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Normalizers of space groups are extensively used in the solution of diverse tasks

in structural crystallography. Yet, they are often considered an ‘esoteric’ topic,

seldom introduced in the education curriculum of a crystallographer. This paper

presents a pedagogical introduction with special emphasis on their role in the

equivalent description of crystal structures.

1. Introduction

Normalizers of space groups represent an extremely useful

tool for the crystallographer, intervening in many diverse tasks

of the investigation of the structure and properties of

condensed matter. Some of these tasks, like the solution of the

ambiguities in direct methods, are often transparent to the

final user, being instead of paramount importance, for

example, for crystallographic software developers. But, other

problems that have to be dealt with directly by the structural

crystallographer, like the equivalent description of crystal

structures, are solved by the use of normalizers (Hahn, 2005).1

Despite some excellent literature on the subject (e.g. Koch &

Fischer, 2006), the experience of running crystallographic

schools in the framework of the activities of the IUCr

Commission on Mathematical and Theoretical Crystal-

lography (Nespolo & McColm, 2014) has shown that this is

one of the topics that the participants find most difficult to

understand. Today we have access to online tools like the

Bilbao Crystallographic Server (Aroyo et al., 2006), where not

only the normalizers of any space group can be retrieved, but

the comparison of crystal structure descriptions equivalent

under the action of the normalizer can actually be performed

in a few clicks (Tasci et al., 2012). However, without getting a

precise idea of what these mathematical objects are, how they

work and what they are useful for, the whole set of tools may

remain a sort of black box, and the results obtained may not

be straightforward to interpret, possibly giving rise to misun-

derstandings and false statements in the application of these

results to one’s own structural work. Without the pretension of

giving a complete formal introduction to normalizers, which is

already available in the literature, in the following we try to

present an intuitive picture which will hopefully be of some

help in overcoming the barrier too often felt by newcomers

when they first meet this topic. We will start with point groups,

where the general principles are easier to illustrate and

understand, before moving to space groups, with the final aim
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of showing how to obtain the equivalent descriptions of the

same crystal structure.

2. Point groups

We start this brief analysis with point groups, whose properties

are easily understood in terms of the stereographic projection

of face forms. About the stereographic projection, see Whit-

taker (1984) or, for a detailed treatment, Terpstra & Codd

(1961). For crystal forms, see ITA10 and a recent discussion by

Nespolo (2015a).

2.1. Conjugated subgroups versus normal subgroups

Fig. 1 part (a) shows the stereographic projection of a

general {hkl} form in point group ..2. Part (b) shows the result

of the application of a reflection in the m[010] plane to the form

in part (a). Parts (c) and (d) show the result of the application

of 41
[001] rotation to the forms in parts (a) and (b), respectively.

The four stereographic projections are different but their

point group is the same: the object (the form) is changed (i.e. is

not invariant under the operation), because that operation

does not belong to the point group of the object, whereas the

point group of the object remains the same (i.e. is invariant

under the same operation).

Parts (e) and ( f) show the compound forms obtained by the

overlap, respectively, of (a) and (b), and of (c) and (d). In both

cases the resulting point group is mm2, which is the super-

group of 2 containing also the operations mapping the forms

(a) to (b) and (c) to (d). The two compound forms are

different but they have the same point group.

Parts (g) and (h) show the compound forms obtained by the

overlap, respectively, of (a) and (c), and of (b) and (d). In both

cases the resulting point group is 4, which is the supergroup of

2 containing also the operations mapping the forms (a) to (c)

and (b) to (d). As in the previous case, the forms are different

but they have the same point group.

Parts (i) and ( j) show the compound forms obtained by the

overlap, respectively, of (a) and (d), and of (b) and (c). In both

cases the resulting point group is mm2 as for parts (e) and ( f),

but here the mirrors are rotated 45�. To differentiate the two

groups it is customary to use for the latter the symbol 2.mm,

which makes reference to a tetragonal setting: the dot in the

second position means that there is no symmetry element

along the a and b axes. 2.mm is the supergroup of 2 containing

also the operations mapping the forms (a) to (d) and (b) to (c).

Once again, the forms are different but they have the same

point group.

Finally, part (k) is obtained as the overlap of (g) and (h), or

of (i) and ( j). The resulting point group is 4mm, which is the

supergroup of 2 containing also all the operations mapping the

form (a) to (b), (c) and (d).

Fig. 2 repeats the same scheme as Fig. 1 but now on a

general {hkl} form in point group m.. For parts (a) and (b) the

same considerations presented in the case of Fig. 1 apply here

too. Things change when we apply the vertical fourfold rota-

tion. The point group of the forms in parts (c) and (d) is now

different from the point group of the forms in parts (a) and

(b): it contains the same type of operations as the former, but

the reflection is performed about a geometric element (the

plane acting as a mirror, in this case) differently oriented in

space. Parts (e) and ( f) show the compound forms, whose

point group is mm2, i.e. the supergroup of m.. and of .m.

containing also the operations mapping the forms (a) to (b)

and (c) to (d).

The forms in parts (g)–( j), obtained in the same way as the

corresponding forms in Fig. 1, deserve special consideration.

The point group compatible with each of these projections is

..m (expressed with respect to the tetragonal setting). Neither

the nontrivial symmetry operations of the original forms (m..

and .m. in the orthorhombic setting) nor the isometries

mapping them (the fourfold rotations) appear in the

compound projections because they do not apply to the whole

set of poles but only to pairs. In other words, these operations

are not global but partial (Sadanaga et al., 1980). Only the

operation obtained as a combination of m.. (or .m.), and 41 (or

43), is a global operation. We will come back to this aspect

shortly.
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Figure 1
(a) Stereographic projection of a general {hkl} form in point group ..2. (b)
Reflection across the (010) plane applied to (a). (c) Fourfold vertical
rotation applied to (a). (d) Fourfold vertical rotation applied to (b). The
four projections all have point group ..2. (e) Overlap of (a) and (b)
leading to a form with point group mm2. ( f ) Overlap of (c) and (d)
leading to a form with point group mm2. The operations in mm2 not
contained in ..2 map directly (a) to (b) and (c) to (d) and map by
conjugation the respective point groups, which in this case coincide. (g)
Overlap of (a) and (c) leading to a form with point group 4. (h) Overlap
of (b) and (d) leading to a form with point group 4. The operations in 4
not contained in ..2 map directly (a) to (c) and (b) to (d) and map by
conjugation the respective point groups, which coincide. (i) Overlap of (a)
and (d) leading to a form with point group 2.mm. ( j) Overlap of (b) and
(c) leading to a form with point group 2.mm. The operations in 2.mm not
contained in ..2 map directly (a) to (d) and (b) to (c) and map by
conjugation the respective point groups, which coincide. (k) Overlap of
(a), (b), (c) and (d) leading to a form with point group 4mm. The
operations in 4mm not contained in ..2 map directly (a) to (b), (c) and (d)
and map by conjugation the respective point groups, which coincide.



The complete compound projection is the same as in

Fig. 1(k) and has point group 4mm, in which all the above

operations are global. 4mm is in fact the supergroup of both

m.. and .m. which contains also the operations mapping (a) to

(b), (c) and (d).

The point group m.. of (a) or (b) is invariant under the point

group mm2 of (e) or ( f), and the same is true for the point

group .m. of (c) or (d), but they are not invariant under the

point group 4mm of (k); actually, the operations of 4mm that

do not belong to mm2 relate m.. and .m.

Let us see how we can rationalize the above examples and

let us denote by o1, o2, . . . , on the n isometries that map a form

F to a form F0. We want to find how to formally describe the

action of these operations on the form F as well as on its group

G. The ith operation oi will be applied to F from the left, so

that the action is written as

oiF ¼ F0; o�1
i F0 ¼ F; ð1Þ

where o�1
i is the inverse of oi. In our example above, i = 1

corresponds to 2[001] (Fig. 1) or to m[010] (Fig. 2), and i = 2 to

4[001] (both figures). If g is a given operation of the point group

G of F, which implies that gF = F because F is invariant under g,

and g0 is a given operation of the point group G0 of F0, which

implies that g0F0 = F0 because F0 is invariant under g0, the

following relations are immediately obtained from equation

(1):

oiF ¼ oið gFÞ ¼ ðoi gÞF ¼ F0 ¼ g0F0; ð2aÞ

oiF ¼ ðoi gÞo�1
i F0 ¼ F0 ¼ g0F0; ð2bÞ

oi g o�1
i F0 ¼ g0F0; o�1

i g0oiF ¼ gF: ð2cÞ

The relation (2c) tells us that a symmetry operation g0 of F0

can be expressed in terms of a symmetry operation g of F (or

vice versa) by acting on it with an isometry mapping F to F0.

This transformation is known as conjugation and is a similarity

transformation, i.e. a shape-preserving transformation. We see

that while the operation oi acts directly on an object (the form

F), it acts by conjugation on the symmetry group of that

object. In the example above, the projection in Fig. 2(a) is

mapped to that in Fig. 2(c) by the 41 (or 43) rotation and the

nontrivial symmetry operation of (a) is conjugated to the

nontrivial symmetry operation of (c):

41
½001�m½100�4

3
½001� ¼ m½010�: ð3Þ

In general, g and g0 may or may not coincide; for example, if

instead of m[100] in the relation above we take the identity,

then g0 is also the identity.

When the index i is made to run over all the n isometries

mapping F to F0, we obtain all the operations g0 that are

conjugated to a given g by these isometries:

[
n
i¼1oi go�1

i ¼ f g0
1
; g0

2
; . . . ; g0

n
g; ð4Þ

where [ means set-theoretical union (i.e. the collection of the

operations identified by the running index i). If the result is n

times g, then one says that g is self-conjugated under the n

isometries mapping F to F0.

All the operations in equation (4) are of the same type as g.

In fact, a point symmetry operation is represented by an m �

m invertible matrix, where m is the dimension of the space,

and the successive application of symmetry operations is

represented by matrix multiplication. If Oi, G and G0 repre-

sent the i operations oi, g and g0, respectively, equation (2c) is

rewritten in terms of the matrices representing these opera-

tions as

OiGO�1
i ¼ G0: ð5Þ

Now, a matrix possesses two invariants under a similarity

transformation: determinant and trace, which are scalars and

identify uniquely the type of operation the matrix represents.

That the determinant is indeed invariant is evident from the

following relation:

detðOiGO�1
i Þ ¼ detðOiÞ detðGÞ detðO�1

i Þ ¼ detðG0Þ: ð6Þ

Because scalars commute and det(M�1) = 1/det(M), where M

is any invertible matrix,

detðOiÞ detðGÞ detðO�1
i Þ ¼ detðGÞ detðOiÞ detðO�1

i Þ

¼ detðGÞ detðOiÞ½1= detðOiÞ�

¼ detðGÞ ¼ detðG0Þ: ð7Þ

A similar result is obtained for the trace, by exploiting the

property that the trace is invariant under commutation:

TrðOiGO�1
i Þ ¼ TrðGOiO

�1
i Þ ¼ TrðGÞ ¼ TrðG0Þ: ð8Þ
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Figure 2
(a) Stereographic projection of a general {hkl} form in point group m. (b)
Reflection across the (010) plane applied to (a). The two projections have
point group m.. (c) Fourfold vertical rotation applied to (a). (d) Fourfold
vertical rotation applied to (b). The two projections have point group .m.
(e) Overlap of (a) and (b) leading to a form with point group mm2. ( f )
Overlap of (c) and (d) leading to a form with point group mm2. The
operations in mm2 not contained in .m. map directly (a) to (b) and the
operations in mm2 not contained in m.. map directly (c) to (d); they map
by conjugation the respective point groups, which in this case do not
coincide. (g) Overlap of (a) and (c). (h) Overlap of (b) and (d). (i)
Overlap of (a) and (d). ( j) Overlap of (b) and (c). These four forms have
as nontrivial symmetry operation a reflection across a diagonal plane: the
reflections in the original forms as well as the fourfold rotation do not
appear in the point group of the compound form because they act only as
partial operations.



Therefore, equation (2c) relates operations of the same type

and all the operations in equation (4) are of the same type.

This is often translated in everyday language by saying that

conjugation ‘does the same thing somewhere else’, as in the

example of Figs. 2(a) and 2(d).

Next, let us apply equation (4) not to a single symmetry

operation g of F but to the whole set of its symmetry opera-

tions, i.e. to the group G of F. Equation (4) is immediately

generalized:

[n
i¼1oiGo�1

i ¼ G
0: ð9Þ

The group G0 is isomorphic to G; in fact

(a) 1 (the identity operation) belongs to both G and G0

because, for any value of i, oi1oi
�1 = 1oioi

�1 = 1;

(b) the conjugate of the inverse of each operation g belongs

to G0.

Let us indicate as g
j

and g
k

two operations of which one is

the inverse of the other in G. This means that g
j
g

k
= 1. We can

exploit the result above as follows:

oi1o�1
i ¼ oi g

j
g

k
o�1

i ¼ oi g
j
1g

k
o�1

i ¼ oi g
j
ðo�1

i oiÞgk
o�1

i

¼ ðoi g
j
o�1

i Þðoi g
k
o�1

i Þ ¼ g0
j
g0

k
; ð10Þ

where we have made use of the fact that the identity operation

1 can always be written as the product of two inverse opera-

tions. Because the left-hand member is the identity, the right-

hand member is also the identity and thus g0
j
g0

k
are the inverse

of each other, which proves the statement.

The groups G and G0 are thus conjugated under the

isometries mapping F to F0: they contain the same type of

operations, but in general about geometric elements differ-

ently oriented in space. In the case of the projections in

Figs. 2(a) and 2(c) equation (9) becomes

41
½001�f1;m½100�g4

3
½001� [ 43

½001�f1;m½100�g4
1
½001� ¼ f1;m½010�g ð11Þ

by taking only once each operation obtained by conjugation.

Not surprisingly, we get the same result as we knew from the

stereographic projections. To obtain a general relation

between G and G0 we need to find the supergroup K common

to both groups which contains the isometries mapping F to F0:

K is the symmetry group of the compound form. This is

obtained by taking the set-theoretical union of the group with

the sets of operations obtained by combining the group

operations and the independent isometries oi, which can

however be applied to the group from the left or from the

right:

K ¼ G [i oiG ¼ G [i Goi ¼ G
0
[i oiG

0
¼ G

0
[i G

0oi; ð12Þ

where i is now a running index on the independent isometries

mapping F and F0. oiG is called a left coset, and Goi a right

coset, of K. The decomposition of K into cosets is a partition:

the elements of K are separated in subsets (the subgroup and

the cosets) without a common element. The number of

elements in a coset is the length of that coset: it cannot be

called the order because a coset is not a group (it does not

contain the identity). The decomposition into left or right

cosets does not give, in general, the same result: elements that

belong to the same left coset may appear in different right

cosets and vice versa. Let us see how concretely it works with

the examples in Figs. 1 and 2.

In Fig. 1, G ¼ G0 ¼ f1; 2½001�g. The group K of the compound

forms (e) or ( f) is obtained by taking the set-theoretical union

of G and m½010�G or Gm½010�:

G [m½010�G ¼ f1; 2½001�g [m½010�f1; 2½001�g

¼ f1; 2½001�g [ fm½010�;m½100�g ¼ mm2; ð13Þ

G [ Gm½010� ¼ f1; 2½001�g [ f1; 2½001�gm½010�

¼ f1; 2½001�g [ fm½010�;m½100�g ¼ mm2: ð14Þ

The group K of the compound forms (g) or (h) is obtained

by taking the set-theoretical union of G and 4[001]G or G4[001]:

G [ 4½001�G ¼ f1; 2½001�g [ 4½001�f1; 2½001�g

¼ f1; 2½001�g [ f4½001�; 43
½001�g ¼ 4; ð15Þ

G [ G4½001� ¼ f1; 2½001�g [ f1; 2½001�g4½001�

¼ f1; 2½001�g [ f4½001�; 43
½001�g ¼ 4: ð16Þ

The groupK of the compound forms (i) or ( j) is obtained by

taking the set-theoretical union of G and 4[001]m[010]G

(= m[110]G) or Gm[010]4[001] (= Gm[110]):

G [ 4½001�m½010�G ¼ f1; 2½001�g [m
½110�f1; 2½001�g

¼ f1; 2½001�g [ fm½110�;m½110�g ¼ 2:mm; ð17Þ

G [ Gm½010�4½001� ¼ f1; 2½001�g [ f1; 2½001�gm½110�

¼ f1; 2½001�g [ fm½110�;m
½110�g ¼ 2:mm: ð18Þ

Finally, the group K of the compound form (k) is obtained

by taking the set-theoretical union of the results above:

G [m½010�G [ 4½001�G [ 4½001�m½010�G

¼ f1; 2½001�g [m½010�f1; 2½001�g [ 4½001�f1; 2½001�g [m
½110�f1; 2½001�g

¼ f1; 2½001�g [ fm½010�;m½100�g [ f4½001�; 43
½001�g [ fm½110�;m½110�g

¼ 4mm; ð19Þ

G [ Gm½010� [ G4½001� [ Gm½010�4½001�

¼ f1; 2½001�g [ f1; 2½001�gm½010� [ f1; 2½001�g4½001� [ f1; 2½001�gm½110�

¼ f1; 2½001�g [ fm½010�;m½100�g [ f4½001�; 43
½001�g [ fm½110�;m

½110�g

¼ 4mm: ð20Þ

We can repeat the step-by-step procedure above for the

forms in Fig. 2, but in the case of the forms in parts (g)–( j),

where partial operations are involved, we do not obtain a

group. For the forms in part (g) or (h) we obtain

G [ 4½001�G ¼ f1;m½100�g [ 4½001�f1;m½100�g

¼ f1;m½100�g [ f4½001�;m½110�g; ð21Þ

G [ G4½001� ¼ f1;m½100�g [ f1;m½100�g4½001�

¼ f1;m½100�g [ f4½001�;m
½110�g; ð22Þ
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and for the forms in parts (i) or ( j),

G
0
[ 4½001�G

0
¼ f1;m½010�g [ 4½001�f1;m½010�g

¼ f1;m½010�g [ f4½001�;m
½110�g; ð23Þ

G
0
[ G

04½001� ¼ f1;m½010�g [ f1;m½010�g4½001�

¼ f1;m½010�g [ f4½001�;m½110�g; ð24Þ

none of which is a group (the set is not closed under successive

applications of the operations in the set). The fact that m[110]

or m[110] is actually a global operation is not evident and

requires a more specific analysis [a detailed example is given

by Nespolo & Aroyo (2015)].

The point group of the complete form, which is the same as

in Fig. 1(k), is obtained by collecting the results for the

intermediate forms:

G [m½010�G [ 4½001�G [ 4½001�m½010�G ¼ f1;m½100�g

[m½010�f1;m½100�g [ 4½001�f1;m½100�g [m
½110�f1;m½100�g

¼ f1;m½100�g [ fm½010�; 2½001�g [ f4½001�;m½110�g [ fm½110�; 43
½001�g

¼ 4mm; ð25Þ

G [ Gm½010� [ G4½001� [ Gm½010�4½001� ¼ f1;m½100�g

[ f1;m½100�gm½010� [ f1;m½100�g4½001� [ f1;m½100�gm½110�

¼ f1;m½100�g [ fm½010�; 2½001�g [ f4½001�;m
½110�g [ fm½110�; 43

½001�g

¼ 4mm; ð26Þ

but this time the third and fourth coset are different. The same

procedure applied to G0 leads to the same result:

G
0
[m½100�G

0
[ 4½001�G

0
[ 4½001�m½100�G

0
¼ f1;m½010�g

[m½100�f1;m½010�g [ 4½001�f1;m½010�g [m½110�f1;m½010�g

¼ f1;m½100�g [ fm½100�; 2½001�g [ f4½001�;m
½110�g [ fm½110�; 43

½001�g

¼ 4mm; ð27Þ

G
0
[ G

0m½100� [ G
04½001� [ G

0m½100�4½001� ¼ f1;m½010�g

[ f1;m½010�gm½100� [ f1;m½010�g4½001� [ f1;m½010�gm½110�

¼ f1;m½010�g [ fm½100�; 2½001�g [ f4½001�;m½110�g [ fm½110�; 43
½001�g

¼ 4mm: ð28Þ

K is thus the supergroup common to G and G0 obtained by

adding the isometries that conjugate them; G and G0 are

therefore conjugated subgroups of K and they contain the

same type of symmetry operations but about geometric

elements in general differently oriented in space. The mapping

of G to G0, or vice versa, is obtained by the action of symmetry

operations that belong to K but not to G or G0. If G coincides

with G0, as in the case of Fig. 1, then it is self-conjugated, i.e.

invariant, under any of the operations of K. G is then called an

invariant or normal subgroup of K.

We obtain the following conclusions:

(1) The operations of K applied to F produce n variants, F1

to Fn, not necessarily all different, where n is the index of G in

K and G is the point group of F.

(2) The operations of K transform the group G of F into the

group Gj of Fj by conjugation, and the groups obtained are

conjugated subgroups of K. If they are all identical, then G is

an invariant or normal subgroup of K and is conventionally

indicated as G /K.

(3) From the viewpoint of the matrices representing the

operations acting on the form [equation (5)], conjugation is

simply the transformation to a different basis. When G is a

normal subgroup of K, then conjugation of G by an operation

of K is a change of coordinate system which respects the

geometric elements of G.

2.2. The concept of normalizer

Let us consider a group K, a subgroup G of K, and an

intermediate subgroupM so that G is normal inM, G /M.

M may actually coincide with K (in which case G is normal in

K: G /K) or with G (in which case G is not normal in K or the

intermediate subgroups, if any).M is called the normalizer of

G with respect toK, which is indicated asM =NK(G). Because

G is normal in NK(G), all the operations of NK(G) leave G

invariant, i.e. the symmetry groups of the objects obtained by

applying the operation ofNK(G) to an object whose symmetry

group is G are all identical to G.

Let us then consider the largest possible K, i.e. the ortho-

gonal group O(n, R). This is the subgroup of the Euclidean

group (which contains all the isometries in the given space Rn)

which leaves a point fixed, chosen as the origin of the space. It

represents the symmetry of the sphere. The normalizer of G

with respect to O(n, R), NO(G), contains all the origin-fixing

isometries that leave G invariant. If one applies the operations

of O(n, R) to an object, the result is the set of all possible

orientations of that object; the symmetry group of each of

these object is conjugated in O(n, R) with respect to G, i.e. it

contains the same operations as G but performed ‘somewhere

else’ (about geometric elements differently oriented in space).

If instead one applies the operations of NO(G) to the same

object, the result is the set of all possible orientations of that

object which have the same symmetry group as the original

object.

The normalizers of point groups are given in x4 of ITA15.

For example, for the point group G = mm2 which is one of the

point groups of the compound forms discussed above, the

normalizer is NO(G) = 4/mmm. The orders of the two groups

are 4 and 16, respectively, so that G has index four in NO(G).

The decomposition of NO(G) with respect to G gives G itself

and three cosets, each of length four, and thus four possible

orientations for F, all having G as point group.

For the point group G = m, the normalizer is NO(G) =

1/m2/m, one of the Curie groups (ITA10) corresponding to

the symmetry of a stationary cylinder. The rotation axis 1,

which allows arbitrary rotations, is perpendicular to the mirror

plane in G; the mirror plane normal to the 1 rotation axis

coincides with the mirror plane in G; the infinite set of twofold

rotation axes in NO(G) is perpendicular to the1 rotation axis

and all these axes are contained in the mirror plane of G; the

infinite set of mirror planes in NO(G) is perpendicular to the
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mirror plane of G. The orders of the two groups are 4 and1,

respectively, so that G has infinite index in NO(G). The

decomposition of NO(G) with respect to G gives G itself and an

infinite number of cosets, each of length four, and thus infinite

possible orientations for F, each having the same symmetry

group as the generating form. In the stereographic projection

the corresponding poles build a cylindrical orbit about the

rotation axis of NO(G).2

3. Space groups

The general ideas developed in dealing with point groups are

easily extended to space groups. However, in moving from

point groups to space groups the global picture becomes more

complex because of the presence of translations and the

consequences of their presence. Similarly to what we have

done in x2.1 regarding forms and their point groups, we

present the effect of isometries on the symmetry of a crys-

tallographic pattern and the resulting symmetry group

obtained by overlapping these patterns. All the isometries we

are going to use preserve the space group of the pattern, so

that it is invariant under the symmetry group of the over-

lapped patterns; the latter is thus the normalizer of the space

group of the pattern.

3.1. A feline introduction to normalizers of space groups

The conclusions obtained from equations (5), (7) and (8)

apply to the linear part of the symmetry operations of a space

group. The translation part is transformed according to the

new orientation of the symmetry element. For example, an

a[010] glide reflection becomes a b[100] glide reflection under the

action of a 4[001] rotation.

Fig. 3 shows a crystal pattern composed of cats in a space

group of type Pca21. Cats of different colours (black or white)

are related by operations of the second kind (negative deter-

minant). By applying a mirror reflection m xy0 one gets the

pattern in Fig. 4, where the height and the colour of the cats

have been inverted. The space group of this second pattern is

still Pca21. By comparing the two figures, it is easy to under-

stand that the two patterns are actually two different

descriptions of the same pattern. In fact, if we move the origin

of the second pattern by 2z, z being the height of the black cat

close to the origin in the first pattern, the only difference left

between the two patterns is the colour. The difference of

colour indicates a possible difference of handedness (if the

cats are chiral), but there is a degree of freedom in attributing

either the black or the white colour to a cat chosen as repre-

sentative (for example the one closest to the origin). What is

important is the relation between the colours of pairs of cats,

which indicates whether two cats are related by an operation

of the first kind (cats of the same colour) or of the second kind

(opposite colour).

Figs. 3 and 4 are only two among the many possible

equivalent descriptions of the same pattern. To find all of

them, one proceeds to identify the normalizer of the space

group. This time, however, also the translations have to be

considered, so that not just the origin-preserving orthogonal

group O(n, R), as was the case for the point groups, but the

whole Euclidean group E(n), which includes the translations,

has to be considered. As a first step, let us consider the overlap

of the two patterns obtained so far (Fig. 5). A dichromatic cat
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Figure 3
A crystal pattern composed of cats in a space group of type Pca21. Cats of
different colours (black or white) are related by operations of the second
kind. Origin at the top-left corner of the diagram (same choice of origin in
the following figures).

Figure 4
Result of the application of a mirror reflection m xy0 to the pattern in
Fig. 3. The space group of this pattern is still Pca21 and the two patterns
are actually two different descriptions of the same pattern, differing in the
absolute height of the whole pattern and in the inversion of the colours.

2 The term orbit describes any set of objects that are mapped onto each other
by the action of a group. Given a group G and a point p, the set of all points Gp
obtained by applying all the operations of G to p constitutes an orbit of which
G is called the generating group.



indicates the overlap in projection of two cats related by a

second-kind operation; the cat closer to the observer has been

cut in half (no harm meant, the writer being a proved ailuro-

phile), leaving only the head side; in this way, the tail side of

the cat farther from the observer is visible. The space group of

this compound pattern is obtained exactly as in the example of

point groups [equation (12)] and is of type P21/c2/a21/m, which

is a nonstandard setting of P2/b21/c21/m (No. 57) with axial

transformation �b, a, c + 1
4.

Next, we can apply a translation of a/2, or of b/2, to the

result obtained so far. The result for the b/2 translation is

shown in Fig. 6; that for a/2 is analogous, differing only in the

direction of the translation. Quite obviously, this is once again

the same pattern, in an alternative but equivalent description.

Let us then overlap the pattern in Fig. 5 with that obtained by

b/2 translation (Fig. 6): the result is shown in Fig. 7 and the

space group of this pattern is an isomorphic supergroup of

P21/c2/a21/m whose translational symmetry is doubled along b.

Let us then overlap the result just obtained with the same

pattern translated by a/2 (Fig. 8): the space group of this

pattern is P2/c2/m21/m with basis vectors a/2, b/2, c with

respect to the Pca21 space group of the pattern in Fig. 3.

P2/c2/m21/m is a nonstandard setting of P21/m2/m2/a (No. 51)

with axial transformation c, b, �a.

The result obtained is not yet the Euclidean normalizer of

Pca21. The latter is in fact a pyroelectic group containing a

polar direction (the c axis) along which the origin is unde-

termined. This means that there are an infinite number of

equivalent descriptions of the same pattern obtained by

simply applying an infinitesimal translation along c. If we

collect all these patterns in a single figure, we obtain, for each

cat position in Fig. 8, a grey (black and white at the same time)

feline continuity along c (Fig. 9). In this pattern, which

presents an infinitesimal periodicity along c, there is no screw

or glide component for the symmetry operations: the 21[001]
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Figure 5
Overlap of the two patterns in Figs. 3 and 4. The dichromatic cat indicates
the overlap in projection of two cats related by a second-kind operation;
the cat closer to the observer has been cut in half, leaving only the head
side; the tail side of the cat farther from the observer is visible. The space
group of this compound pattern is obtained by extending Pca21 by the
m0yz reflection and is of type P21/c2/a21/m, which is a nonstandard setting
of P2/b21/c21/m (No. 57) with axial transformation �b, a, c + 1

4.

Figure 6
Result for a b/2 translation applied to the pattern in Fig. 5, giving an
alternative but equivalent description of the same pattern.

Figure 7
Overlap of the patterns in Figs. 5 and 6: the space group of this pattern is
an isomorphic supergroup of P21/c2/a21/m with double translational
symmetry along b. The hatching indicates the unit cell of the compound
pattern.



axes become rotation axes and the c[100] glide planes become

mirror planes. Because of the continuous translation along c,

the Hermann–Mauguin symbol of this group is written as

P1mmm, where the superscript ‘1’ indicates the presence of

infinitesimal translations along one direction. This is therefore

not a space group. The basis vectors of the normalizer with

respect to those of the space group are a/2, b/2, "c, where "
indicates an infinitesimal quantity coming from the continuous

translation along c. Accordingly, with respect to the original

group Pca21 we have a series of additional generators in the

normalizer: translations of 1
200, 01

20, 00t (t being any value)

which correspond to the shorter basis vectors, as well as an

inversion at the origin (and at any value of z because of the

continuous translation along c).

The consequence is that a crystal pattern in Pca21 can

receive an infinite number of equivalent descriptions.

‘Equivalent’ means that they differ according to the position

of the observer. If we take any two of them and look at each

separately, we do not see any physically relevant difference: it

is only by comparing two descriptions that we recognize the

difference. This corresponds to taking two feline orbits

compatible with Pca21 out of the feline continuity in Fig. 9 and

looking at them separately, as for the patterns in Figs. 3 and 4,

or those obtained by an a/2 or b/2 translation, or by any

translation along c. It is only by comparing the two patterns

with a fixed position of the observer that we realize they are

physically distinct: by looking at each one of them alone, they

look exactly the same once a suitable position for the observer

has been chosen.

3.2. Equivalent descriptions of crystal structures

After solving and refining the structure of a crystal from

diffraction data, the structural crystallographer has to check

whether the same crystal structure has already been published

in the literature. In the negative case, he/she may be dealing

with a new compound, or a new polymorph of a known

compound. The problem is that in general the same crystal

structure may be described in many different ways; in other

words, the mismatch of cell parameters and/or of fractional

coordinates does not necessarily mean that the structure

under investigation is unknown.

One obvious reason for the existence of alternative

descriptions of a crystal structure is that a space group can be

described in various settings differing in the choice of the axes,

the origin and the type of unit cell. ITA4 and ITA5 give some

of the transformations from the standard to various nonstan-

dard settings of space groups, although the information there

is not exhaustive. The fact that the same structure gets a

different description in different settings of the same space

group is perfectly intuitive and does not normally represent an

obstacle, even for the beginner structural investigator.

On the other hand, the existence of various alternative but

equivalent descriptions of the same crystal structure in the

same space group seems counter-intuitive and is surprisingly

far from being a well known fact even among experienced

structural investigators. Indeed, while it is obvious that any

operation of the space group of a structure leaves that struc-

ture invariant, the existence of other operations that produce

an undistinguishable copy of the same structure is less evident.

The mechanism has been intuitively illustrated by the

construction of the feline pattern in the previous section. We
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Figure 8
Overlap of the pattern in Fig. 7 with the same pattern translated by a/2:
the space group is P2/c2/m21/m (a/2, b/2, c), nonstandard setting of
P21/m2/m2/a, with axial transformation c, b, �a. The hatching indicates
the unit cell of the compound pattern.

Figure 9
Overlap of an infinite number of patterns obtained by infinitesimal
translations along c of the pattern in Fig. 8. The hatching indicates the
unit cell of the compound pattern. The infinitesimal translation comes
from the pyroelectric nature of Pca21, which possesses a polar direction
(the c axis) along which the origin is not fixed a priori. The grey colour
stands for black and white at the same time. The Euclidean normalizer
that corresponds to this pattern is P1mmm, where the superscript ‘1’
indicates the presence of infinitesimal translations along one direction.



can now put the picture in a slightly more formal presentation

and apply it to some examples of crystal structures.

The operations of the Euclidean group E(n) – i.e. the whole

set of isometries of the empty space – applied to a given crystal

structure produce an infinite number of copies of that struc-

ture, in all possible orientations and positions, without any

deformation. A subset of those operations leave the structure

invariant: they form the space group of the structure, G. An

intermediate set NE(G), between E(n) and G, produce a finite

(or infinite, when G is a pyroelectric group) number of copies

of that structure (including the original one), which do differ

in the orientation and/or position in space. When looking at

each of these copies taken in isolation from the others, two

cases arise, depending on the chirality of the structure and the

nature of its space group (Nespolo, 2015b):

(1) The difference between any pair of these copies does not

have any physical or chemical meaning, like the various feline

patterns in Pca21 discussed above. This happens

(1.1) when the structure is achiral (its space group contains

operations of the second kind);

(1.2) when both the structure and its space group are chiral:

the normalizer then contains only operations of the same kind

(if it is a space group, then it belongs to one of the 65 Sohncke

types).

(2) Half of the copies are exactly equivalent, as in the

previous case, whereas the other half correspond to the

opposite absolute structure; this happens when the structure is

chiral but its space group is not, i.e. the space group belongs to

one of the 43 achiral Sohncke types and its normalizer

contains also operations of the second kind.

Cases 1.1 and 1.2 share the common feature of possessing

the same kind of operations (both first and second kind in 1.1;

only first kind in 1.2) in both the space group and its

normalizer. Accordingly, the operations in NE(G) do not

modify the handedness of the crystal structure, either because

it does not possess a handedness (being achiral) or because all

the operations in NE(G) keep the handedness. In this case, the

difference between the original structure S and the structure S0

obtained by the action of NE(G) simply corresponds to moving

the observer around S until it looks exactly like S0.

In contrast, in case 2 G contains only handedness-preserving

operations but NE(G) contains also handedness-reversing

operations, so that half of the copies have the same absolute

structure as the original one (the same conclusion above

applies again) and the other half the opposite absolute

structure.

Summarizing, acting with the operations of NE(G) which do

not belong to G we get a different set of fractional coordinates

for the same structure. The result is either the opposite

absolute structure (half of the time, in the case of chiral

structures with Euclidean normalizers containing operations

of the second kind) or equivalent to keeping the structure

fixed and moving the observer around it. In the following, we

illustrate these conclusions with a few examples chosen from

structures with small unit cells, to make their visual repre-

sentation easily understandable. The codes identifying the

structures correspond to the Cambridge Structural Database

(CSD: Allen, 2002) and the Inorganic Crystal Structure

Database (ICSD: Allmann & Hinek, 2007).

3.2.1. Achiral structures. S-Methyl 5-methylpyrazine-2-

carbothioate (Aubert et al., 2007; CSD code SIMHIG) crys-

tallizes in G = P21/n (second cell choice of P21/c) and is shown

in Fig. 10(a). The Euclidean normalizer of P21/n is NE(G) =

P21/m with basis vectors a/2, b/2, c/2 with respect to those of G.

The half translation along each of the axes, and thus also along

the face and body diagonals, makes the glide component of the

n glide plane in G a full translation in NE(G), so that it changes

from n in G to m in NE(G). The index of G in NE(G) is 8, which

means that there exist eight equivalent descriptions of the

teaching and education

J. Appl. Cryst. (2015). 48, 1985–1997 Massimo Nespolo � A pedagogical introduction to normalizers 1993

Figure 10
Structure of S-methyl 5-methylpyrazine-2-carbothioate. (a) Original
structure. (b) The same structure translated by b/2. (c) Once again, the
same structure translated by (a + b)/2. These translations belong not to
the space-group symmetry of the crystal but to its Euclidean normalizer
and produce alternative but equivalent descriptions of the structure.
Figure drawn with VESTA (Momma & Izumi, 2011).



same structure. The additional generators of NE(G) with

respect to G are simply the translations 1
2, 0, 0; 0, 1

2, 0; and 0, 0, 1
2.

Figs. 10(b) and 10(c) show the structure translated by b/2 and

(a + b)/2, respectively. While at first sight the three structures

may seem different, they actually differ in the position of the

observer, moved by translation.

Caesium acetate, Cs(CH3COO), crystallizes in a space

group of type P6/m (Lossin & Meyer, 1993; CSD code

LASSUT); the structure is shown in Fig. 11(a). The Euclidean

normalizer of P6/m is NE(G) = P6/mmm with basis vectors a, b,

c/2 with respect to those of G. The index of G in NE(G) is 4 and

the latter contains two additional generators, of which one is a

half-period translation along c and produces a translated

structure, as in the previous case. The second generator is the

mirror plane m x, x, z. Fig. 11(b) shows the structure of

caesium acetate transformed by the action of this generator.

At first glance, the two structures may appear different. To

show that this is not the case, one simply needs to change the

position of the observer. G is centrosymmetric and the struc-

ture is achiral, so that there must be an isometry of the first

kind which produces the same result as the reflection across m

x, x, z. Indeed, by decomposing NE(G) with respect to G one

gets three cosets, each of which contains as many operations of

the first kind as those of the second kind. In the same coset

containing m x, x, z we find a twofold rotation about [110]. If

now we apply this rotation to Fig. 11(a) – not to the fractional

coordinates of the atoms but to the figure itself – we get

Fig. 11(b): this corresponds to moving the observer to the

opposite side from where he/she was looking at Fig. 11(a).

Fig. 11(a) (the original structure) and Fig. 11(b) (the structure

on which the normalizer has acted) differ in the labelling of

the axes, the transformation being (abc) to (bac), i.e. precisely

the 2 x, x, 0 rotation applied to the axial setting. This operation

does belong to the symmetry of the lattice (the holohedry) and

the difference between the two figures is really just in the

labels of the axes.

3.2.2. Chiral structures with a chiral space group. This case

is the easiest to understand, as it can be shown by the example

of �-glycine (Shimon et al., 1986; CSD code GLYCIN18),

which crystallizes in a space group of type P31, whose Eucli-

dean normalizer is P1622, with basis vectors 2
3a + 1

3b, �1
3a + 1

3b,

"c with respect to those of G; the additional generators in

NE(G) with respect to G are the translation 2
3

1
30, the infinite-

simal translation 00t, and a twofold rotation about [100] and a

twofold rotation about h110i, both passing through the origin

(ITA15).

Fig. 12(a) shows the original structure (S) and Fig. 12(b) a

copy (S0) obtained by applying the 2 0, 0, z rotation to the

fractional coordinates. If we observe Fig. 12(a) from the

negative side of the [110] direction, i.e. by moving the observer

180� around the c axis, we get Fig. 12(b). Clearly, the differ-

ence between S and S0 is, as before, in the position of the

observer.

3.2.3. Chiral structures with a normalizer containing
operations of the second kind. �-NbO2 (Schweizer &

Gruehn, 1982; ICSD code 35181) crystallizes in a space group

of type I41, one of the 65 Sohncke group, whose normalizer is

P14/nbm, with basis vectors 1
2(a � b), 1

2(a + b), "c with respect

to those of G; the additional generators in NE(G) with respect

to G are the infinitesimal translation 00t, a 2h110i rotation and

an inversion through the point 1
4, 0, 0. The first two generators

do not add anything new with respect to the cases analysed

above, the difference between S and S0 being in the position of

the observer. The third generator, instead, inverts the absolute

structure (Figs. 13a and 13b), a result that cannot be equiva-

lently obtained by moving the observer around. Note that the

position of the inversion centre in the Euclidean normalizer is

of paramount importance when a wrong absolute structure

comes out of the refinement process (value of the Flack

parameter close to 1; Flack, 2003). Although it is often at the

origin of the normalizer, this is not always the case, as shown

by the example of �-NbO2. By simply inverting the sign of the

fractional coordinates of each atom, as if the centre of inver-

sion were at the origin of the Euclidean normalizer, one would

get a wrong disconnected structure (Fig. 13c).

4. When (some) deformations are forgiven: affine
normalizers

Instead of the Euclidean group E(n), one may use a more

general group to produce copies of one’s structure. This larger

group is the affine group A(n), i.e. the group of all invertible
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Figure 11
Structure of caesium acetate. (a) Original structure. (b) The same
structure transformed by the m x, x, z operation, which is an additional
generator of the Euclidean normalizer of the space group of the structure.
The equivalence of figures (a) and (b) can be seen by looking at (a) from a
different position, corresponding to a 2 x, x, 0 rotation applied to the axial
setting, or by looking at (b) from the reverse of the page and rotating it
120� counterclockwise. Figure drawn with VESTA.



affine transformations from the space into itself. An affine

transformation is a function which preserves points, straight

lines and planes so that sets of parallel lines remain parallel

after an affine transformation; while it does preserve ratios of

distances between points lying on a straight line, it does not

necessarily preserve angles between lines or distances

between points. In other words, an affine transformation is a

special case of deformation, which allows metric specialization

and is of special importance in crystallography, because more

often than one may expect crystal structures have a metric

symmetry corresponding to a higher holohedry than their

structural symmetry (Janner, 2004a,b). If that is the case, then

the use of the Euclidean normalizer is not enough to produce

all the equivalent descriptions of the given crystal structure

and the affine normalizer has to be considered instead. The

affine normalizer does not depend on the metrical properties

of the space group, as is instead the case for the Euclidean

normalizer; depending on the metric specializations a space

group may have more than one Euclidean normalizer and the

normalizer corresponding to the highest symmetry is the affine

normalizer. Clearly, if the metric specialization does not lead

to any increase in the symmetry of the normalizer, than the

affine and the (only) Euclidean normalizers coincide. For

example, a tetragonal space group has only a single fourfold

axis, even if c = a, and this axis is not fixed by a fourfold

rotation about [100] or [010]. Thus, a cubic specialization of a

tetragonal space group does not have consequences on the

normalizer of that group, which remains tetragonal.

Space groups are classified in terms of their normalizers as

follows (ITA15):

(1) Cubic, hexagonal, trigonal and tetragonal space groups,

as well as 21 types of orthorhombic space group, have only one

type of Euclidean normalizer, which also coincides with the

affine normalizer.

(2) The other 38 types of orthorhombic space group have

more than one Euclidean normalizer, as a function of the

metric specialization; the affine normalizer coincides with the

highest-symmetry Euclidean normalizer.

(3) Affine normalizers of monoclinic and triclinic space

groups are not isomorphic to any group of motions and cannot

be characterized by a space-group symbol.

The case of orthorhombic groups can be illustrated by the

examples of Pnnm (No. 58), Pnna (No. 52) and Pbca (No. 61).

The first of these groups, whose full symbol is P21/n21/n2/m,

has the same type of symmetry elements (twofold screw axes

and n glide planes) along [100] and [010] and a mirror plane
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Figure 12
Structure of �-glycine. (a) Original structure. (b) Result of applying a 2 0, 0, z rotation to the fractional coordinates in (a). If (a) is observed from the
negative side of the [110] direction, i.e. by moving the observer 180� around the c axis, one gets (b). Figure drawn with VESTA.



normal to [001]. In the case of metric specialization a = b the

group is self-conjugated by a fourfold rotation about [001],

and its Euclidean normalizer for this specialization is P4/mmm

with basis vectors a/2, b/2, c/2 with respect to those of Pnnm:

additional generators the half-translations and the yxz

reflection (mirror normal to [110]). A further metric specia-

lization a = b = c does not lead to a higher-symmetry

normalizer because Pnnm does not contain the same type of

symmetry element along the three axes. Therefore, the affine

normalizer of Pnnm coincides with the Euclidean normalizer

for the case a = b. A structure crystallizing in Pnnm has eight

equivalent descriptions for the general metric (differing for

the half-translation along each of the axes or diagonals), but

16 in the case of the tetragonal metric specialization a = b (the

translations above plus the operations in the coset obtained by

the m xxz generator).

Pnna is instead one of the 21 types of orthorhombic space-

group types having only one Euclidean normalizer. This

group, whose full symbol is P2/n21/n2/a, is not self-conjugated

by a fourfold rotation about [001] even if a = b. This is because

it has a twofold axis along [100] but a twofold screw axis along

[010] as well as an a glide perpendicular to [001], which makes

the two directions [100] and [010] non-equivalent even in the

case of tetragonal metric specialization. Therefore, Pnna has

only one Euclidean normalizer, Pmmm (basis vectors of the

normalizer: a/2, b/2, c/2), which is also its affine normalizer. A

structure crystallizing in Pnna has eight equivalent descrip-

tions (obtained by the half-translations) independently of any

metric specialization.

Pbca, whose full symbol is P21/b21/c21/a, has the same type

of symmetry elements (twofold screw axes) along the three
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Figure 13
Structure of �-NbO2. (a) Original structure. (b) Result of the application of an inversion through the point 1

4, 0, 0, which is an additional generator in the
Euclidean normalizer: the opposite absolute structure is obtained. (c) A wrong disconnected structure obtained by simply inverting the signs of the
fractional coordinates, as could be mistakenly done when trying to get the correct absolute structure without considering the position of the inversion
centre in the normalizer. Figure drawn with VESTA.

axes and perpendicular to them glide planes whose glide

components permute along one of the in-plane axes. In the

case of tetragonal metric specialization the Euclidean

normalizer is still orthorhombic (Pmmm with basis vectors a/2,

b/2, c/2) because the glide plane normal to the fourfold axis

makes the two in-plane directions non-equivalent, as in the

previous case. However, in the case of cubic metric speciali-

zation, each of the three axes comes to play the same role, so

that Pbca is self-conjugated under Pm3, which is the Eucli-

dean normalizer for this specialized metric (basis vectors again

a/2, b/2, c/2) as well as the affine normalizer for Pbca. A

structure crystallizing in Pbca has eight equivalent descrip-

tions for the general metric or for any tetragonal specialization

(obtained by the half-translations), but 24 in the case of cubic

metric specialization (the translations above plus the opera-

tions in the coset obtained by the 3 xxx generator).

Fig. 14(a) shows the structure of cuproan adamite,

Zn(Zn0.16Cu0.84)(AsO4)(OH) (Toman, 1978; H-atom positions



undetermined; ICSD code 1516), which crystallizes in Pnnm,

a = 8.50 (2), b = 8.52 (2), c = 5.99 (1) Å, with a specialized

tetragonal metric within the standard uncertainty on the cell

parameters. As discussed above, the affine normalizer is

tetragonal with additional generator m xxz. Fig. 14(b) is the

same structure transformed by applying this operation, i.e.

xyz! yxz. Fig. 14(b) is obtained also from Fig. 14(a) through

a 2[110] rotation, which corresponds to moving the observer

behind the plane of the original figure and turning him or her

90� counterclockwise. The two descriptions of the structure

are indistinguishable.

5. Discussion

The description of crystal structures by their symmetry groups

is a useful abstraction, by which the crystallographer gives an

idealized (time- and space-averaged) model in which static

and dynamic defects are ignored. In order to make ‘the same

symmetry group’ actually look the same, standard settings are

agreed on for the 230 types of crystallographic space groups

which give a unique configuration of symmetry elements,

abstracting them from alternative settings differing, for

example, in the axes labels and the origin choices (which

increase significantly that number). However, this configura-

tion is not rigid but still allows transformations by some

motions, which are the elements of the normalizer; the result is

a set of equivalent descriptions of a crystal structure. This is

the most evident use of normalizers, which however intervene

in diverse tasks such as the solution of the ambiguities in direct

methods (ITA15) and the derivation of the effect of mero-

hedric twinning on the reflection conditions (Nespolo et al.,

2014). Often wrongly considered an ‘esoteric’ topic left

outside the standard education of a crystallographer, it is

actually of fundamental help in structural investigation. We

hope that this short survey will be useful to make normalizers

more widely known and appreciated.
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Figure 14
Structure of cuproan adamite, which possesses a tetragonal specialized
metric. (a) Original structure. The position at the origin is occupied by Cu
and Zn (86 and 14%, respectively); the label of the more abundant atom
is shown in the figure. (b) The same structure transformed by applying an
m xxz reflection, which is an additional generator of the affine normalizer.
If one looks from the negative [001] direction with a 90� counterclockwise
orientation one gets (b). Figure drawn with VESTA.
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