.
3 Notation operator : value 7! new value defines operator, for which its action
on any valid value is described by the correspondingly calculated new value.
4 Here, the symbol

T
describes the intersection of two-dimensional regions.



Sin ¼
\

i:source arm

RinðLiÞSi ð32Þ

and

Sout ¼
\

i:detector arm

RoutðLiÞSi; ð33Þ

formed by the intersection of corresponding projections of the

rectangular regions of the elements.

To calculate Tspatialðeout y; eout zÞ, the region of nonzero values

of the transmission function for the source arm Sin, as well as

the corresponding region for the sample

Ssample ¼ fðx; yÞ: jxj � Lx=2; jyj � Ly=2g; ð34Þ

must be projected onto the detector reference cross section

along the same rays. The results of this transformation are

S0in ¼ Routð0ÞQ
�1
out; sampleQ�1

sample; inSin ð35Þ

and

S0sample ¼ Routð0ÞQ
�1
out; sampleSsample; ð36Þ

respectively. Finally, the region of the detector irradiated by

rays with the fixed direction (eout y, eout z) is formed by the

following intersection of three regions:

SD ¼ Sout \ S0in \ S0sample; ð37Þ

where Qout; sample and Qsample; in are the transformations

discussed after equation (22). The spatial part of the trans-

mission function is equal to the area of the region SD:

Tspatialðeout y; eout zÞ ¼ areaðSDÞ: ð38Þ

All of the described procedures required for the construction

of region SD and the calculation of its area are elementary and

provide significant speed-up in comparison with the straight-

forward numerical integration given in equation (28).

In practice, the calculation of Tspatialðeout y; eout zÞ according

to equation (38) takes about three times more operations than

calculation of integrand TspatialðyD; zD; eout y; eout zÞ in equation

(28). Assuming that at least 15 points per dimension are

required for accurate enough numerical integration, we arrive

at the speed-up of about 75 times in comparison with the

common ray-tracing approach for simulation of individual

rays, rather than simultaneous analysis of groups of rays with a

selected propagation direction.

3.4. Beam shape estimation

The constraints posed by each optical element on the beam

shape are described by equations (9)–(19) and can be

presented in the form of several linear inequalities for vari-

ables (yðiÞ, zðiÞ, eðiÞy , eðiÞz ), where i is the number of the considered

element, and, owing to the linearity of relations, for integra-

tion variables (yD, zD, eout y, eout z)

v
ðiÞ
j � ðyD; zD; eout y; eout zÞ � u

ðiÞ
j : ð39Þ

The angular integration limits in equations (6) and (27) can

be formulated as

�D ¼ ðeout y; eout zÞ: e
ðminÞ
out y;z � eout y;z � e

ðmaxÞ
out y;z

n o
: ð40Þ

The strict limits e
ðminÞ
out y , e

ðminÞ
out z , e

ðmaxÞ
out y , e

ðmaxÞ
out z of the region, deter-

mined by the system of inequalities (39), can be found by the

method of subdefinite calculations (Babichev et al., 1993;

Semenov et al., 1997). The idea of the method is to transform

the system of N inequalities vð�Þ � x � uð�Þ for M variables xi

into a system of MN explicit constraints of the form:

xi � uð�Þ=v
ð�Þ
i �

P
j 6¼i

v
ð�Þ
j xj=v

ð�Þ
i : ð41Þ

The iterative application of these constraints enables one to

determine the maximally tight bounds x(min) and x(max)

(Semenov et al., 1997).

To estimate the simulation speed-up provided by the

accurate beam shape estimation instead of integration over all

possible directions of rays reaching the detector, we consider

the modeled HRXRD setup with a four-bounce Ge(220)

monochromator, a 1 mm width-limiting incident slit, a flat

sample and a 20 � 20 mm detector at a distance of 300 mm

from the sample. A rough estimate of the beam divergence

(integration limits for angular variables) can be found as the

detector width divided by the distance from the width-limiting

slit along the beam (about 3	). The value found by accurate

beam shape estimation is 0.02	 (including tails of the distri-

bution) in the considered case. Therefore, the described

procedure is able to decrease the size of the integration region

by a factor of 150 (or 20 for a setup with a two-bounce

monochromator), which leads to a significantly smaller

number of integration points with the same accuracy of the

final result.

3.5. Algorithm of instrumental function simulation

Summarizing the results obtained above, the following

algorithm of instrumental function simulation for a given

diffractometer configuration and an ideal sample, which

accepts a fixed scattering vector q, can be formulated. For each

goniometer position, corresponding to a single point on a scan

or on a reciprocal-space map, the following sequence of steps

has to be taken to calculate the detected signal:

(a) Beam shape estimation: inequalities of the form (39) are

gathered from all the optical elements (including the sample);

the angular integration region �D [equation (40)] is deter-

mined by the method of subdefinite calculations.

(b) Integration over the propagation directions of the rays:

integration over angular variables eout y and eout z in equation

(27) is carried out numerically with the integration limits

determined by the region �D. Estimations and practical trials

for characteristic Lorentzian and rectangular shapes of the

integrand function show that accurate results are obtained

when at least 15–40 points are used for each of the integration

dimensions. All of the next steps correspond to integrand

evaluation and must be performed for each point (eout y, eout z).

(c) Calculation of the angular part of the intensity: for a

fixed ray direction eout, its directions eðiÞ at the cross sections,

corresponding to each direction-limiting element, are calcu-

lated on the basis of equations (21) and (22); the angular part
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of the intensity Iangularðeout y; eout zÞ is then determined by

equation (26).

(d) Calculation of the spatial part of the transmission

function Tspatialðeout y; eout zÞ: rectangular regions Si [equation

(29)] of nonzero transmission function values are found for all

of the coordinate-limiting elements and projected onto

corresponding reference beam cross sections [equations (32)

and (33)]. Transformation matrices Qout; sample and Qsample; in are

calculated for the considered measurement geometry and

goniometer positions (these matrices do not depend on eout

and can be calculated only once). The irradiated detector

region SD is determined by equation (37), where equation (34)

is used for Ssample. The spatial part of the transmission function

Tspatialðeout y; eout zÞ equals the area of the region SD.

(e) The integrand value is formed by multiplication of

Tspatialðeout y; eout zÞ and Iangularðeout y; eout zÞ.

In order to take into account the dependence of the

transmission functions of the monochromators on the polar-

ization of the radiation, the calculation procedures should be

performed twice for two different polarizations, thus yielding

two kinds of instrumental function I
ð�Þ
D and I

ð	Þ
D , corresponding

to � and 	 polarizations and being simulated separately.

3.6. Convolution for a real sample

The calculated value of detected signal ID corresponds to an

idealized sample, accepting fixed scattering vector q. For a real

sample, integration over nonzero diffraction profile values,

RðqÞ, must be performed:

I ¼

Z h
I
ð�Þ
D ðqÞR

ð�ÞðqÞ þ I
ð	Þ
D ðqÞR

ð	ÞðqÞ
i

d3q; ð42Þ

where the dependence of the diffracted signal intensity RðqÞ

on the polarization is taken into account. For the case of

epitaxial layers without diffuse scattering this expression is

simplified:

I ¼

Z h
I
ð�Þ
D ðqzÞR

ð�Þ
ðqzÞ þ I

ð	Þ
D ðqzÞR

ð	Þ
ðqzÞ

i
dqz: ð43Þ

For effective numerical calculations, the actual integration

limits for qz (or q) must correspond to the region of nonzero

integrand values. These limits can be estimated by the method

of subdefinite calculations for an extended system of

inequalities. This extension by adding an external parameter 

transforms inequality vð
Þ � x � uð
Þ into5

	
vð
0Þ;�

@u

@




� ðx; �
Þ � uð
0Þ; ð44Þ

where �
 is a small variation of the parameter 
 from its value


0. The scattering vector q represents an external parameter

for pure instrumental function simulation. Therefore, the

region of nonzero values of IDðyD; zD; eout y; eout z; qÞ can be

estimated by applying the method of subdefinite calculations

to the system of inequalities, extended by adding variations of

q around its initial value (for example, h for the considered

reflection). The limits found after this procedure will corre-

spond to the region of nonzero values of IDðqÞ and, therefore,

to the desired effective integration limits.

4. Physical consistency of simulation algorithm

To verify the correctness of the proposed method for instru-

mental function simulation, we consider several simple

limiting cases of diffractometer configurations. These config-

urations correspond to separated effects of finite detector

resolution, incident beam divergence and radiation nonmono-

chromaticity. Reciprocal-space maps (RSMs) of the pure

instrumental function (corresponding to the above-described

model of an ideal sample) are simulated for a coplanar out-of-

plane measurement geometry (Fig. 2). The scattering vector q

corresponds to the 224 reflection of a (001)-oriented perfect

crystal of silicon.

The effect of finite receiving optics angular resolution can

be tested by using the following open-detector diffractometer

configuration (see Fig. 2 for notation of optical elements). The

monochromaticity and small angular divergence of the inci-

dent beam are provided by a four-bounce Ge(004) mono-

chromator. The spatial size of the incident beam is constrained

by a 0.05 mm width-limiting incident slit. This configuration of

the diffractometer source arm fixes the direction and the

length of the incident wavevector kin (Fig. 4b). Therefore, the

shape of the instrumental function map is almost completely

determined by the inaccuracy of characterization of kout by the

detector position. Fig. 4(a) shows that the simulated RSM has

one streak, perpendicular to the direction of the diffracted

wavevector kout, in complete agreement with the expected

shape.

A similar effect of incident beam divergence can be simu-

lated by using monochromatic radiation and fixing the direc-

tion of the diffracted wavevector kout. This result can be

achieved by considering the configuration with a four-bounce

Ge(004) analyzer and a 0.05 mm width-limiting receiving slit in

the detector arm of the diffractometer. The simulated RSM

(Fig. 4c) exhibits one streak, perpendicular to the direction of

the incident wavevector kin, as expected (Fig. 4d).

For modeling the effect of beam nonmonochromaticity with

fixed directions of kin and kout, we consider the configuration

without a monochromator or an analyzer. The small angular

divergence of the incident beam and the high resolution of the

detector arm are provided by using narrow incident and

receiving slits (all the slits are 0.05 mm wide). The RSM

simulated for this configuration of diffractometer is shown in

Fig. 4(e) and exhibits one streak along q (Fig. 4f).

Fig. 5 shows a simulated RSM for the configuration when all

the above-discussed effects have similar orders of magnitude.

The source arm contains a four-bounce Ge(004) mono-

chromator and a 0.5 mm-wide incident slit. A two-bounce

Ge(220) analyzer and a 1 mm-wide receiving slit are placed in

the detector arm of the diffractometer. The RSM is simulated

for the 224 reflection of a sample, modeled as a (001)-oriented

perfect crystal of silicon, described by the dynamical theory of

diffraction (Authier, 2001), and consists of four streaks:
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5 Notation
�
a; b

�
with n-dimensional vector a and scalar b is used for ðnþ 1Þ-

dimensional vector c with ci ¼ ai, i ¼ 1; . . . ; n, and cnþ1 ¼ b.



monochromator streak M, caused by incident beam diver-

gence, analyzer streak A, corresponding to finite angular

resolution of the detector arm, wavelength (radiation

nonmonochromaticity) streak W and crystal truncation rod

CTR of the sample.

5. Experimental testing of instrumental function
simulation
The second test of the proposed algorithm for instrumental

function simulation consists of a comparison of simulated and

measured RSMs with the same diffractometer configurations.

For this purpose, several maps have been measured on a

standard laboratory diffractometer for the 004 reflection of a

(001)-oriented crystalline silicon sample.

Fig. 6(a) shows the RSM measured as 2�=!–! scans with a

scintillation counter. A setup with a two-bounce Ge(220)

monochromator and an analyzer, a 1 mm width-limiting inci-

dent slit, and 0.2 and 1 mm receiving slits is used (see Fig. 2 for

a scheme of the diffractometer configuration). Fig. 6(b) shows

the simulated map for this configuration with a sample

modeled as a perfect crystal and described by the dynamical

theory of diffraction. Both maps exhibit the analyzer (A) and

the monochromator (M) streaks and crystal truncation rod

(CTR), the reciprocal dimensions of which are in a good

agreement.

The measured RSM in Fig. 6(c) and the simulated RSM in

Fig. 6(d) were both measured as 2�=!–! scans using a setup

with a two-bounce Ge(220) monochromator, no analyzer, a

1 mm width-limiting incident slit, and 0.2 and 1 mm receiving

slits. The maps are in a good agreement and both have a

significant analyzer streak.

The maps in Figs. 6(e) and 6( f) correspond to coplanar

measurement geometry with a two-dimensional detector. The

source arm of the diffractometer contains a four-bounce

Ge(220) monochromator and a 0.5 mm width-limiting incident

slit. For easy comparison, the vertical distribution of detected

intensity for the two maps is shown in Fig. 6(g). The asym-

metry of the experimentally observed intensity distribution

[solid black line in Fig. 6(g)] relative to the central pixel of the

detector [dashed line in Fig. 6(g)] can be explained by a small
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Figure 5
Simulated RSM with comparable effects of beam divergence, finite
angular resolution of detector and beam nonmonochromaticity. The 224
reflection of ideal (001)-oriented silicon is considered. CTR is the crystal
truncation rod, M is the monochromator streak, A is the analyzer streak
and W is the wavelength streak.

Figure 4
Simulated RSMs, showing the effects of finite angular resolution of
receiving optics (a), incident beam divergence (c) and beam nonmono-
chromaticity (e). The ideal sample model with q corresponding to the 224
reflection of (001)-oriented silicon is used. Insets (b), (d) and ( f ) show
geometrical schemes of streak formation. M is the monochromator
streak, A is the analyzer streak and W is the wavelength streak. All RSMs
presented in this paper use log-scale for intensity.



misalignment of the used optics. A good agreement between

measured and simulated profiles (both width and position of

the peak) is achieved when a 0.2 mm downward shift of the

source is assumed in simulation of the RSM in Fig. 6( f). The

dotted line in Fig. 6(g) shows the simulated detected intensity

distribution for the setup without the misalignment. The time

required for simulation of RSMs in Figs. 6(b), 6(d) and 6( f) on

a standard desktop computer is 40, 39 and 1 s, respectively.

The observed agreement between the measured and simu-

lated maps proves the applicability of the designed simulation

algorithm for the description of regular HRXRD measure-

ments. The considered measurements correspond to a

symmetric reflection in silicon samples. A more comprehen-

sive testing of the algorithm for a wider group of different

measurement geometries and scan types will be published

elsewhere.

6. Conclusions

To summarize, a novel algorithm for the simulation of the

instrumental function is proposed and tested. According to the

designed approach, X-ray radiation is represented as a set of

rays, characterized by their propagation directions and the

spatial points of their detection. Only the rays which arrived at

the detector plate are considered. The detected signal is equal

to the sum (integral) of intensities of all detected rays. A

significant acceleration of the simulations is provided by

performing an analytical integration over the spatial coordi-

nates and by estimating the actual integration limits for

angular variables by a subdefinite calculation method on the

basis of inequalities describing the beam shape transformation

by each optical element.

All procedures for simulation of the instrumental function

are realized as algorithms and can be easily coded, which is

crucial for their use in commercial software. For adding new

optical elements, their transmission function and inequalities

describing beam shape transformation have to be provided.

Therefore, the set of described elements is not limited to the

ones described in this paper, and can be easily extended. The

designed method is universal and applicable for any diffract-

ometer configuration and measurement geometry and

provides a high-speed instrumental function simulation on a

desktop computer. The proposed algorithm has been tested

both for physical consistency and for agreement between
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Figure 6
Measured (a), (c), (e) and simulated (b), (d), ( f ) maps [RSMs for (a)–(d), and diffracted beam intensity distribution maps for two-dimensional detector
(e), ( f )] for the 004 reflection of a (001)-oriented silicon sample. See text for explanations of the diffractometer configurations used. (g) Vertical
distribution of the detected intensity for the maps (e), shown with a black solid line with circles, and ( f ), shown with a gray solid line with stars. Symbols
(circles and stars) correspond to the positions and detected intensities of the detector pixels. The dotted line shows the intensity distribution for the same
diffractometer configuration without source misalignment and the dashed line shows the central pixel of the detector.



simulated and measured reciprocal-space maps, and both

approaches show the validity of the algorithm.
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