
research papers

1560 http://dx.doi.org/10.1107/S1600576715016404 J. Appl. Cryst. (2015). 48, 1560–1572

Received 20 January 2015

Accepted 2 September 2015

Edited by T. Proffen, Oak Ridge National

Laboratory, USA

Keywords: extended disorder; atomistic

ensembles; modeling; pair distribution function

analysis.

Representational analysis of extended disorder in
atomistic ensembles derived from total scattering
data

James R. Neilsona* and Tyrel M. McQueenb

aDepartment of Chemistry, Colorado State University, CO 80523-1872, USA, and bDepartment of Chemistry, Department

of Materials Science and Engineering, and Department of Physics and Astronomy, Johns Hopkins University, Baltimore,

Maryland 21218, USA. *Correspondence e-mail: james.neilson@colostate.edu

With the increased availability of high-intensity time-of-flight neutron and

synchrotron X-ray scattering sources that can access wide ranges of momentum

transfer, the pair distribution function method has become a standard analysis

technique for studying disorder of local coordination spheres and at

intermediate atomic separations. In some cases, rational modeling of the total

scattering data (Bragg and diffuse) becomes intractable with least-squares

approaches, necessitating reverse Monte Carlo simulations using large atomistic

ensembles. However, the extraction of meaningful information from the

resulting atomistic ensembles is challenging, especially at intermediate length

scales. Representational analysis is used here to describe the displacements of

atoms in reverse Monte Carlo ensembles from an ideal crystallographic

structure in an approach analogous to tight-binding methods. Rewriting the

displacements in terms of a local basis that is descriptive of the ideal

crystallographic symmetry provides a robust approach to characterizing

medium-range order (and disorder) and symmetry breaking in complex and

disordered crystalline materials. This method enables the extraction of

statistically relevant displacement modes (orientation, amplitude and distribu-

tion) of the crystalline disorder and provides directly meaningful information in

a locally symmetry-adapted basis set that is most descriptive of the crystal

chemistry and physics.

1. Introduction

Achieving an atomistic description of solids continues to

provide a challenge to the study of materials, especially as we

learn that imperfections and disorder of crystals can give rise

to the emergence of unexpected materials properties. For

example, the multifunctional properties of the perovskite

manganites can only be explained by understanding the rela-

tionships between the local and average structures (Božin et

al., 2007; Wu et al., 2007). Therefore, we strive to further

classify and quantify the nature of any local ordering (short-

range order) that is patterned in a disordered fashion. Pair

distribution function (PDF) analysis of total scattering data

has become a common technique for the characterization of

local distortions and disorder in crystals, as well as of nano-

particle structures (Egami & Billinge, 2012; Billinge & Levin,

2007; Young & Goodwin, 2011; Keen & Goodwin, 2015).

Modeling of atomistic structures – with an emphasis on

capturing the correct local structure – from experimentally

derived atom–atom histograms poses a great challenge,

especially when the best description of the PDF has a short

finite correlation length (a domain) that becomes averaged

into a higher symmetry in the crystallographic structure. To
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obtain an atomistic description of such a model with these

domains (where each domain consists of a few unit cells),

simulations containing thousands of atoms can be used to

model the total scattering data. By employing a large-scale

simulation, the limitations from periodic boundary conditions

are lifted, thus allowing disordered aspects of the structure

either to average out into the Debye–Waller factor in the case

of crystalline disorder, or to lack any attributes of long-range

order over the range of data provided in reciprocal space

(after convolution with the finite size of the simulation) in

order to describe amorphous solids (Renninger et al., 1974;

McGreevy & Pusztai, 1988; Elliott, 1984). However, analysis

of these large-scale atomistic ensembles containing thousands

of atoms has been nontrivial, both in the challenge of

extracting information relative to the average crystallographic

structure and also in providing statistically meaningful infor-

mation; there are typically many more free parameters in

these simulations than there are independent observations

(i.e. data).

Herein, we develop a systematic approach for analyzing the

disorder in large atomistic simulations of complex crystal

structures using representational analysis. The determination

of crystallographic superstructures resulting from displacive

distortions via symmetry-mode analysis of a statistical distri-

bution of ensembles has proven to be very powerful (cf. WO3

and LaMnO3) (Kerman et al., 2012). Another similar

approach, but coupled to a different analysis, has also made it

possible to extract phonon dispersions from powder diffrac-

tion data (Dimitrov et al., 1999; Goodwin et al., 2004, 2005).

Here, we use a variation of this technique adapted to the

understanding of local structural variations by projecting

displacements of atoms from their average crystallographic

sites in atomistic ensembles onto a tight-binding-like basis

formed from the symmetry-adapted1 modes of a single unit

cell, as depicted in Fig. 1; we define these modes as ‘tight-

binding modes’. When displacements from an ideal crystal-

lographic site are projected onto this locally symmetry-

adapted basis, the disorder can be quantified and statistically

analyzed to determine the frequency of specific displacement

magnitudes and orientations. This manuscript outlines the

analytical method and presents two illustrative applications of

the method: the observation of a trigonal distortion in BaTiO3

at room temperature and the identification of the local

displacement modes in the charge-ice pyrochlore Bi2Ti2O7.

More broadly, our approach is equally important for the

analysis of experimental diffraction and scattering data

(Shoemaker et al., 2010; Shoemaker & Seshadri, 2010; King et

al., 2011), ab initio and force-field-based simulations (Dixon &

Elliott, 2014; Palin et al., 2014), and combinations of the two

(White et al., 2010a,b). Furthermore, this approach provides a

common language and representation for bridging experi-

ment- and theory-derived models.

2. Method

2.1. Introduction to total scattering methods

The analytical method described here operates on an

ensemble of atoms that can be described as a enlarged ‘big

box’ generated from small crystallographic unit cells. The

atom positions need not sit on precisely ordered lattice sites;

however, upon back-folding the big-box ensemble onto the

parent unit cell, the average atom positions should project

close to particular lattice sites, each with a position distribu-

tion resembling something like a Debye–Waller factor (i.e. the

model may be paracrystalline). This method is agnostic to how

the models are generated; the authors refer the reader to

Egami & Billinge (2012), Young & Goodwin (2011), Keen &

Goodwin (2015) and Tucker et al. (2007, 2001) for descriptions

of modeling total scattering data.

Here, we use ‘total scattering’ to refer to the scattering of

X-rays or neutrons that describes the structure factor of the

crystallographic symmetry (diffraction from periodically

ordered components) and the diffuse scattering that can arise

from displacements of atoms from their ideal lattice points,

including displacements from thermal motion and static

disorder in the crystal (Egami & Billinge, 2012). If the total

scattering structure factor, S(Q), is measured to a sufficiently

high momentum transfer [Qmax >� 15 Å�1; Q = (4�sin�)/�,

where � is half the scattering angle and � is the wavelength of

the incident radiation, one can numerically take a sine Fourier

transform to convert S(Q) into the reduced PDF, G(r):

GðrÞ ¼ 4�r�0 ½gðrÞ � 1�

¼ ð2=�Þ
R1
0

Q½SðQÞ � 1� sinðQrÞ dQ; ð1Þ
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Figure 1
A schematic illustration of the workflow for generating a large ensemble
simulation using reverse Monte Carlo simulations. Either this can be
folded back onto a small unit cell, or the atomic displacements can be
projected onto the tight-binding modes of a small unit cell. Inset: G(r)
centered at r = 2 Å highlights the Ti—O bond lengths.

1 We define the modes as being locally symmetry-adapted, since the symmetry
relationship that we use is only strictly defined for k = (0, 0, 0). In a single unit
cell, these modes are fully symmetry adapted.



where �0 is the average number density of the material and

g(r) is the atomic PDF. The atomic PDF, g(r), is a direct

measure of the relative positions of the atoms in a solid, i.e. an

experimentally accessible real-space histogram of all atom–

atom separations in the solid (of both periodically ordered and

disordered atoms). Because of the crystallographic phase

problem, without the use of isotopic labeling or anomalous

scattering it is not possible to assign peaks directly in the PDF

to specific atoms, so atomic scale modeling must be used to

make assignments to individual peaks.

‘Small-box’ models, which allow the extraction of bond

lengths and a description of the thermal motion (i.e. Debye–

Waller factors), can be obtained from least-squares (LS)

optimization of a crystallographic unit cell, or some small

variant thereof, to the experimental PDF using the software

PDFgui (Egami & Billinge, 2012; Proffen & Billinge, 1999;

Farrow et al., 2007). LS optimization is susceptible to finding

local minima in the goodness-of-fit and is numerically

cumbersome when the model contains many degrees of

freedom, as applicable here. Additionally, these short-range-

ordered models often fail to provide an accurate description of

the crystallographic observations (Neilson et al., 2012, 2013;

King et al., 2013).

A complimentary approach to extract atomistic configura-

tions from the PDF is to model simultaneously both the

crystallographic structure factor and the PDF by employing a

‘large-box’ simulation of the total scattering data. A reverse

Monte Carlo (RMC) algorithm can be used to find atomistic

configurations of the ensemble consistent with both the

experimentally determined G(r) and S(Q) (Tucker et al., 2007,

2001).

2.2. Coordinate transform and decomposition

The goal of this method is to define the atomic configura-

tions of an ensemble as displacements from the ideal crystal-

lographic positions. Here, we define a ‘big’ or ‘large box’ as an

Mx�My�Mz enlargement of the crystallographic unit cell to

form an atomistic ensemble, but no attempt is made to

constrain the symmetry between atoms, within either the

subcells or the ‘large box’. The simplest such basis is simply to

write down displacement vectors, in Cartesian or lattice

coordinates, for each atom in the ensemble. Each atom within

the crystallographic unit cell i has a unique position defined by

a vector xi,n. The vector Rn describes the spatial vector

between each unit cell n within the ensemble. Each atom can

be mapped as a displacement from its ideal position in the

crystallographic unit cell, x0
i;n, by ui;n = xi;n � x0

i;n, where the

values x0
i;n are often determined from a traditional crystal-

lographic analysis (Rietveld analysis or single-crystal struc-

tural refinement). Such a representation is shown

schematically in Fig. 2(a) for a simple two-dimensional ‘toy’

model, a 2 � 1 ‘big box’ built from a crystallographic unit cell

with two atoms and C4 symmetry. While straightforward to

compute, this basis (the displacement vectors) lacks any

connection to the symmetries that are present, locally or on

average, and is thus difficult to interpret. A more refined

approach is to rewrite the displacements in terms of the

normal modes of the crystallographic structure, with ampli-

tudes and phases for every mode at every wavevector in the

Brillouin zone (as determined by the point symmetry of each

wavevector). This normal-mode basis provides physical insight

because the atomic displacements are mapped onto symmetry-

defined motions away from their ideal positions, and correla-

tions between unit cells are captured. There is, however, an

even better choice of basis that keeps many of the advantages

of the classic normal-mode approach but retains physical

insight into the local symmetry changes.

First, the local tight-binding (i.e. locally symmetry-adapted)

modes are identified. This is accomplished by rewriting all

possible atomic motions within a single unit cell into motions

consistent with the point symmetry of the crystal at the Bril-

louin zone center, k = (0, 0, 0). Each motion (or mode) can be

labeled according to the irreducible representation (irrep) that

it transforms under in the point symmetry group and is

described by a set of basis vectors describing the actual atomic

motions. Identification of these tight-binding modes is

straightforward: basis vectors spanning each irreducible

representation for each space group have been tabulated by

Kovalev (1993), or can be computed by various crystal-

lographic tools, including KAREP (Hovestreydt et al., 1992),

SARAh (Wills, 2002), BASIREPS (Rodriguez-Carvajal, 2001),

the Bilbao Crystallographic Server (symmetry-adapted

modes) (Aroyo et al., 2011; Aroyo, Perez-Mato et al., 2006;

Aroyo, Kirov et al., 2006; Kroumova et al., 2003) and the

ISOTROPY software suite (Stokes et al., 2013). The inputs for

these tools are the crystallographic space group and the atom
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Figure 2
Schematic illustrations of the coordinate transformations from atomic
displacements into the tight-binding basis, based on locally symmetry-
adapted modes. See text for discussion of parts (a) and (b).



positions of the small (crystallographic average) unit cell, as

one would derive from Rietveld (or other suitable crystal-

lographic) analysis.

These tight-binding modes provide an orthonormal and

local basis for describing all possible motional degrees of

freedom within a single unit cell, and are analogous to the

normal vibrational modes of a molecular system. To retain this

physical intuition but capture the degrees of freedom of a

‘large-box’ atomistic ensemble, we adopt a technique analo-

gous to tight-binding methods in electronic structure calcula-

tions (Slater & Koster, 1954) and write down modes at a non-

zero wavevector in terms of these local basis functions that we

define at the Brillouin zone center (as for atomic orbitals),

with appropriate phase factors to describe correlations

between crystallographic unit cells in an ensemble. Specifi-

cally, we define the spatial correlations between unit cells

within the ensemble with a quantized reciprocal wavevector,

k = 2�/R. The vector spans the indices kx = (2�nx=Mx,

2�ny=My, 2�nz=Mz) for all nx = 0, 1, . . . , (Mx � 1), ny = 0,

1, . . . , (My� 1) and nz = 0, 1, . . . , (Mz� 1); in other words, the

wavevectors are in steps of 2�/M along each direction. For

mathematical convenience, we define all values of k as posi-

tive. The amplitude of a tight-binding mode, �j;�ðkÞ, with the

associated phase factor described by the reciprocal-space

wavevector k, is defined by

�j;�ðkÞ ¼
P

n

P
i

ui;n � wi;j;� expð�i k � RnÞ

� �
; ð2Þ

where i runs over all atoms in the crystallographic unit cell and

n runs over all unit cells contained within the ensemble. The

vector R points to the nth crystallographic unit cell in the

ensemble. The values wi;j;� are the vectorial contribution of

atom i to the mode described by the ( j, �) pair. The vectorial

contributions can span multiple atoms, as pertaining to the

crystallographic multiplicity of the particular site in the

original crystallographic unit cell. The index j specifies each set

of modes that together transform as an irreducible repre-

sentation of the point group; � is equal to the dimensionality

of the corresponding irreducible representation and runs over

all modes in the set. Together, there are 3N distinct ( j, �) pairs,

or tight-binding modes, where N is the number of atoms in the

small crystallographic cell.

There is no index k on w, just like there is no wavevector

dependence on atomic orbitals in the classic tight-binding

electronic structure approach, because all wavevector depen-

dences are explicitly included in the phase factors. Further,

note that to retain all degrees of freedom we allow the

amplitudes of each tight-binding mode to be independent of

all others, even if symmetry would constrain them (i.e. because

one irreducible representation may be spanned by multiple

modes). This allows us to consider, but not enforce, symmetry

in describing the ‘large-box’ atomistic ensembles. Stated

differently, the projection is only a change of basis; all 3N � 6

degrees of freedom (for an ensemble of N atoms) are retained

(omitting the three translational and three rotational degrees

of freedom) and the exact atomistic ensemble can be recon-

structed by the inverse of

ui;n ¼
P

k

P
j

P
�

�j;�ðkÞ � wi;j;� expði k � RnÞ: ð3Þ

This method, as applied to the toy model, is shown in Fig. 2(b).

We note that this is distinct from typical crystallographic order

parameter analysis (Kerman et al., 2012; Dimitrov et al., 1999;

Goodwin et al., 2004, 2005; Stokes et al., 2013; Campbell et al.,

2006), in which the constraints of the parent crystallographic

symmetry are preserved and the primary interoperable vari-

ables are the order parameter amplitudes, thus providing one

number for a pair of basis vectors that describe a displacement

transforming as a two-dimensional irreducible representation,

versus two numbers in our approach. We retain all possible

degrees of freedom.

2.3. Continuous symmetry measures

When using our tight-binding modes, we can determine the

activity of the mode and the deviation of the ensemble from

the crystallographic symmetry, not just from the mode

amplitude but also from its mean-squared deviation (MSD)

from an ensemble operated on by a symmetry operation of the

parent crystallographic space group. There are at least two

distinct types of continuous symmetry measures [as developed

by Avnir and coworkers (Zabrodsky et al., 1992; Alvarez et al.,

2005)] that we characterize here. First, the global activity of a

single tight-binding mode ( j, consisting of one or more indi-

vidual � modes depending on the dimensionality of the

corresponding irreducible representation) can be quantified as

the MSD between the j�j;�ðkÞj amplitudes and the new

amplitude coefficients, j�G;j;�ðkÞ
0
j, following application of a

symmetry operation G of the crystallographic space group:

sG;j ¼
P

k

P
�

j�G;j;�ðkÞ
0
j
2
�
P
�

j�j;�ðkÞj
2

� �2
( )1=2

: ð4Þ

For purely symmetry-conserving displacements, the MSD

should be zero. Here, it is critical to combine the squared

amplitudes of all individual modes that together transform as a

single multidimensional irreducible representation (the

innermost sums) because the amplitudes of individual modes

can be varied simply by changing the choice of basis vectors

within that mode set. The sum over all wavevectors is justified

to identify local symmetry changes because it corresponds to

summing the contributions derived from a single local tight-

binding mode (as for atomic orbital) and is exact in the

molecular limit. The final square root is provided for conve-

nience to make the magnitude of sG,j more physically inter-

pretable.

The related MSD, not broken down by individual mode sets,

is similarly simple to calculate:

sG ¼
P

j

P
k

P
�

j�G;j;�ðkÞ
0
j
2
�
P
�

j�j;�ðkÞj
2

� �2
( )1=2

; ð5Þ

where again the final square root is provided for convenience.

The second type of deviation from the parent space group

that can be identified is distortions that do not retain an

equivalence of mode amplitudes within a single mode set that
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transforms as a multidimensional irreducible representation.

To illustrate this, consider a single box with C4 symmetry and

an atom in the center displaced along the diagonal direction

(Fig. 3). Projected onto the two basis vectors �1 and �2, which

together span the two-dimensional irreducible representation

E in the corresponding point group, the amplitudes along each

basis are initially equal. As the Euler angle that defines the

absolute orientation of the basis vectors is varied, the intensity

of �2 reduces while �1 increases until �1 is collinear with the

atom displacement; this oscillatory pattern continues the rest

of the way. Note that the sum of the square amplitudes from

the two contributions (�1 and �2) is a constant (this is

required, as the magnitude of the displacement is not chan-

ging). However, across multiple subcells or across multiple

simulation runs, one can differentiate between random and

ordered displacements. Let �0 be the initial angle of the

displacement of the central atom. Different values of �0

correspond to phase shifts of the values of �2
1 (and �2

2). If the

�0 values are completely random, then their average is a flat

line as a function of Euler angle, with variances that are also

flat (Fig. 3b). On the other hand, if the �0 values are pinned to

specific directions, then only a subset of the phase shifts is

present. This will often result in an average that is still flat as a

function of Euler angle, e.g. if they are pinned every 90�, but

the variances will no longer be uniform (Fig. 3c). This can be

exploited to determine whether the displacements are

approximately random or fixed in some subset of orientations

relative to the parent unit-cell coordinate system.

3. Case studies

3.1. Trigonal displacements in tetragonal BaTiO3

The ferroelectric ceramic BaTiO3 at T = 298 K provides an

excellent example of local distortion that averages out to a

higher crystallographic symmetry in the unit cell. The average

crystallographic symmetry determined from Rietveld analysis

is tetragonal, P4mm, which was used to define the tight-

binding modes. However, the local bonding environment is

significantly distorted and better described by the symmetry of

the low-temperature R3m configuration (Kwei et al., 1995;

Ravel et al., 1998; Page et al., 2010), as illustrated in Figs. 4(a)

and 4(b). While the R3m model provides a quantitative fit to

the PDF within one unit cell, it does not provide quantitative
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Figure 4
(a) Room-temperature P4mm crystal symmetry of BaTiO3, with
exaggerated displacements of the Ti and O positions to illustrate the
ferroelectric dipole. (b) The PDF analysis reveals a local distortion
present at room temperature that resembles the low-temperature R3m
crystal structure (Kwei et al., 1995; Ravel et al., 1998; Page et al., 2010),
illustrated here with exaggerated Ti and O displacements. (c) The folded
atomistic big-box ensemble generated from an RMC simulation, overlain
with the anisotropic displacement ellipsoids determined from small-box
modeling of the PDF (R3m structure). The (200), (020) and (002) planes
are shown to illustrate the net displacement of the O-atom positions
rather than the Ti- and Ba-atom positions.

Figure 3
Schematic illustrations of the rotation of the Euler angle � about the
rotation axis of a particular symmetry element (C4). (a) In a single box,
the amplitudes of the displacements oscillate as a function of �. (b) For
random displacements across multiple subcells or boxes, the amplitude
averages to a constant value as a function of � with a high and constant
variance (denoted by error bars). (c) For displacements towards the four
corners, the amplitude averages to a constant value as a function of �, but
the variance oscillates as a function of � angle.



information on the medium-range order, such as information

on the correlations between unit cells or the coherence length

scale, even though such information can (and should) exist

within the PDF.

The experimental data used for this analysis were collected

using the NPDF instrument (Lujan Neutron Scattering

Center, Los Alamos National Laboratory, New Mexico, USA)

and were re-analyzed with adjusted relative absorption

corrections [such that a scale factor was not needed to fit the

intensity G(r)]; the experimental details and original report of

the experimental data are given by Page et al. (2010). The

Bragg profile and PDF were used to constrain RMC simula-

tions using the RMCprofile code (Tucker et al., 2007), as illu-

strated in Figs. 1(a) and 1(b). The simulation ensemble is a

12 � 12 � 12 enlarged big-box ensemble of the tetragonal

P4mm unit cell (8640 atoms) that was determined from

Rietveld analysis. The ensembles were constrained by G(r) (in

the range 1 < r < 24 Å) in addition to the Bragg profile from

the 90� detector bank of the NPDF (1.7 < Q < 15.7 Å�1, 3.7 >

d > 0.4 Å). In addition to hard-sphere cutoffs, a small penalty

was applied to the simulations for breaking [TiO6] coordina-

tion in order to accelerate the simulations. Two hundred

different simulations were performed from the same starting

configuration in order to build statistics in the analysis. Each

simulation ensemble can be back-folded into the unit cell; the

atom positions fall within a cloud-like distribution centered

around the average crystallographic site (Fig. 4c).

Using the analysis method presented here, the atom posi-

tions were then decomposed into the tight-binding basis of the

P4mm space group with a k-mesh divided into 12 discrete

steps along each x, y and z direction with Mx = My = Mz =

12. The irreducible representations and corresponding basis

vectors for the tight-binding (locally symmetry-adapted)

modes were identified using the Bilbao Crystallographic

Server (symmetry-adapted modes) (Kroumova et al., 2003)

and are listed in Table 1; some basis functions are represented

graphically in Fig. 5.

For the analysis of a single ensemble of BaTiO3, the tight-

binding mode amplitudes that describe displacements along

the ferroelectric polarization are not very large (Ti A1, O1 A1,

O2 A1, O2 B1, Table 2). This makes sense, since the average

positions of the Ti and O2 atoms are off-center along the

elongated c-axis direction (Table 1) (Megaw, 1945, 1973).

However, the displacements in the ab plane are significantly

enlarged. This is represented graphically by the ‘point-cloud’

distributions of the atom positions in Fig. 4(c) that are overlain

on top of the R3m unit cell used to describe the PDF by Page

et al. (2010).

One problem with RMC simulations is that, if the data are

insufficiently resolved such that some atoms are poorly
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Figure 5
Visualization of selected tight-binding modes of BaTiO3 in the P4mm
space group. For Ti (Wyckoff position 1b), all three basis vectors are
shown, and they demonstrate the retained 3N degrees of freedom, as the
pair that together transform as E are allowed to have independent
amplitudes. For the O1 site (Wyckoff position 2c), the A1 and B1 modes
each join two O-atom positions, but 3N degrees of freedom are retained
for the two atoms generated from that Wyckoff position, noted by the six
independent modes. While the E pairs will transform together if the local
symmetry is also P4mm, all amplitudes are allowed to vary independently
in this analysis.

Table 1
Basis vector components along each crystallographic direction for
BaTiO3, described in the P4mm space group setting, using the fractional
atom coordinates Ba (0, 0, 0), Ti (1

2,
1
2, 0.516), O1a (1

2, 0, 0.487), O1b (0, 1
2,

0.487) and O2 (1
2,

1
2, 0.978).

Basis vector components

Irrep Atom u || a u || b u || c

Ba A1 Ba 0 0 1
Ba E (1) Ba 1 0 0
Ba E (2) Ba 0 1 0

Ti A1 Ti 0 0 1
Ti E (1) Ti 1 0 0
Ti E (2) Ti 0 1 0

O1 A1 O1a 0 0 1
O1b 0 0 1

O1 B1 O1a 0 0 �1
O1b 0 0 1

O1 E (1) O1a 1 0 0
O1b 0 0 0

O1 E (2) O1a 0 0 0
O1b 0 1 0

O1 E (3) O1a 0 0 0
O1b 1 0 0

O1 E (4) O1a 0 1 0
O1b 0 0 0

O2 A1 O2 0 0 1
O2 E (1) O2 1 0 0
O2 E (2) O2 0 1 0



constrained, then the simulation atoms can wander away from

their ideal positions. This would give the same graphical

appearance as in Fig. 4(c). However, the quantitative data

presented in Table 2 show that these displacements are

significant on average within an ensemble and that their

variance is tightly defined, even across 200 simulations.

As a control, we performed RMC simulations constrained

by simulated PDFs. In one case (P4mm control), we computed

G(r) from the P4mm crystal structure obtained by Rietveld

analysis (convoluted with the appropriate instrumental reso-

lution parameters, Qdamp and Qbroad); the Bragg profile was the

experimental Bragg profile. The simulated G(r) and Bragg

profile were used to constrain 200 RMC simulations for

analysis. For another control (R3m control), we took the

reported R3m model determined from small-box modeling for

the PDF [as reported by Page et al. (2010)] and simulated G(r)

from that structural model; the Bragg profile was the experi-

mental Bragg profile. These then constrained 90 independent

RMC simulations for analysis. The P4mm control is a negative

control that does not have additional displacements within the

ab plane (beyond thermal disorder modeled by a Debye–

Waller factor); the R3m control is a positive control for a

known displacement in the ab plane coincident with thermal

disorder. The tight-binding mode coefficients resulting from

analysis of the P4mm control simulations do not have a

substantial anisotropy (Table 2); while there is a statistically

significant increase in the coefficients of displacements in the

ab plane, this may be biased from using the experimental

Bragg peaks in conjunction with the simulated G(r). For the

R3m control, there is a significant and expected increase in

displacements within the ab plane. This analysis informs us

that the tight-binding mode amplitudes are capable of iden-

tifying aperiodic displacements when expected; however, the

values of the coefficients alone do not inform us as to whether

particular symmetry operations are broken.

With a local trigonal distortion, the R3m-based model

implies that there are specific vectors along which the Ti

displacements are oriented; these are the vectors that point

directly at the faces of the [TiO6] octahedra (i.e. the h111i

directions, as referenced to the P4mm or Pm3m unit cells of

BaTiO3). However, looking at the graphical representation in

Fig. 4(c), it is impossible to tell if particular directions are

preferred. Because the tight-binding modes within a set are

mutually orthogonal and therefore yield locally orthogonal

displacements, it is trivial to rotate the reference frame of the

basis vectors and recompute their coefficient as a function of

the Euler angle along the rotation axis of the multidimensional

irreducible representation. In the P4mm description, this

angle (�) rotates around the fourfold axis of the unit cell.

In our analysis, we decomposed the atomic displacements

into amplitudes of specific tight-binding modes as a function of

rotation about the Euler angle, � (Fig. 6). To illustrate this

analysis, we employ two control simulations. Shown in Fig. 6(a)

is a simulation of the displacements of Ti atoms around an

approximately random distribution of � angles. In Fig. 6(b),

we show a simulation with Ti atoms displaced at the same
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Table 2
Amplitudes of the tight-binding modes (summed over all wavevectors)
for the numerical average of 12 BaTiO3 ensembles, and control
simulations assuming P4mm or R3m local symmetry.

Values in parentheses are the variance of the coefficient. Values highlighted in
bold are enlarged from the expected, isotropic values.

Tight-binding mode coefficients (Å2)

Irrep Data P4mm control R3m control

Ba A1 0.0034 (1) 0.0059 (4) 0.0026 (3)
Ba E (1) 0.0127 (4) 0.0066 (5) 0.007 (1)
Ba E (2) 0.0130 (3) 0.0065 (5) 0.007 (1)

Ti A1 0.0089 (3) 0.0082 (6) 0.0024 (3)
Ti E (1) 0.0143 (6) 0.0077 (6) 0.009 (1)
Ti E (2) 0.0128 (5) 0.0076 (6) 0.009 (1)

O1 A1 0.0044 (1) 0.0043 (3) 0.0031 (4)
O1 E (1) 0.0103 (3) 0.0068 (5) 0.008 (1)
O1 E (2) 0.0101 (3) 0.0068 (5) 0.008 (1)

O2 A1 0.0040 (1) 0.0045 (3) 0.0025 (3)
O2 B1 0.0039 (1) 0.0044 (3) 0.0024 (3)
O2 E (1) 0.0116 (4) 0.0076 (6) 0.009 (1)
O2 E (2) 0.0114 (4) 0.0076 (6) 0.009 (1)
O2 E (3) 0.0090 (3) 0.0066 (5) 0.007 (1)
O2 E (4) 0.0099 (2) 0.0066 (5) 0.007 (1)

Figure 6
Euler angle analysis of a multidimensional tight-binding mode set that
transforms as a multidimensional irreducible representation. (a) A
random distribution of atom positions from the crystallographic location
(dashed circle in cartoon) produces an equivalent variance of the mixing
coefficients (denoted with vertical bars) between the two basis vectors
(w1 and w2) when the basis vectors are rotated about the Euler angle, �,
parallel to the C4 axis of the crystal structure. (b) A clustering of positions
at regular intervals, such as �/2, will produce the same mixing coefficients
as in part (a) for each tight-binding mode when averaged over all k and
over all ensembles. However, a clustering of positions will yield a
significant variance in the coefficients, denoted by the vertical bars. (c)
The coefficients provided from the experimentally derived BaTiO3

ensembles do not display significant differences when the basis vectors
are rotated about the Euler angle.



magnitude as in Fig. 6(a), but the angles are constrained to be

a random integer multiple of �/2 rad. Therefore, the Ti atoms

are clustered into four groups (akin to the h111i displace-

ments). In both cases, the average coefficient of the tight-

binding modes that together form a set and span a multi-

dimensional irreducible representation will not change as a

function of �, since the Ti atoms are displaced from the center

by the same distance. However, the variance between tight-

binding mode amplitudes [E(1) versus E(2)] will be distinct for

each Euler angle (cf. Fig. 3). For the completely random

distribution in Fig. 6(a), the coefficient multiplying �1 of the

irreducible representation E will vary continuously between 0

and the maximum value, as the basis vector is orthogonal and

collinear with the atomic displacement; the second basis

vector (�2) will also vary by the same amount, but its ampli-

tude will be �/2 out of phase with �1. Therefore, each basis

vector will have the same variance with �, denoted by the

error bars in Fig. 6.

As in Fig. 6(b), if the atom displacements are clustered into

groups, then the variation of basis vector coefficients will not

be constant with �. When � = 0 rad, such that �1 is oriented

along the a axis, then its mixing coefficient will be 21/2 times the

average value; the coefficient of �2 will be identical. There-

fore, the difference in coefficients is zero. However, when �
orients one of the basis vectors directly towards the clustered

displacements, one coefficient is maximal and the other is zero;

this produces a large variation in the basis vector amplitudes.

In the experimental simulations, there does not appear to be

explicit clustering of the Ti atoms along particular displace-

ment vectors (Fig. 6c). Looking at the variation in coefficients

for all atoms in the unit cell, depicted by the error bars in Fig. 7,

there does not appear to be any clustering of displacements as

a function of Euler angle. While the two-dimensional irre-

ducible representations E for atom O2 appear to exhibit a

trend with �, the change in the average value of the coefficient

reflects the definition of the basis vectors; the variations of the

coefficients, as indicated by the error bars, do not change with

�. This result is consistent for RMC simulations run for

different times (as disorder tends to be artificially maximized

for longer simulation runs).

While a variation in coefficients with Euler angle can indi-

cate clustering of displacements described by a multi-

dimensional irreducible representation, it does not provide

any indication of whether the degeneracy-inducing symmetry

operation is broken. To find broken degeneracies, we turn to

continuous symmetry measures as defined in the Method

section. For BaTiO3, we compute the MSD for each generated

symmetry operation of the crystallographic space group

(P4mm). With four symmetry operations (E, �v, C2 and C4),

there are a total of eight symmetry-related atoms that are

generated from a general position; therefore, we test all

unique combinations of these operations (each combination

that generates one of the general positions).

The MSDs illustrate that the atomic displacements in the

ensembles show the highest deviation away from the fourfold

rotation symmetry element. Histograms of all MSDs

computed for BaTiO3 (summed over all k and irreducible
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Figure 7
Tight-binding mode coefficients as a function of Euler angle, �, parallel to
the C4 axis of P4mm for the (a) Ti, (b) O1, (c) O2 and (d) Ba
crystallographic sites, illustrating a constant variance as a function of �.

Figure 8
Histograms of the mean-square displacements, summed over all k and
mode sets ( j) for 240 ensembles for each symmetry operation of P4mm.
(a) The identity E, (b) a vertical mirror along x, �v, (c) a twofold axis,
2C4 = C2, (d) a vertical mirror and twofold axis �v + 2C4, (e) a vertical
mirror plane along xy, �v + C4 = �xy, ( f ) the fourfold rotation axis C4 and
(g) 3C4.



representations) are illustrated in Fig. 8 for each symmetry

operation. The histograms for related symmetry elements are

clustered together; those combinations that equate to a four-

fold rotation have the most significant MSD (Figs. 8g and 8h),

followed by mirror planes parallel to the {110} planes, then

mirror planes parallel to the {100} planes.

To probe which irreducible representations are most

symmetry conserving, histograms of MSDs summed over all k

for each irreducible representation are shown in Fig. 9; the

histograms bin together the MSDs computed for the equiva-

lent symmetry operations shown on the right. The histograms

for the Ti A1 irreducible representation (Figs. 9a, 9c and 9e)

show tightly grouped and low-value MSDs, indicating that the

vertical Ti displacements tend to preserve the P4mm

symmetry operations. However, the displacements that project

onto the Ti irreducible representation E tend to break the

symmetry operations, as inferred previously. The fourfold

rotation axis appears to be the symmetry operation most

frequently broken, as expected naively from the small-box

trigonal model illustrated in Fig. 4(b), which does have a

vertical mirror plane parallel to the (110) plane.

The analyses presented here for BaTiO3 provide results that

are sufficiently simple for easy comparison with small-box

models of BaTiO3. The use of RMC simulations allows one to

extract a single statistically relevant model of the atom posi-

tions that describes both the data regarding local atom

separations (the PDF) and the average crystallographic

symmetry (Bragg profile). For BaTiO3, the coefficients of the

tight-binding modes and their spatial dependence reveal the

presence of a significant distortion from the P4mm crystal-

lographic symmetry. The resulting ensemble reveals that the

atom positions are mostly displaced in the ab plane, which

closely resembles the low-temperature R3m crystal structure.

This example illustrates how such an analysis may be

performed on materials with more complexity, in terms of

both their crystal structure and their crystalline disorder, as

described in the next section.

3.2. Correlated O and Bi displacements in Bi2Ti2O7

The analysis methods presented here are generally applic-

able to materials with more complex structures. The ‘charge-

ice’ pyrochlore oxide Bi2Ti2O7 has a large unit cell that

contains 88 atoms; direct inspection of ensembles becomes

prohibitive with this many degrees of freedom in a single

crystallographic unit cell (Hector & Wiggin, 2004). In Bi2Ti2O7

there is extensive disorder of the Bi sublattice, attributed to

stereochemical activity of the lone pair – derived from the

[Xe]5d106s2 electron configuration of BiIII – on a geometrically

frustrated lattice. The geometry of the diamond lattice

prevents long-range ordering of the dipoles, in a manner

related to Pauling’s ice rules (Seshadri, 2006). Previously,

RMC simulations of total neutron scattering have been used

to gain an atomistic representation of the static Bi displace-

ments, which form a toroidal distribution of Bi atoms that

encircle the ideal crystallographic site. Furthermore, the O0

atoms (Wyckoff site 8a) are connected to the non-spherically

distributed Bi atoms and therefore become displaced from

their ideal crystallographic sites into tetrahedral volumes. The

original report, experimental data and experimental details

are given by Shoemaker et al. (2010). The crystallographic

Bi2Ti2O7 unit cell is described by the Fd3m space group, which

defines the irreducible representations and tight-binding

modes used here.

By rewriting the atomic displacements in terms of the tight-

binding modes, a straightforward examination of their ampli-

tudes reveals several characteristics that lead to many of the

same conclusions as presented by Shoemaker et al. (2010);
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Figure 9
Histograms of the mean-square displacements of the (a), (c), (e) Ti A1

and (b), (d), ( f ) Ti E mode sets, summed over all k for each unique
symmetry orientation: (a), (b) the �x mirror plane, (c), (d) the �xy mirror
plane and (e), ( f ) the C4 rotation axis.

Figure 10
Visualization of the tight-binding modes for the different Bi irreducible
representations. The Eu , T2u and T1u (1) mode sets have the largest
amplitude. They describe the displacements that generate a toroidal
distribution of Bi positions and agree with the predicted displacement
modes of Eu and T1u symmetry from ab initio density functional theory
calculations (Shoemaker et al., 2010).



these coefficients are tabulated in Table 3 (the coefficients are

averaged across modes related by face centering, over all k

and across 320 distinct ensembles). Of the Bi modes (depicted

in Fig. 10), those spanning the Eu and T2u irreducible repre-

sentations generate displacements that reproduce the toroidal

distribution of Bi positions observed by Shoemaker et al.

(2010) and have the most significant amplitude. The mode

spanning the A2u representation is orthogonal to the C1
rotational axis of the torus and has a small amplitude. The

modes spanning the T1u (1) and T1u (2) representations have

intermediate orientations and amplitudes. The decomposition

of atomic displacements into tight-binding modes reproduces

the physically meaningful and intuitive results presented by

Shoemaker et al. (2010); here, the averaging across many

wavevectors and simulations identifies the robustness of these

displacements.

Furthermore, identification of these high-amplitude modes

allows one to create a ‘small-box’ model for a symmetry-

constrained refinement. In work by Shoemaker et al. (2010)

and Fennie et al. (2007), imaginary phonon modes were

discovered at the Brillioun zone center; the symmetries of the

polarization eigenvectors belong to the T1u and Eu irreducible

representations (Fig. 11). The tight-binding modes spanning

these irreducible representations have high-amplitude coeffi-

cients in the analysis performed here. Distortion of the Fd3m

lattice along these polarization modes yields a small unit cell

of Cm symmetry that provides an excellent description of G(r)

for r < 3.5 Å (Shoemaker et al., 2010). The agreement of the

high-amplitude tight-binding modes with the theory-predicted

distortion modes and small-box refinement illustrates another

utility of this approach for unknown systems.

Additionally, the representational analysis performed here

suggests that there are correlated Bi displacements, as well as

correlated O—Bi—O displacements that are not immediately

observed from direct inspection of the atomic displacements.

While a correlation between the Bi and O0 displacements was

made previously (Shoemaker et al., 2010), the tight-binding

mode amplitudes show that there are large displacements of

Bi and O. The highest modes corresponding to the 48f O atom

relate to the O A1g irreducible representation, which can be

described as a subtle elongation and twisting of the [TiO6]

octahedron (Fig. 12a). This large displacement is also mirrored

in the anisotropic atomic displacement parameter of the 48f

O-atom position obtained from Rietveld analysis. A possible

origin of the high amplitude of this distortion is illustrated in

Fig. 12(b): the 48f O-atom positions form a hexagon encircling

the linear O0—Bi—O0 linkages in an orthogonal orientation.

With significant Bi displacements, as indicated by the large

amplitude of the Bi T2u spanning modes, the O atoms are

displaced from their ideal positions around the hexagon in

order to accommodate the shifted Bi atoms.
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Figure 11
(a) Visualization of the tight-binding modes corresponding to the Bi T2u

modes of Bi2Ti2O7. (b) The Bi T2u mode set, showing the Bi atom
displaced from its nominal 180� O0—Bi—O0 angle, orthogonal to the
linear axis; this is reflected in the small magnitude of the Bi A2u-derived
modes.

Figure 12
(a) The O A1g representation, carrying the largest magnitude of all
degrees of freedom for the 48f O atoms. (b) Vectors depicting the O A1g

mode surrounding a linear O0—Bi—O0 group illustrate how the O atoms
move out of the plane in which the modes of the Bi T2u representation act
(as illustrated in Fig. 11). While all vectors are illustrated, not all of the
atoms shown are spanned by a single irreducible representation (i.e. those
related by face centering are included).

Table 3
Tight-binding mode amplitudes obtained from averaging 320 RMC
simulations of Bi2Ti2O7.

Atom positions are defined as Bi (0, 0, 0), Ti (1
2,

1
2,

1
2), O1 (0.43114, 0.125, 0.125)

and O2 (0.125, 0.125, 0.125). Amplitudes are also averaged across atoms that
are related through face centering.

Irrep
Coefficient
(Å2) Irrep

Coefficient
(Å2) Irrep

Coefficient
(Å2)

Bi A2u 0.010 (1) Ti A2u 0.003 (4) O1 A1g 0.021 (2)
Bi Eu (1) 0.067 (8) Ti Eu (1) 0.008 (1) O1 A2u 0.006 (1)
Bi Eu (2) 0.067 (7) Ti Eu (2) 0.008 (1) O1 Eu1 0.006 (1)
Bi T2u (1) 0.068 (8) Ti T2u (1) 0.008 (1) O1 Eu2 0.006 (1)
Bi T2u (2) 0.067 (8) Ti T2u (2) 0.008 (1) O1 Eg 0.006 (1)
Bi T2u (3) 0.067 (8) Ti T2u (3) 0.008 (1) O1 Eg 0.006 (1)
Bi T1u1 (1) 0.030 (4) Ti T1u1 (1) 0.005 (1) O1 T2u1 (1) 0.007 (1)
Bi T1u1 (2) 0.030 (4) Ti T1u1 (2) 0.005 (1) O1 T2u1 (2) 0.007 (1)
Bi T1u1 (3) 0.029 (3) Ti T1u1 (3) 0.005 (1) O1 T2u1 (3) 0.008 (1)
Bi T1u2 (1) 0.049 (6) Ti T1u2 (1) 0.006 (1) O1 T2u2 (1) 0.007 (1)
Bi T1u2 (2) 0.049 (6) Ti T1u2 (2) 0.006 (1) O1 T2u2 (2) 0.007 (1)
Bi T1u2 (3) 0.048 (6) Ti T1u2 (3) 0.006 (1) O1 T2u2 (3) 0.007 (1)

O1 T2g1 (1) 0.007 (1) O1 T1u2 (1) 0.006 (1) O2 T2g (1) 0.029 (3)
O1 T2g1 (2) 0.007 (1) O1 T1u2 (2) 0.006 (1) O2 T2g (2) 0.029 (3)
O1 T2g1 (3) 0.007 (1) O1 T1u2 (3) 0.006 (1) O2 T2g (3) 0.029 (3)
O1 T2g2 (1) 0.006 (1) O1 T1u3 (1) 0.007 (1) O2 T1u (1) 0.030 (3)
O1 T2g2 (2) 0.006 (1) O1 T1u3 (2) 0.007 (1) O2 T1u (2) 0.030 (3)
O1 T2g2 (3) 0.006 (1) O1 T1u3 (3) 0.007 (1) O2 T1u (3) 0.030 (4)
O1 T2g3 (1) 0.007 (1) O1 T1g1 (1) 0.007 (1)
O1 T2g3 (2) 0.007 (1) O1 T1g1 (2) 0.007 (1)
O1 T2g3 (3) 0.007 (1) O1 T1g1 (3) 0.007 (1)
O1 T1u1 (1) 0.008 (1) O1 T1g2 (1) 0.007 (1)
O1 T1u1 (2) 0.008 (1) O1 T1g2 (2) 0.007 (1)
O1 T1u1 (3) 0.008 (1) O1 T1g2 (3) 0.007 (1)



By comparing different simulation runs, it is possible to

gauge the uncertainty in how distorted or ideal the connec-

tivity is in different parts of the lattice. For example, the mode

amplitudes corresponding to the Ti–O sublattice are shown in

Fig. 13. The histograms show that the displacement amplitudes

have a narrow distribution across all length scales and

between many simulation runs. Furthermore, the displace-

ments appear to be reasonably isotropic, as consistent with

thermal disorder of a cubic lattice.

In contrast, the distribution of Bi-atom displacements is

varied (Fig. 14). The Bi A2u mode distribution is comparable to

the Ti–O sublattice. However, many of the Bi displacement

modes corresponding to multidimensional irreducible repre-

sentations have high amplitudes and broad distributions,

indicative of substantial static disorder in directions ortho-

gonal to the linear O0—Bi—O0 bond axis. This strongly

suggests that those displacement modes locally break the

Fd3m symmetry of the crystal structure.

In this analysis, the multidimensional irreducible repre-

sentations are broken into their individual components (so as

to retain the total number of degrees of freedom); however,

the values of each tight-binding mode are identical in the case

of Bi2Ti2O7. Then, to identify if and by how much the atomic

displacements break the symmetry elements linking together

tight-binding modes spanning a multidimensional irreducible

representation, the continuous symmetry measure of each

irreducible representation can be calculated. Fig. 15 contains

histograms of the MSDs for each irreducible representation

after operation on the simulation box by a specific symmetry

operation (equation 4). The modes spanning the A2u repre-

sentation do not show any dependence on the symmetry

operation, while the modes corresponding to the Eu and T2u

representations do show a dependence on the operations.

Specifically, the face-centering [+(1
2, 0, 1

2), +(0, 1
2,

1
2)] and

inversion (i) symmetry operations show the highest MSDs as

well as the broadest distributions, suggesting that those

symmetries deviate by the largest magnitude and in the most

ways. In future work, it will be informative to analyze the

compatibility relationships as the degeneracy of different

modes changes as k 6¼ (0, 0, 0).

The crystal structure of Bi2Ti2O7 presents a very complex

problem as the unit cell contains 88 atoms, resulting in 264

degrees of freedom or 264 distinct tight-binding modes to

describe all atom displacements. When trying to analyze a

large ensemble simulation of this structure, analysis in

Cartesian coordinates becomes unwieldy. Decomposition of

the structure into the crystallographically relevant local basis

allows one to determine the highest amplitude disorder in the

lattice, the distribution of amplitudes, the direction of the
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Figure 13
Histograms of the mean-square displacements of the (a) Ti and (b) O
mode sets, summed over all k, all symmetry operations and 320
ensembles, illustrating that the Ti–O sublattice is not disrupted. Only
the O A1g mode shows any distribution of the MSD.

Figure 14
Histograms of the mean-square displacements of the Bi mode sets,
summed over all k, all symmetry operations and 320 ensembles,
illustrating that the Eu , T2u and T1u(2) representations break the
symmetry operations of Fd3m; those modes correspond to the toroidal
displacements shown in Fig. 10.



atomic displacements causing the disorder, and how the

disorder breaks specific symmetry elements of the crystal-

lographic space group and by how much.

4. Conclusions

The representational analysis of large atomistic ensembles

generated from simulations (such as from reverse Monte

Carlo simulations of total scattering data) using a tight-

binding basis derived from locally symmetry-adapted modes is

a robust method that allows one to quantify disorder in the

lattice. In many RMC simulations, the goal is often to char-

acterize subtle deviations from the lattice. These types of

displacement are subtle perturbations from a lattice that

possesses a modicum of moderately isotropic thermal

disorder. Therefore, isolation and quantification of the

disorder (i.e. of infrequent events) requires statistical analysis.

By representing the disorder with respect to a local basis of the

background signal (i.e. symmetry-adapted modes of the crys-

tallographic space group), displacements appear as a positive

signal, are amplified and can be analyzed statistically. Addi-

tionally, the approach presented here permits a framework for

analyzing other types of degrees of freedom, such as occu-

pational/compositional disorder (e.g. solid solutions) or

magnetism. Such a rigorous group-theoretical treatment is

currently implemented in ISODISPLACE (Campbell et al.,

2006).
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