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A very serious concern of scientists dealing with crystal structure refinement,

including theoretical research, pertains to the characteristic bias in calculated

versus measured diffraction intensities, observed particularly in the weak

reflection regime. This bias is here attributed to corrective factors for phonons

and, even more distinctly, phasons, and credible proof supporting this

assumption is given. The lack of a consistent theory of phasons in quasicrystals

significantly contributes to this characteristic bias. It is shown that the most

commonly used exponential Debye–Waller factor for phasons fails in the case of

quasicrystals, and a novel method of calculating the correction factor within a

statistical approach is proposed. The results obtained for model quasiperiodic

systems show that phasonic perturbations can be successfully described and

refinement fits of high quality are achievable. The standard Debye–Waller factor

for phonons works equally well for periodic and quasiperiodic crystals, and it is

only in the last steps of a refinement that different correction functions need to

be applied to improve the fit quality.

1. Introduction

Crystallography deals with the solution and refinement of

structures based on their diffraction patterns. In recent years,

it has been evident that the theoretical description of X-ray

diffraction by crystals is still of scientific concern. Novel

refinement strategies are still being sought and developed to

improve the accuracy of solved structures. Ab initio phase

measurement (Weckert & Hümmer, 1997), initially considered

as an ineffective tool for structure solution mainly because of

the low precision of the measurement (Shen, 2003), was

subsequently shown to be useful for improving the structural

resolution of NH4H2PO4 and an experimental strategy for

future application was proposed (Morelhão et al., 2015). The

kinematical theory of diffraction was shown to be valid not

only for the ‘imperfect crystal’ model proposed by Darwin

(1922) but also for distorted crystals (Fewster, 2016) for which

the reduction of dynamical effects is significant. A diffraction

experiment requires a crystalline sample (Ooi, 2010), but

simulations performed on helical structures with twisted waves

show the existence of constructive/destructive interference

even for noncrystalline samples as long as the wave propa-

gation and the molecules are axially aligned (Jüstel et al.,

2016). Another promising method for structure determination

of molecular samples requires porous media to impose crys-

talline order (Inokuma et al., 2013). The sample need not be

crystalline and trace amounts are sufficient for experimental

treatment. To solve highly complex structures (e.g. proteins,

quasicrystals, complex metallic alloys), high-quality diffraction

patterns are a must. The role of weak reflections is of extreme

importance. The information contained in a weak reflection is

of equal interest to that contained in a strong reflection. From
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the experimental point of view, using synchrotron radiation, it

is possible to measure diffraction intensities with a dynamic

range of seven or more orders of magnitude, and even powder

diffraction structure factors can be measured with high accu-

racy (Nishibori et al., 2007; Wahlberg et al., 2016) comparable

to the dynamical Pendellösung method (Kato, 1988). To

overcome the detector limitations it is also possible to

combine datasets with different exposure times per frame or

different primary beam intensities (Kuczera et al., 2012, 2014).

The problem lies primarily in appropriate data treatment and

structure refinement. Any measured diffraction pattern is

modified by factors related to the perturbations of ‘idealized’

atom positions. A commonly used correction term is the

Debye–Waller factor (Debye, 1914; Waller, 1923), which takes

into account the thermal excitations of the crystal lattice. In

the simplest picture, for the sake of calculating the correction,

atoms are considered to vibrate independently in a mean

potential (Bürgi, 1995). Isotropic and anisotropic distributions

of motion are used in practice. Restrictions on the symmetry

of the anisotropic displacement tensor were developed by

Thorkildsen & Larsen (2015). A recently proposed refinement

procedure based on the lattice dynamical model takes into

account concerted atomic motion to properly describe the

peak intensity correction (Hoser & Madsen, 2016). Although

the quality of the correction is similar to that obtained using

anisotropic displacement parameters, this theory cannot be

directly applied to the complex structures of quasicrystals

(Shechtman et al., 1984; Dotera et al., 2014; Engel et al., 2014;

Cockayne et al., 2016; Förster et al., 2013; Takakura et al., 2007)

owing to the lack of periodicity and the resulting complex

atomic motion (de Boissieu, 2011, 2012). To account for the

latter, a mean field approximation is the only alternative. The

generalized Debye–Waller factor (Bancel, 1989; Lubensky et

al., 1986) can be written as expð�k2�2Þ, where k is the scat-

tering vector magnitude in physical or perpendicular space

and �2 is the variance of the statistical distribution of atoms in

physical or perpendicular space (sometimes also called inner

space or phasonic space). The above formula is correct only

for Gaussian distributions. As far as the phononic contribution

is concerned, the approximation made by the Gaussian func-

tion is justified only for small atomic displacements from the

equilibrium position. On the other hand, the description of the

influence of phasonic disorder on the peaks’ intensities fails

significantly in the small-peak regime (Buganski et al., 2016).

The Debye–Waller correction with respect to phasons can be

made exclusively for a random tiling type of structure (Henley

et al., 2001; I. Buganski, R. Strzalka & J. Wolny, unpublished).

The Debye–Waller factor in generalized form can also be used

to calculate the intensity of a diffraction peak related to a

statistical distribution of atomic positions with respect to a

reference lattice (Wolny, 1992, 1993; Wolny & Kozakowski,

2003).

In this work, we show the limitations of the standard

Debye–Waller correction (exponential form) in terms of

handling the phasonic disorder. We focus on quenched

phasons (static or frozen phasons) appearing as atomic flips in

the quasicrystalline structure with no dynamical considera-

tions. Two motivations underlie our study. The first is to

include weak reflections in the refinement process. The

modern diffraction experiment enables us to collect data with

a wide range of intensities, but the refinement results show

strong bias in the small-peak regime in the plot of fitted versus

observed intensities. We attribute this fact to the improper use

of the exponential Debye–Waller factor for correction for

phasons. Secondly, the exponential phasonic correction term is

proved to be fully valid in the random-tiling approximation

but there is no proof of its correctness and physical soundness

in the general case. Our study leads to a new type of structure

factor formula. Weak reflections that were underestimated by

the previous refinement strategy can now be properly included

in the structure refinement. In this paper we also investigate

the pertinence of the Debye–Waller correction for phonons.

Even though the Debye–Waller correction for phonons is

applicable for quasicrystalline structures as well, which we

prove in this paper, we suggest testing other functions as a

small improvement can be observed for peaks with large

scattering vector. The calculations are performed for vertex

decoration models based on a one-dimensional Fibonacci

chain and two-dimensional Penrose tiling. Neither the model

selection nor its dimensionality have any impact on the

generality of the results presented here, which can be used for

refinement of any structure (periodic crystals, quasicrystals,

defected structures and any type of disordered systems). The

choice of the Fibonacci chain as a model allows us to easily

analyze the influence of both physical and perpendicular space

fluctuations on the diffraction pattern. The results obtained

for Penrose tiling are of significant practical importance.

2. AUC method

The structure factor used in this paper is calculated in a

mathematically strict way, as a Fourier transform of a prob-

ability distribution of atoms calculated with respect to the

reference lattice (Wolny, 1998). For a selected scattering

vector k0 we construct a hypothetical reference lattice with a

period of �k ¼ 2�=k0. The positions of the atoms with respect

to the reference lattice are denoted as u (obviously u<�k).

The bounded distribution of u, denoted as PðuÞ, is called the

average unit cell (AUC). A Fourier transform of PðuÞ

correctly describes the structure factor for any integer

multiple of k0 (Wolny et al., 2014, 2015). Therefore, for each

distribution PðuÞ, there exists a periodic series of diffraction

peaks (see Fig. 1b). In the case of incommensurately modu-

lated structures or quasicrystals another scattering vector is

necessary, q0, also called the modulation vector or satellite

peaks vector. Using two reference lattices, with periods 2�=k0

and 2�=q0, we can define a probability distribution Pðu; vÞ.

The variable u defines the atom position in the first reference

lattice and the variable v that in the second. It can be easily

shown that the structure factor for a scattering vector written

as k ¼ nk0 þmq0 is an ðn;mÞ-mode Fourier transform of the

distribution Pðu; vÞ (Buczek et al., 2005). For incommensu-

rately modulated structures as well as for quasicrystals, the

distribution Pðu; vÞ is nonzero only along certain curves. In
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particular, for quasicrystals scaled with the golden mean ratio

�, these are linear segments with the slope of ��2 (so-called

TAU2 scaling). The distribution Pðu; vÞ, as well as its trace in

the ðu; vÞ domain (TAU2 scaling) and its marginal distribution

PðuÞ, is depicted in Fig. 1(a). For a harmonically modulated

structure the scaling relation is more complicated. Details of

the scaling relation and AUC construction for a harmonically

modulated structure are discussed by Wolny et al. (2016). If

the scaling property is used, the diffraction pattern calculation

for a Fibonacci chain can be reduced to a one-dimensional

Fourier transform (Wolny et al., 2015). The marginal distri-

bution PðuÞ [for the Fibonacci chain shown in Fig. 1(a)] of the

full distribution Pðu; vÞ is enough to describe the whole

diffraction pattern of the structure.

Knowledge of PðuÞ is sufficient to calculate a full one-

dimensional diffraction pattern of any quasicrystal. In the

higher-dimensional (nD) space approach (de Bruijn, 1981;

Yamamoto, 1996; Steurer & Deloudi, 2009; Janssen & Janner,

2014), the distribution PðuÞ is related to the so-called atomic

surface in perpendicular space. It can be easily shown (Wolny

et al., 2002) that in the nD approach the AUC is an oblique

projection of the atomic surface on the physical space. The

projection direction is perpendicular to the nD reciprocal

space vector. Therefore, the choice of nD reciprocal space

vector fully defines the distribution PðuÞ used for the diffrac-

tion pattern calculation.

3. Debye–Waller factor for periodic crystals

It is possible to construct the AUC for periodic crystals – it is

equivalent to the traditional unit cell. For an ideal periodic

structure the probability distribution PðuÞ is given by a Dirac

delta function centered at some value u0. The Fourier trans-

form of the Dirac delta function is constant over the whole

range of the scattering vector. The diffraction pattern consists

of a periodic series of peaks with periodicity of k0 ¼ 2�=a,

where a is the lattice constant, as shown in Fig. 2. We used a

relative peak intensity, i.e. the ratio of intensity IðkÞ with

thermal fluctuations and idealized intensity (no thermal

motion) I0ðkÞ. Only peaks with IðkÞ > 10�2 in a scale reduced
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Figure 2
Phonons in periodic crystals. Envelope functions of the diffraction peaks
for a periodic crystal with phononic disorder obtained by three different
shapes of atomic distributions around ideal positions: Gaussian (black
circles, curve A), Bessel function (red crosses, curve B) and cardinal sine
function sinðxÞ=x (blue triangles, curve C). The diffraction pattern is
periodic with a discrete set of peaks – note the equidistantly distributed
peaks. The corresponding probability distributions PðuÞ for a periodic
structure given by (a) Gaussian, (b) harmonic and (c) uniform
distributions are shown in insets. For ideal positions the Dirac delta
function applies (marked with dashed vertical lines in each inset). The
periodic cell parameter is denoted as a. The envelope function is the
square of the Fourier transform of the corresponding distribution
function PðuÞ.

Figure 1
(a) The probability distribution Pðu; vÞ for an ideal Fibonacci chain. The marginal distribution PðuÞ is presented along with the TAU2 scaling. (b) The
diffraction pattern of the ideal Fibonacci chain with the envelopes of the first five peaks marked. In the inset the diffraction pattern reduced to a single
envelope is shown, where w ¼ k0ðn�m�Þ and n;m are the peaks’ indices. Highlighted peaks from a full pattern are shown in the reduced pattern with
the same markings.



to Iðk ¼ 0Þ are shown. For a real structure the structure factor

is given as a Fourier transform of the probability distribution

PðuÞ depicted in Fig. 2 (insets). For a Gaussian probability

distribution, exp½�ðu� u0Þ
2=2�2

u�, the structure factor is also a

Gaussian function with a standard deviation �k ¼ 1=21=2�u.

Therefore the envelope function of the diffraction peaks is

given by expð�k2�u
2Þ, as shown in Fig. 2. The envelope func-

tion gives the peak intensities at the positions described by

integer multiples of k0. The above formula is known as the

Debye–Waller factor and is related to the atom fluctuations in

physical space (due to the thermal motion; Trueblood et al.,

1996). It is important to emphasize that the Debye–Waller

factor in the form of a Gaussian function properly describes

the reduction in peak intensities only for thermal fluctuations

given by a Gaussian distribution. For other distributions a

Debye–Waller factor written as a second moment of the

distribution PðuÞ is used. The quality of such an approximation

decreases for larger values of the argument k2�2. The impact

of the approximation on the diffraction pattern is depicted in

Fig. 2. For a Gaussian distribution we get the classical form of

the Debye–Waller factor. A uniform distribution is better

described by a sinðxÞ=x factor. Harmonic distributions, on the

other hand, are best described by Bessel functions. In each

case the amplitude of thermal vibrations of atoms is given by

2% of the average distance between atoms (for periodic

crystals this is the cell parameter a). It can be said that for the

considered cases the classical Debye–Waller factor works well

for small corrections, whereas it performs much worse for the

strong ones. Only for Gaussian distributions does the use of

the classical Debye–Waller factor correctly describe the

diffraction pattern. In any other case it is an approximation,

which gets worse as the intensity correction increases.

4. Model structure – Fibonacci chain

The Fibonacci chain is a model example of a one-dimensional

aperiodic (quasiperiodic) structure (Senechal, 1995; Baake &

Grimm, 2013). In one-dimensional physical space the Fibo-

nacci chain can be generated using the following recursion

rules: S! L; L! LS. In a single step every short distance (S)

becomes a long distance (L) and every long distance (L)

transforms to a long–short pair (LS). It is possible to use the

nD method presented in Fig. 3 for a description of quasi-

crystals. For the Fibonacci chain we use a two-dimensional

square lattice. We place a so-called atomic surface (AS) at

every lattice node. The physical space is chosen in an incom-

mensurate direction in the two-dimensional square lattice. In

the case of the Fibonacci chain the slope of the physical space

direction is equal to � ’ 1:618. This guarantees aperiodicity.

The AUC probability distribution for a Fibonacci chain is

shown in Fig. 1(a). It is a uniform distribution with a width

related to the reference lattice period (Wolny, 1998). Such a

probability distribution can also be understood as an oblique

projection of the atomic surface (Kozakowski & Wolny, 2010).

The diffraction pattern can be calculated as a Fourier trans-

form of either the AS in perpendicular space or the AUC

distribution in physical space (Strzalka et al., 2015). The two

methods are absolutely equivalent. In the case of the AUC,

calculations can be carried out knowing the distributions

explicitly or, alternatively, a knowledge of the distribution’s

moments is also sufficient (Buganski et al., 2016).

If we allow for flips in the structure of a Fibonacci chain, i.e.

a point interchange of the form LS! SL, or if during struc-

ture generation we randomly use the rule L! SL instead of

L ! LS we will obtain a defected Fibonacci chain. Such

position flips are called phasons (Lipp et al., 2010), and this

kind of sequence formation was experimentally observed, for

example, during the formation of nanodomains on the deca-

gonal AlCuCo surface (Duguet et al., 2011). In the remainder

of the article we will try to describe the influence of phonons

and phasons on the diffraction pattern by introducing
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Figure 3
The higher-dimensional description of the Fibonacci chain. Nodes
arranged in fLSg sequence are obtained by a cut of the segment lines,
called the atomic surface (AS), attached to the vertices of the square
lattice (x, y) with axis xk. Direction x? spans the perpendicular space
where the ASs are spanned. The slope of xk with respect to x is defined as
tan ’ ¼ 1=�.

Figure 4
The influence of phonons on the distribution Pðu; vÞ for (a) a
commensurately modulated crystal, k0=q0 ¼ 5, and (b) the Fibonacci
chain, k0=q0 ¼ �. The characteristic TAU2 scaling relation is smeared
along the [1, 1] direction in the ðu; vÞ framework. The broadening is
caused by Gaussian smearing of each atomic position due to thermal
vibrations of atoms. In each case the amplitude of the phonons is 2% of
the average distance between atoms in the structure.



appropriate correction terms for the intensities of diffraction

peaks.

In our simulated structure we obtained the effect of phason

flips by randomly swapping the neighboring distances L and S

in a numerically generated structure of n = 70 000 points of a

Fibonacci chain. We perform a flip if the value of a standard

uniform random variable is greater than 1� �, where

� 2 ½0; 1�. Because each S tile potentially participates in the

flip occurrence, the expected value of the number of flips is

n�=ð� þ 1Þ. The value in the denominator comes from the fact

that the ratio of the number of tiles L=S ¼ �, and thus the

probability of finding an S tile is equal to 1=ð� þ 1Þ.

5. Debye–Waller factor for quasicrystals
In physical space the Debye–Waller factor works relatively

well for narrow probability distributions, which are char-

acteristic for ideal periodic structures, i.e. for periodic crystals.

The issue becomes more complicated for quasicrystals. The

lack of periodicity broadens the probability distributions even

for ideal structures (Wolny, 1998). The scaling relation vðuÞ

provides the best tool to consider phononic smearing of the

probability distribution as it is clearly recognizable even for

commensurately modulated structures, which can be consid-

ered as periodic (see Fig. 4). This additional broadening

caused by phonons modifies the PðuÞ distribution as indicated

in Fig. 5 (insets). We need the full Pðu; vÞ distribution,

depicted in Fig. 4(b), to properly describe the diffraction

pattern. Gaussian smearing of each atomic position leads to

smearing of the characteristic TAU2 scaling. The amplitude of

phonons is defined again as 2% of the average distance

between atoms (for a Fibonacci chain it is 1þ 1=�2 ’ 1:38).

The marginal distributions are shown in Fig. 5 (insets). The use

of the Debye–Waller factor calculated according to the

appropriate distribution of position fluctuations yields correct

intensities for all diffraction peaks. The diffraction pattern in

this case is much denser than the analogous diffraction pattern

for a periodic crystal (Fig. 5). This is because the diffraction

pattern of a quasicrystal is theoretically infinitely dense

(Levine & Steinhardt, 1986).

If we compare the diffraction patterns for a periodic crystal

and a quasicrystal (Figs. 2 and 5) it is clear that for both cases

the Debye–Waller factor modifies the peak intensities in the

exact same manner. There are no major differences for a

practical use of the phononic Debye–Waller factor for quasi-

crystals and periodic crystals (see Appendix A). The choice of

the right distribution of position fluctuation with respect to the

idealized structure is a major issue. This can be done by trial

and error, based on the quality of the obtained fit.

In Fig. 6 we show a comparison of simulated and fitted

diffraction patterns for the Fibonacci chain. For the simulated

structure the atomic positions were modified by fluctuations

expressed by a sine function. Then, an idea-

lized diffraction pattern was modified by the

traditional Debye–Waller factor and fitted to

the simulated pattern. The agreement factor,

understood as the conventional R factor

(Prince, 2004), is 3%. If the Gaussian distri-

bution of the Debye–Waller factor is changed

to a Bessel function, the agreement factor is

equal to 1.8%. In this case the improvement

is caused by the use of a correction in the

form of a Bessel function.

Generally, for scalable structures, the

probability distributions can be lifted to

higher dimensions. This leads to the so-called

atomic surface shown in Fig. 3. It is possible

to use a higher-dimensional periodic space

for the description of such structures.

The ASs are placed at the nodes of the

higher-dimensional space. For the simplest
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Figure 5
The envelope function and probability distributions PðuÞ for the
Fibonacci chain (one-dimensional quasicrystal) with phonons. The
notation from Fig. 1 has been used. The set of peaks is in general
infinitely dense, and its distribution is aperiodic. For clarity only peaks
with limited indices and intensities are shown. For ideal positions (no
phonons) the uniform probability distribution PðuÞ is observed [marked
with dashed lines in the insets; compare with Fig. 4(a)]. Reference lattice
parameter �k ¼ 2�=k0.

Figure 6
Calculated (Icalc) versus numerically simulated (Iobs) diffraction intensities for the Fibonacci
chain with phonons and the Debye–Waller correction in the form of (a) a Gaussian (standard
exponential Debye–Waller factor) and (b) a Bessel function. The fit agreement is at a level of
3% (Gaussian) and 1.8% (Bessel function).



quasiperiodic structures, like the one-dimensional Fibonacci

chain, two-dimensional Penrose tiling or three-dimensional

primitive icosahedral Ammann tiling, the higher-dimensional

lattice is regular and the ASs are simple geometric shapes (a

line section, set of four pentagons and a rhombic triaconta-

hedron, respectively). The diffraction patterns can be calcu-

lated as Fourier transforms of these ASs for a suitable

perpendicular component of the scattering vector. However, it

must be emphasized that such methodology works for defect-

free structures. The influence of phonons on the probability

distributions is solely a physical space phenomenon. There-

fore, the shape of the ASs, as part of the perpendicular space,

remains unchanged under phononic disorder. The statistical

method allows for incorporating phononic disorder into a

structural analysis of quasiperiodic structures within one

unified approach. The full mathematical justification is

presented in Appendix A.

6. Phasonic Debye–Waller factor

Contemporary crystallography still struggles to find a way to

describe structures with correlated disorder (Keen &

Goodwin, 2015). A perfect example is the phason flip where a

group of atoms rearrange their positions in a specific manner

imposed by geometric restrictions (Engel & Trebin, 2008). It is

believed that phasons play a crucial role in the stabilization

mechanism of quasicrystals (Janssen & Janner, 2014; Kiselev et

al., 2012). Therefore, an appropriate treatment of diffraction

data with respect to phasons is required. The growth of a

quasicrystal itself occurs because of reconstruction of atomic

positions through phason flips (Nagao et al., 2015), but there

exists also a theoretical possibility of perfect quasicrystal

formation (Achim et al., 2014). Phason flips occurring in the

structure of quasicrystals are usually randomly distributed

with a small probability of collective phason formation (Engel

et al., 2010). In the case of phason flips and their statistical

description within the AUC concept, part of the distribution is

shifted from one place to another (Fig. 7). Usually, this leads

not only to a broadening of the probability distribution but

also to its fragmentation. In the most popular approach, the

influence of phasons on the diffraction pattern is described in

the perpendicular space. A Gaussian approximation of the

form expð�x2
?=2�2

?Þ leads to a Debye–Waller factor of the

form expð�k2
?�

2
?Þ, where k? is the perpendicular component

of the scattering vector. Frequently, �? is a fit parameter. It is

worthwhile remembering that it is only a phenomenological

parameter and that the Debye–Waller factor in the form

mentioned above only describes a Gaussian distribution

approximation valid in the case of random tiling. For quasi-

crystals described by aperiodic tiling with phason disorder,

such an approximation breaks down for weak reflections,

which are actually in a majority (Fig. 8a). Replacing the

underlying Gaussian distribution assumption with a more

suitable one, considering cuts in the AUC, yields much better

results (Fig. 8c). The use of the ‘classical’ Debye–Waller factor

leads to the characteristic bias for weak reflections shown in

Fig. 8(b). Only the use of a sum of cardinal sine functions as an

underlying distribution for a Debye–Waller-like correction

term radically improves this problem and enables the practical

use of weak reflections in the refinement process. We
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Figure 7
Probability distribution for the Fibonacci chain under phasons. The
distribution for the ideal Fibonacci chain is drawn with dashed lines. Part
of a distribution X, related to the mid position in the sequence LS for the
ideal chain (circle with dotted circumference), is shifted to a new position
Y. The area of the moved block is proportional to � with respect to the
area of full distribution for the ideal chain, where � is the flip probability.

Figure 8
Calculated (Icalc) versus numerically simulated (Iobs) diffraction intensities for the Fibonacci chain with phasons (a) and after phasonic correction in the
form of (b) the multiplicative standard Debye–Waller factor or (c) the additive term (sum of Bessel functions). The phason occurrence probability is
� ¼ 5%. The standard phasonic Debye–Waller factor used in a refinement procedure favors strong reflections, for which a clear mismatch is visible in
(a). This is the reason why the fit for weak reflections is completely wrong in graph (b). The statistical approach does not cause these effects.



emphasize that for aperiodic structures, and especially for

quasicrystals, the number of weak reflections is far greater

than that of strong ones. The use of weak reflections in the

refinement process is therefore of fundamental importance. In

our approach, we exchange the multiplicative classical Debye–

Waller factor for an additive factor based on a sum of first-

order spherical Bessel functions of rank 0. This step is theo-

retically justified (see Figs. 7 and 9 and Appendix B). It is also

important to stress that the characteristic bias in our model

calculations is observed in modern refinement results which

make use of the standard phasonic Debye–Waller factor. As

may be easily checked from real experimental data (Kuczera

et al., 2012, 2014), the bias is significantly larger for reflections

with larger k? values. This observation independently

confirms our hypothesis.

7. Model structure – Penrose tiling

The two-dimensional quasilattice can be obtained by Penrose

tiling, where the nodes are spanned by two kinds of rhom-

buses: thick and thin, with their volume ratio given by �. In

physical space the tiling can be obtained by applying the so-

called matching rules defining the mode of tile assembly to fill

the plane with no holes or overlaps. Penrose tiling is widely

used for the construction of a starting model for decagonal

quasicrystals (Steurer & Deloudi, 2009; Kozakowski & Wolny,

2010; Takakura et al., 2001). The AUC shape constructed

within the statistical method takes the form of four pentagons,

two smaller and two larger ones. In the nD approach the four

pentagons decorate a four-dimensional hyperrhombohedron,

which is a four-dimensional unit cell for decagonal quasi-

crystals. The structure factor for Penrose tiling can be

expressed in the statistical method simply as a Fourier trans-

form of the marginal distribution Pðux; uyÞ, which is now a

two-dimensional object, since the TAU2 scaling property is

the same as for the Fibonacci chain (Wolny et al., 2002;

Kozakowski & Wolny, 2010).

A phason flip in the case of Penrose tiling will be under-

stood as a rearrangement of tiles such that groups of two thick

and one thin rhombuses swap their positions at a certain

orientation in physical space. Another possibility is the

swapping of tiles in a group of two thin and one thick rhom-

buses. For a better understanding, the two kinds of flips are

shown in Fig. 9. The rearrangement of tiles can be effectively

modeled as a small shift of the inner vertex of the group of

three rhombuses. The same is true in the case of the Fibonacci

chain (see Fig. 7). Our calculations are performed for a

structure consisting of nearly 106 nodes and different prob-

ability ratios of flip occurrence, �.

8. Phasons for Penrose tiling

As in the case of the Fibonacci chain, for Penrose tiling

phasons also cause a fragmentation of the probability distri-

bution and some triangular parts are shifted to positions that

do not constitute ideal tiling (Fig. 9). The diffraction pattern of

the disordered structure can again be calculated in two ways:

as a Fourier integral over all atomic positions (treated as the

observed dataset) or using the structure factor fitted to the

data points with a possible correction for phasons. In Fig. 10(a)

a log–log plot of the fitted versus observed intensities is shown

for the ideal Penrose tiling with no phason flips. The small

deviation from a straight line is caused only by the finite size of

the sample. If phasons are introduced into the structure, the

picture looks very different. Depending on the degree of

phasonic disorder the Icalc versus Iobs line gets broadened and a

strong dispersion of peaks is observed, particularly in the weak

reflection regime, which is clearly seen in Fig. 10(b). The

Debye–Waller correction for phasons can now be calculated in

Gaussian form again, but such an approximation does not

describe all diffraction peaks correctly, as was the case for the

Fibonacci chain. In the log–log plot of fitted versus (simulated)

observed intensities a strong bias in the weak reflection regime

is apparent (Fig. 10c). At the same time, the spread of data

points along the straight line only slightly diminishes and,

moreover, the fit becomes worse owing to the systematic

deviation. This behavior is a well known fact in modern

refinements of quasicrystalline structures (Kuczera et al., 2010,

2011, 2012; Takakura et al., 2007). The models using the

standard phasonic Debye–Waller correction suffer from the

improperly treated phasonic disorder.

The statistical method gives a perfect tool to handle

phasons. Since we know how phasons affect the probability

distributions, and how the structure factor is strictly related to

those, the correction for phasons arises naturally. From Fig. 9

we conclude that the probability distribution obtained for a

Penrose tiling with phasons differs from the ideal one by the

shifting apart of some triangular components. By restoring the

initial distribution, i.e. moving the triangular parts back to

their initial positions, the calculations of diffraction intensities

can be performed in the same way as for a perfect Penrose

tiling. Another approach is also possible. The Fourier-trans-

formed triangular parts give an additive factor to the structure

factor, as was the case for the Fibonacci chain with phasons.
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Figure 9
Distribution Pðux; uyÞ for Penrose tiling obtained for different types of
phason flips: (a) thick–thick–thin and (b) thin–thin–thick tile configura-
tions in a hexagon. After phason flips the ideal four pentagons are
changed and some triangular parts are shifted to new locations,
depending on the type of flip.



There, the cardinal sine functions emerge from the Fourier

transformation of the flat parts of the distribution shifted to

new positions. The result of application of the above-

mentioned approach to phasons in the Penrose tiling is shown

in Fig. 10(d). All peaks are equally well corrected and aligned

perfectly on a straight line. No bias is observed and the fit is of

the same quality as for ideal Penrose tiling without phasons.

9. Summary

It is possible to fully reconstruct the diffraction pattern using a

probability distribution of atoms in the reference lattice. For

practical calculations it is sufficient to know the moments of

the distribution. However, the number of moments required

grows with the degree of complication of the distribution. For

a Gaussian distribution knowledge of the second moment is

sufficient, and the classical Debye–Waller factor is the result.

In the general case the classical Debye–Waller factor is only an

acceptable approximation for small corrections and it breaks

down for larger corrections.

The Debye–Waller factor has two components: phononic

and phasonic. The first is related to thermal motion of atoms in

the (quasi)crystal structure, the other to the

atomic jumps (flips, phasons). Usually, the

phononic part is described in physical space

and the phasonic part in the higher-dimen-

sional perpendicular space.

Both components influence the distribu-

tion Pðu; vÞ. Phonons cause a small broad-

ening of the line along the [1, 1] direction in

the ðu; vÞ reference system describing the

scaling properties (the TAU2 scaling for

quasicrystals based on �; Fig. 5). Only

Gaussian broadening leads to the classical

Deby–Waller factor in reciprocal space. This

factor is independent of the type of the

underlying structure. It is the same for all

structures from periodic crystals to quasi-

crystals. The correct intensity reducing term

depends not on the kind of structure but only

on the kind of position modulation. In this

paper we have presented model calculations

for the distributions of atoms described by

normal, uniform and harmonic distributions.

For each case the use of an appropriate

function is necessary to account for the

intensity correction. Only the use of an

appropriate correction term allows one to

refine the structure against the whole

measured range of diffraction intensities. To

summarize, the classical phononic Debye–

Waller factor works equally well for periodic

crystals and for quasicrystals; however, the

possible improvement of a refinement result

can be obtained by trying different correction

terms, e.g. in the last steps of the refinement

procedures.

Completely different conclusions apply to phasonic

correction. The standard (Gaussian) correction term fails in

the case of quasicrystals and a new approach is needed. Our

calculations for model systems – Fibonacci chain and Penrose

tiling – show the problem with intensities of weak reflections,

which is also a fact described in the literature. We are

convinced that the characteristic bias in the fitted versus

simulated (observed) intensities plot is caused by the incorrect

Debye–Waller factor form used in the refinement. The

commonly used exponential term is wrong. The argument

confirming our hypothesis independently of the simulation

results is that the bias concerns mostly peaks with a large

perpendicular space component of the scattering vector. Such

a feature is observed experimentally. If so, the correction term

with perpendicular scattering vector in the exponent, as in

case of the Debye–Waller factor, must fail. We have proposed

a novel method of dealing with phasons, where knowing the

probability distribution of atoms in the reference lattice is

enough to reconstruct a full diffraction pattern of a structure

with possible phason disorder. Phasons significantly influence

the probability distribution by its fragmentation. Including

this in a definition of structure factor automatically solves the
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Figure 10
Correlation plots of calculated (Icalc) versus numerically simulated (Iobs) diffraction intensities
for Penrose tiling: (a) ideal (no phasons) and (b)–(d) with phasons. The slight smearing of
points along the line in (a) is caused by the finite size of the sample only. The probability of
phason occurrence is � ¼ 5%. No correction factor was used in (b), and phasonic correction
in the form of the multiplicative standard Debye–Waller factor and the additive term (sum of
Bessel functions) was applied to (c) and (d), respectively. The correlation in (d) is almost
perfect, with small deviations caused by the finite size of the sample [cf. (a)].



problem of phasons at the very basic level of calculating the

diffraction pattern. Neither any multiplicative correction

factor nor iterative fitting of parameters in the Gaussian’s

exponent is required. The only free parameter to fit would be

the number of phason flips, which has a physical basis.

Moreover, by using a statistical method in the refinement of

structures with phason flips, very good results are achieved.

The statistical method offers the possibility to retrieve

probability distributions directly from diffraction patterns

(Kozakowski & Wolny, 2013). The distributions can also be

modeled by some approximation techniques. One of the

possible ways is to approximate the shape of the probability

distribution by its histograms. This yields a correction factor

described by a sum of cardinal sine functions (sin x=x).

Another approach is to use the Taylor expansion of an

envelope function for the moments, where an envelope func-

tion is considered a characteristic function of probability

distribution. It is also possible to use projections of distribu-

tions along certain directions, which leads to a corresponding

sum of components.

In conclusion, the appropriate choice of correction factor

for phonons and phasons allows the inclusion of very weak

reflections of the diffraction pattern in the refinement process

of the atomic structure. It is of a great importance for such

complex structures as quasicrystals or complex metallic alloys.

APPENDIX A
In order to derive the formula for the structure factor with a

phononic contribution for a quasicrystal within the statistical

approach based on the mean field approximation, we first

introduce atomic coordinates unew, vnew in the reference lattice

framework for a given position r :

r ¼ n�k þ unew; r ¼ n�q þ vnew ð1Þ

(n being an integer). The coordinates unew; vnew can be written

as

unew ¼ uþ up; vnew ¼ vþ vp; ð2Þ

where u, v denote coordinates without phononic displacement

and up, vp denote the displacement from the equilibrium

position. The distribution Hðunew; vnewÞ is equal to the

convolution of the distribution Pðu; vÞ and distribution

Gðup; vpÞ (pairs u, up and v; vp are independent):

Hðunew; vnewÞ ¼
R�k

0

R�q

0

�ðup � vpÞPðunew � up; vnew � vpÞ

�Gðup; vpÞ dup dvp

¼
R�k

0

Pð unew � up

zfflfflfflfflffl}|fflfflfflfflffl{u

; vnew � up

zfflfflfflfflffl}|fflfflfflfflffl{v

ÞGðup Þ d
3up: ð3Þ

The Dirac delta function �ðup � vpÞ is nonzero if displace-

ments up and vp are equal. As mentioned, the structure factor

is a Fourier transform of the atomic position distribution:

FðkÞ ¼
R�k

0

R�q

0

Hðunew; vnewÞ

� exp i h1k0unew þ h2q0vnewð Þ
� �

dunew dvnew;

k ¼ h1k0 þ h2q0; ð4Þ

where h1 and h2 are diffraction peak indices (integers). Using

formula (3) for the distribution Hðunew; vnewÞ we can refor-

mulate (4) as follows:

FðkÞ ¼
R�k

0

R�q

0

R�k

0

Pðunew � up; vnew � upÞGðupÞ

� exp i h1k0unew þ h2q0vnewð Þ
� �

dunew dvnew dup: ð5Þ

If we apply the coordinate change

unew ¼ uþ up; vnew ¼ vþ up; vp ¼ up; ð6Þ

equation (5) takes the form

FðkÞ ¼
R�k

0

R�q

0

R�k

0

Pðu; vÞGðupÞ exp ih1k0 uþ up

� �� �

� exp ih2q0 vþ up

� �� �
du dv dup: ð7Þ

The Jacobian of the transformation (6) is equal to 1.

According to Fubini’s theorem we can reshuffle the order of

integration in equation (7):

FðkÞ ¼
R�k

0

R�q

0

Pðu; vÞ exp i h1k0uþ h2q0vð Þ
� �

du dv

�
R�k

0

GðupÞ exp i h1k0up þ h2q0up

� �� �
dup: ð8Þ

The first integral in (8) describes the structure factor without

the phononic contribution, and the second gives the phononic

correction factor. No assumptions on the displacement

distribution were used in the derivation. The result is there-

fore applicable for any kind of structure type including

periodic ones (for q0 ¼ 0).

APPENDIX B

To calculate the structure factor for the Fibonacci chain

with phason flips we divide the PðuÞ distribution into three

regions where the distribution is uniform (Fig. 7). These

regions are ½0; 1=��, ½1=�; ��, ½�; � þ 1=�� in the case of

�k ¼ � þ 1=�. The heights of the probability density distribu-

tions in the respective regions are ð1� �Þ=�; 1=� and �=�. The

coefficient � is the phason flip probability. The structure factor

is

FðkÞ ¼
P3

n¼1

FnðkÞ: ð9Þ

Each component FnðkÞ has the following definition:

FnðkÞ ¼ 2An

sin kan=2ð Þ

k
exp ikbnð Þ; ð10Þ

where
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An is the amplitude of probability distribution in the nth

region,

an is the width of the nth region, and

bn is the position of the center of the nth region.

Equation (10) is the solution of the following integral:

FjðkÞ ¼
Rb

a

A exp ikuð Þ du

¼
Rðb�aÞ=2

0

2A cos kuð Þ exp ikðbþ aÞ=2½ � du: ð11Þ

Using the properties of Bessel functions, (10) can be written as

FnðkÞ ¼ Anan j0 kan=2ð Þ exp ikbnð Þ; ð12Þ

where j0 denotes the spherical Bessel function of the first kind.
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