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This work presents Xtal-xplore-R, a tool dedicated to the visualization of two-

dimensional cuts through the multidimensional crystallographic residual

function. It imports arbitrary crystal structures, generates artificial diffraction

data, and calculates and investigates the residual function in parameter space.

The program serves two major purposes. Firstly, it is part of a more general

project dealing with structure determination via global optimization techniques.

In this context, the tool is being used to systematically analyse characteristic

universal features of the target function (residual function) which can be used to

develop appropriate problem-specific heuristic optimization algorithms.

Secondly, Xtal-xplore-R is intended as a didactic tool to visualize how changes

in atom parameters affect the residual function and can be used to demonstrate

manual structure optimization for simple crystal structures.

1. Motivation

1.1. Structure determination from incomplete data

The development of methods for the determination of

crystal structures from incomplete (single-crystal or powder)

X-ray diffraction data (XRD) has been a major topic in

structural research for many decades. Increased computa-

tional capabilities in hardware and new algorithms have led to

increasing success in this field.

Classical methods of crystal structure determination like the

Patterson method or direct methods require the knowledge of

individual structure factor amplitudes. Complete sets of such

data are not available in the powder case, even if high-reso-

lution synchrotron data are being used. Yet, the determination

of small-to-medium-sized crystal structures from such incom-

plete data has been quite successful during the past few years.

More recently, dual space density-modification techniques

(charge flipping) have been introduced (for a review, see

Palatinus, 2013). In particular, organic structures can be solved

with approaches exploiting the approximately known struc-

ture of the molecule(s) and a combination of energy mini-

mization and rigid-body refinement, as shown by Schmidt &

Dinnebier (1999), for example. Inorganic structures, on the

other hand, pose a far greater problem as the absence of a

priori connectivity information renders the application of such

methods impossible.

Crystal structures with few atoms in the asymmetric unit of

the unit cell and/or high space-group symmetry can be solved

with little reference to diffraction data at all by systematically

assigning Wyckoff positions to matching unit-cell content

(Deng & Dong, 2009, 2011).
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Fischer and Kirfel have suggested another approach, using

projection techniques and the symmetry of iso-surfaces to

reduce the phase volume of the parameter space (Fischer et

al., 2005; Zimmermann & Fischer, 2009). Yet, their approach

seems most suitable for high-resolution single-crystal (neutron

or synchrotron) diffraction data.

1.2. Structure determination via global optimization

Xtal-xplore-R is part of a larger effort to apply global

optimization algorithms to the task of structure determination.

In this context the task of determining a crystal structure from

(inevitably incomplete1) diffraction data is treated as a

(global) optimization problem. The input data for the opti-

mization are experimental diffraction data in the form of

structure factor amplitudes Fobs for each observation hkl. Fobs

are essentially the square roots of the measured reflection

intensities Ihkl after suitable corrections. The second ingre-

dient is a model equation that allows the calculation of

corresponding quantities Fcalc. This is the classical structure

factor equation, which is at the heart of the kinematical

diffraction theory and is based on a Fourier transform of the

electron density within the unit cell:

�ðx;y;zÞ ¼
P

h;k;l

FðhklÞ exp½��iðhxþ kyþ lzÞ�; ð1Þ

FcalcðhklÞ ¼
Pntot

j¼1

fj exp½�iðhxþ kyþ lzÞ�: ð2Þ

In these equations ntot is the total number of scatterers in

the unit cell, � is the electron density, x, y, z are fractional

coordinates in direct space, fj is the atomic form factor of

scatterer j, h, k, l are the Miller indices of the observation hkl,

and, for good reasons (Palais, 2001; Hartl, 2013), we use the

notation of � ¼ 2� ¼ 6:283185307179586:::.
From these two quantities (Fobs and Fcalc), a target function

(the crystallographic residual function) is calculated according

to

R1 ¼

P
hkl jjFobsðhklÞj � jFcalcðhklÞjj

P
hkl jFobsðhklÞj

: ð3Þ

The task is then to optimize (minimize) this function with

respect to the structural parameters that enter the structure

factor equation. These are at least an overall scale factor that

puts the observed data (which are on a relative scale) on the

absolute scale of the calculated data, and the three-dimen-

sional coordinates x, y, z of the Na atoms in the asymmetric

sector of the unit cell (Na < ntot for all space groups except

P1). Also, the atom type, represented by the atomic form

factor fj, and an isotropic displacement parameter need to be

assigned to each atom but are usually not optimized.

The dimensionality of the optimization problem is therefore

of the order of m ¼ 3Na. With typical values of 5–20 unique

atoms for nontrivial crystal structures to be solved, the opti-

mization problem is thus defined in a 15- to 60-dimensional

parameter space. This type of optimization problem is prob-

ably one of the most frequently solved such multidimensional

tasks in solid state research and is usually referred to as

‘structure refinement’. Local optimizers (usually least-squares

algorithms) are used and, as such, the refinement requires a

very good set of starting parameters for the optimization to

converge to the true solution.

The global optimization task, in the absence of any suitable

initial set of approximate coordinates, is much harder to solve:

Assuming that a resolution of 0.1 along each parameter

direction (coordinates normalized to the interval [0 . . . 1[)

would be sufficient (see discussion of resolution below), a total

of 10m grid points would be needed to sample parameter

space. This is not just a vast number;2 the problem size also

increases exponentially with increasing number of atoms. For

a detailed discussion on the complexity of the global optimi-

zation problem see Roth et al. (2011).

In a very general sense, the target function defined by

equation (3) has the following characteristics:

(A) It is multidimensional (see above).

(B) It is multi-modal: the number of minima depends on the

data resolution,

(C) It is band limited: the obvious reason is that equation

(1) is defined via a Fourier transform with a finite number of

accessible Fourier coefficients.

(D) The variables are not separable (a direct consequence

of the underlying Fourier transform).

(E) It is noisy because the experimental intensities are

subject to the counting statistics.

Most (if not all) global optimization algorithms will fail

already because of characteristics (A) and (B). For instance,

the ‘branch and bound’ type of algorithms [first applied to

discrete optimization problems by Land & Doig (1960)] as

well as ‘interval arithmetic’ approaches (Hansen, 1992; Kear-

fott, 1996) suffer from the huge number of branches/intervals

that need to be evaluated before a decision can be made that a

given parameter space volume cannot contain an extremum.

In high dimensions these algorithms typically run out of

storage before reaching definite decisions.

Random optimization procedures [random start plus local

optimization, simulated annealing etc., see for instance Gelatt

et al. (1983)], on the other hand, run out of time before they

reach the global optimum with any suitable certainty.

Heuristic approaches are, therefore, unavoidable. For those

to succeed, it is essential to explore and make use of possible a

priori knowledge about characteristic features of the target

function. Such characteristic features indeed exist, as we will

show below, and these inspire effective optimization algo-

rithms, which will be the subject of another publication.
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1 Diffraction data are incomplete in various respects: (a) The underlying
Fourier series is always finite (band limited) because only a limited quantity of
data is experimentally accessible. (b) Only the structure factor amplitudes are
measurable; the corresponding phases are missing (the ‘phase problem’ of
crystallography). (c) For powder diffraction data, orientational averaging
leads to systematic and/or occasional superposition of observations; only their
sum is observable.

2 For Na ¼ 8) m ¼ 24 and a fast computing system which could check a
million grid points per second it would take 1024�6 ¼ 1018 s to evaluate the
complete grid. This is more than twice as long as the age of the universe (about
4:354� 1017 s).



2. R-factor landscapes

To find such heuristics, we chose to take a look at the target

function by generating ‘R-factor landscapes’:

An unknown crystal structure can be referred to as deter-

mined from its diffraction pattern when the position and type

of all of its scatterers have been found. In this case a simulated

diffraction pattern of the structure should match the diffrac-

tion pattern (perfectly).

To quantify the goodness of a match, the crystallographic

residual function R (R factor) is used as a measure [see

equation (3)]. An R factor of zero denotes a perfect match of

structure factors, while two random distributions of the same

scatterers usually give an R value of around �0:6 � 60%
(McMahon, 2008). R ¼ 0 can only be reached when refining

against simulated structure factors or intensities, while in

practice a good refinement of a crystal structure against X-ray

single-crystal diffraction data from a laboratory experiment

usually can reach R values of a few percent, and X-ray powder

diffraction data usually only allow for R1 between 5 and 15%

for a good Rietveld refinement (Rietveld, 1969).

Visualization of the multidimensional residual function

RðxÞ ¼

P
hkl jjFobsðhklÞj � jFcalcðhkl; xÞjj

P
hkl jFobsðhklÞj

ð4Þ

[with x ¼ ðx1; x2; . . . ; xmÞ being the multidimensional frac-

tional coordinate vector of all scatterers] is extremely hard.

Yet, a two-dimensional section through the m-dimensional

parameter space is still useful for visualization purposes,

provided the parameters chosen for the cut are representative

for all the other ones. This, indeed, applies to the atom coor-

dinates, which all enter the structure factor formula (2) in a

similar way. The contribution of individual atom j to the sum in

equation (2), however, is weighted by the form factor fj, and

this influence on the target function will be discussed further

below.

3. Xtal-xplore-R

To calculate the two-dimensional cuts through the aforemen-

tioned parameter space we created a graphical tool called

Xtal-xplore-R.

Xtal-xplore-R uses CIF as a standard file format to load

crystal structure data (via iotbxcif; Gildea et al., 2011). Right

now Xtal-xplore-R operates only on simulated single-crystal

data, but future extensions will enable it to also work with

powder data or user-supplied intensity data of any sort. To

generate the plots of the two-dimensional sections the

program keeps track of two crystal structures. The first of

these is called the ‘trial structure’, while the second one is

called the ‘target structure’. As both structures are auto-

matically transformed into space group P1 on loading, their

atomic coordinates can be freely modified by the user.

A single two-dimensional cut is obtained by evaluating the

target function (4) on a two-dimensional grid with

xk; xl 2 ½0:0; 1:0� and increments of 0.01 (or 0.1) in each

parameter direction while leaving all other parameter values

xi constant.

For the present purpose (visualization and study of the

crystallographic residual function), the Fobs in equation (4) are

replaced by calculated reference values for the target struc-

ture. So RðxÞ becomes

RðxÞ ¼

P
jjF

target
calc j � jF

trial
calc ðxÞjjP

jF
target
calc j

: ð5Þ

To obtain these Fcalc data the structure factor calculation

module of the Computational Crystallographic Toolbox

(cctbx) (Grosse-Kunstleve et al., 2002, 2014) is used to

generate the appropriate values using direct summation of

partial structure factors that in turn are calculated from the

atomic form factors, x, y, z coordinates, and isotropic dis-

placement values.

The calculated RðxÞ values are plotted in two different

views: a top view and a three-dimensional fly-by. Also, the

lowest RðxÞ value of each plane is marked with a brown

sphere.

This lowest minimum of a cut will be called ‘cut lowest

minimum’ (CLM) from here on, while the minimum with the

lowest possible R value will be referred to as the ‘global

minimum’ (GM). This is 0.0 for a perfect match, meaning that

all scatterers are in the correct position with respect to the

model structure.

Additionally one can apply a resolution filter3 to the set of

individual reflections hkl and remove all of those with lattice

plane spacing dðhklÞ (¼ �=jha� þ kb� þ lc�j, with the reci-

procal lattice vectors a�, b�, c�) smaller than a chosen reso-

lution cutoff dmin. So, only reflections with dðhklÞ> dmin are

used in the calculation of RðxÞ.

Xtal-xplore-R is also intended as a didactic tool to help

students visualize how changes in atom parameters affect the

residual function and can be used to demonstrate manual

structure determination for some simple crystal structures.

3.1. Implementation

Owing to its widespread use, good availability, multi-plat-

form support and open-source code we chose Python (van

Rossum, 2010) and PyQT4 (Riverbank, 2014) to implement

the graphical user interface (GUI) of Xtal-xplore-R using Qt

Designer (http://www.qt.io/). For three-dimensional visualiza-

tion we use Mayavi 2 (Ramachandran & Varoquaux, 2011), a

powerful VTK (Kitware, 2014) based cross-platform visuali-

zation toolkit. Quite a lot of the crystallographic functionality

has been implemented using cctbx (Grosse-Kunstleve et al.,

2002, 2014). This currently forces our program to use Python

2(.7) despite our effort to keep Python 3 compatibility in mind.

3.2. Overview of the interface of Xtal-xplore-R

Xtal-xplore-R uses a single-window interface as depicted in

Fig. 1 for its GUI to display all the relevant information at one

computer programs
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3 We call this filter a ‘resolution filter’ as it simulates the cutoff of observable
reflections due to limited XRD instrument resolution.



time simultaneously. As Xtal-xplore-R is still under active

development it is likely that some functions will be added or

renamed in between the writing of this paper and its publi-

cation. Also, future versions may have additional features or a

refined GUI. At the time of writing, the main elements of the

GUI are as follows:

3.2.1. The outer elements. The outer elements are a menu

bar to select different (advanced) program functions at the

very top and buttons for general functions (Open CIF, Copy

currently selected structure to the other structure slot) and a

progress meter to display the progress of actions that take

some time to complete to the very left. At the very bottom of

the window there is a status bar to display some additional

information to the user.

3.2.2. The inner part. The inner part of the GUI is divided

into four sections. The top left is used for displaying infor-

mation on and acting upon the two crystal structures, while the

top-right three-dimensional visualization displays a structural

model of the currently selected crystal structure. The two

bottom visualization widgets are used to render surface plots

of the crystallographic residual function in the selected cut

plane. The x axis and y axis selectors on top of the bottom-left

widget can be used to select which two-dimensional cut of the

m-dimensional hyperspace should be displayed. The ‘fine’

toggle changes the resolution of the grid on which RðxÞ is

evaluated from 0.1 steps to 0.01 steps, while the ‘d min’ slider

can be used to set the resolution cutoff.

3.2.3. Basic operation. Usage instructions and a detailed

example workflow can be found in the manual that is supplied

along with Xtal-xplore-R.

In a nutshell, Xtal-xplore-R allows the user to load up to two

CIFs and then manipulate the different atomic coordinates at

will while displaying the resulting ‘landscapes’ of the selected

cut through the residual function. (In most cases one will only

load one CIF and use it as target structure and as a base for the

trial structure.) The interface is designed to be intuitively

usable with some basic knowledge of crystal structure plotting.

3.3. Obtaining Xtal-xplore-R

The source code, installation instructions and all docu-

mentation of Xtal-xplore-R can be obtained from https://

github.com/jamasi/Xtal-xplore-R. The interested reader is

kindly asked to clone this repository and to submit enhance-

ments or bug-fixes as pull requests.

4. Simple example structures

To demonstrate the use of Xtal-xplore-R we discuss briefly the

target functions of three simple structures: high quartz (SiO2)

(Kihara, 1990), perovskite (CaTiO3) (Beran et al., 1996) and

wuestite (FeO) (Fjellvag et al., 2002).

The structures were chosen as they (a) are widely known

examples of inorganic crystals, (b) nicely show the character-

istic properties of the target function and (c) contain only a

few independent atoms, as this helps to keep the calculation

times short. The quite high symmetries also help in checking if

effects introduced by pseudo-symmetry are visible after the

structures have been expanded into P1.

4.1. Some two-dimensional cuts in three-dimensional plots

The plots in Fig. 2 show sections though the 27-dimensional

hyperspace of the residual function of high-quartz-derived

structures (in P1) for the y and z parameters of the Si.1 ion

(the scatterers before expansion to the P1 symmetry equiva-

lent are labelled with ‘Sc.x’ notation). The small brown sphere

marks the CLM.4

The cuts were made for different target structures:

(a) Containing the solution: all atoms are placed on exact

positions, so only the two parameters shown below differ from

the optimal configuration.

(b) Very close to the solution: only Si.1 is placed on a wrong

position (0.8 0.8 0.13); all other atom positions are correct but

rounded to 0.01.

(c) Close to the solution: only Si.2, O.0 and O.3 are placed

on random positions; all other atom positions are correct but

rounded to whole tenths to add some more ‘noise’.

(d) Far away from the solution: all atoms of the target

structure except Si.0 (0.5 0.0 0.0) are placed on random posi-

tions (= fractional coordinates x, y, z 2 ½0; 1½).

Also, all plots were generated for two different values for

the data resolution filter. The top row shows the R-factor

landscapes for dmin ¼ 1:5 Å, while the bottom row uses a

lower data resolution with dmin ¼ 3:0 Å.

The second group of plots (Fig. 3) shows two different slices

through the target function of a CaTiO3 perovskite structure.

One can clearly observe trenches with the deepest of those

containing the GM in their intersection. In addition, the effect

of the different ‘weight’ of the scatterers can be seen: the

heavier the scatterer, the more pronounced and deeper the

trench that denotes the match of one of its atomic positions.
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Figure 1
Screenshot of Xtal-xplore-R.

4 Owing to space limitations on this paper only this single example picture is
shown here, but the observations presented below are based on the full set of
all parameter plots.



This can also be seen in many more plots from the complete

data set.

In Fig. 4 the same parameter plane from a wuestite (FeO)

sample is plotted for different values of the minimal d-space

resolution (dmin ¼ 0:5, 0.8, 1.0, 1.5, 1.8 and 2.0 Å). As one can

see, the global minimum does not change its position while

getting successively wider and the surface of the cut gradually

flattens.
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Figure 2
Effect of the proximity to the correct solution for high quartz (SiO2) in P1 at two different data resolutions: (top) dmin ¼ 1:5 Å, (bottom) dmin ¼ 3:0 Å.
The brown sphere marks the position of the CLM. (a)–(d) are described in the text.

Figure 3
CaTiO3 (perovskite). The effect of the heavy Ti4þ ion compared to the lighter Ca2þ ion and the even lighter O2� ion. The heavier the scatterer, the
deeper the trench.



4.2. Observations and their consequences

Even from a brief look at the generated RðxÞ ‘landscapes’ of

these example structures a number of the postulates on the

properties of the target function made above can be verified:

(A) It is multidimensional. This is trivial.

(B) It is multi-modal. On most cuts there is more than one

(local) minimum. Indeed, the residual function is multi-modal

in any parameter direction except, usually, for the scale factor

(not shown).

(C) It is band limited. Filtering the reflection list to structure

factors above a cutoff in d spacing (= lower resolution in d �

higher cutoff dmin) by removing all reflections hkl with too

small dðhklÞ from the R-factor calculation flattens the land-

scapes and widens the minima without shifting their position

in parameter space. Owing to the widening of the minima, the

number of smaller local minima decreases as neighbouring

minima merge into each other.

Such a filtering should help to reach global convergence

faster, as this filtering process can be controlled dynamically

from an algorithm.5

The fact that the underlying Fourier series is band limited

has the following implications: The data are necessarily

incomplete. This is a disadvantage if the refinement of very

precise coordinates is required. On the other hand, the ‘band

limitedness’ imposes an upper bound on the slope of the target

function. Indeed, for the purpose of global optimization,

where the primary goal is to generate an approximate solution

which is close enough to the suspected optimum to subse-

quently let local optimizers succeed, ‘band limitedness’ can be

turned into an advantage: The resolution can be reduced

arbitrarily below the resolution of the experimental data by

cutting off high-order Fourier coefficients from the data. This

obviously reduces the accuracy of the optimized parameters

and may cause, for severe band limitation, a loss of uniqueness

of the solution, but it also increases the convergence volume in

parameter space (corresponding to the number of extrema per

unit interval) without changing the position of the global

optimum. Adjustment of the data cutoff is therefore always a

trade-off between the computational effort necessary to come

close to the solution and the accuracy/uniqueness of the

solution obtained.

(D) The variables are not separable. Moving away from the

GM (in the parameters that are not displayed) successively

increases the base level of the cut (see Fig. 2). Also, the
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Figure 4
Effect of successive dmin filtering on the Fe1x–O0y cut plane of wustite. The minimum gets wider while the whole surface gets successively smoother. Also
notice the much deeper trench of the Fe2þ ion.

5 The isotropic displacement parameter has an influence that is quite similar to
that of the data cutoff and is not discussed in this paper for brevity.



position of the lowest minimum in the cut (CLM) no longer

corresponds to the GM for large parameter deviations. This

clearly shows that the parameters of this type of optimization

problem are not separable. (Separability in this context would

mean that any cut along any parameter direction should have

its local optimum at the position of the global minimum for

this parameter, irrespective of the values of any other para-

meters.) The position of the CLM locks in gradually and

converges to the GM. In addition, trenches along the para-

meter directions or the diagonals gradually form, with the

deepest (i.e. most pronounced) trench in each direction

containing the solution. The ‘heavy’ atoms form deeper

trenches compared to ‘lighter’ atoms. This can be interpreted

as a kind of ‘semi-separability’ close to the GM.

(E) The residual function is noisy owing to Fobs being

quantities with a non-vanishing standard deviation. The result

of different levels of ‘artificial noise’ is yet to be explored, but

the quality of standard laboratory data is always sufficient

(given suitable starting coordinates) to allow convergence of

local optimizers to the global optimum. There is, therefore, no

obvious reason why statistical data quality should be an issue

for global optimization against the same data.

5. Outlook

Further extensions of Xtal-xplore-R are expected to include

the option to simulate powder diffraction, the ability to add

user-defined noise on simulated data, the use of intensity data

supplied by the user, and a fast local optimizer to explore the

convergence radius of the global minimum.

The GUI development for Xtal-xplore-R along with its

underlying crystallographic routines will also be used in the

implementation of the optimization algorithms, taking

advantage of the above-mentioned observations.

One of these is the successive line scan (SLS) algorithm that

will try to locate trenches within low-dimensional cuts through

the parameter space and then in combination with a local

optimizer try to successively descend towards the GM. The

above-mentioned advantage of controlling the resolution

cutoff gives rise to an alternative algorithm: the optimal

configuration search (OCS). In this algorithm, the atomic

positions manifold (and therefore parameter space) is

discretized into a set of only a few allowed positions. These

positions can then be either occupied or not, thus transforming

the continuous problem into a combinatoric one, where one

can iterate all possible combinations in a significantly shorter

time.
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