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This work presents a numerical study of the fluence–resolution behaviour for

two coherent lensless X-ray imaging techniques. To this end the fluence–

resolution relationship of inline near-field holography and far-field coherent

diffractive imaging are compared in numerical experiments. To achieve this, the

phase reconstruction is carried out using iterative phase-retrieval algorithms on

simulated noisy data. Using the incident photon fluence on the specimen as the

control parameter, the achievable resolution for two example phantoms (cell

and bitmap) is studied. The results indicate the superior performance of

holography compared with coherent diffractive imaging, for the same fluence

and phase-reconstruction procedure.

1. Introduction

The simple question ‘What resolution do I get for the invested

photon fluence?’ is extremely important for X-ray imaging of

radiation-sensitive specimens, such as biological cells and

tissues. Structure analysis by diffraction is in general based on

elastic scattering of photons and hence on the Thompson

scattering cross section, which is much smaller than the cross

section for photon absorption. This results in significant

energy uptake within the sample and hence causes radiation

damage. However, for coherent imaging the dose issue is

accentuated, since the information is collected from a single

copy of the imaged structure, rather than from a large

ensemble of identical constituents over which the dose is

distributed. Pioneering studies have addressed this topic

within the framework of kinematic scattering theory for far-

field coherent diffractive imaging (CDI) (Shen et al., 2004;

Howells et al., 2009) and have found a steep power law,

D / d�4, relating dose D and resolution d for the case of

imaging three-dimensional structures at isotropic resolution.

Note that this corresponds to equivalent imaging of two-

dimensional slices of a width which is scaled down with d and

hence loses contrast. Conversely, for constant width,

increasing only the two-dimensional resolution yields D / d�2

for diffraction as for absorption (see e.g. Kirz et al., 1978).

Further work has studied the effect of having a certain feature

of interest embedded in other structures (matrix) (Schropp &

Schroer, 2010), showing that the reconstruction quality in CDI

is nearly independent of the surroundings (for a given dose).

Before addressing the case of (coherent) diffraction, which

became important after the advent of CDI (Miao et al., 1999),

earlier work had already compared X-rays, neutrons and

electrons as microscopy probes, but had exclusively consid-

ered image formation by absorption (Henderson, 1995). This

is understandable for the simple reason that X-ray microscopy

started in absorption contrast, and was only later extended to
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(phase contrast) diffractive imaging. A comparison between

X-ray microscopy in absorption contrast (water window

spectral range) and by numerical simulation was provided by

Huang et al. (2009), showing that isolated low-Z materials such

as biological cells can be imaged with fewer photons by CDI.

The literature cited above already illustrates the large range

of perspectives which one can take to address the dose and

resolution issues, at least in a broad sense. One can compare

different probes (X-rays versus other probes), different types

of contrast (absorption versus phase contrast), different

experimental parameters (notably wavelength) or different

types of imaging (e.g. lens-based X-ray microscopy versus

lensless diffractive imaging). To this list, we here add the

optical regime of a coherent diffractive imaging experiment.

Notably, we want to compare direct reconstruction of lens-

less coherent imaging data in the near-field and far-field

regimes. While the previous studies addressing CDI

mentioned above were concerned with far-field diffraction, the

numerical simulations used in this work are carried out in the

optical near-field regime. Fig. 1 shows a sketch for (a) a near-

field inline holographic (NFH) imaging experiment and (b) a

CDI experiment. Fig. 1(c) shows both cases tranferred to the

parallel-beam setting, as used in the numerical experiments of

this study. Our goal is to provide a quantitative comparison

between NFH (Kellström, 1932; Gabor, 1948; Howells et al.,

1986; Snigirev et al., 1995) and CDI (Miao et al., 1999;

Robinson & Miao, 2004). The main difference between this

work and the above-mentioned studies is thus the imaging

regime in use.

Further, a recent numerical study (Villanueva-Perez et al.,

2016) also assessed NFH and CDI and formulated a signal-to-

noise criterion. Rather than resolution as in the present study,

Villanueva-Perez and co-workers focused on the sensitivity

with respect to the phase shift of a given feature and its size at

a constant fluence.

The motivations for this study are the experimental indi-

cations for the high dose effectiveness of NFH imaging

(Bartels et al., 2015; Wilke et al., 2014; Jones et al., 2014). In the

work of Bartels et al. (2015) for example, NFH images of

bacteria were recorded in the multi-keV regime, where a

single bacterium is essentially a pure phase-contrast object.

Reconstructions were obtained at a dose which was orders of

magnitude smaller than reconstructions of similar resolution

obtained previously for the same bacteria by (far-field)

ptychography (Wilke et al., 2012). Since experimental work

can always be influenced by a number of additional para-

meters which can, for example, easily render the data in-

consistent, a higher or lower dose required for a particular

experiment is not conclusive per se. In the light of the limited

evidence, we therefore turn to numerical analysis, comparing

CDI with NFH for simulated noisy data on the same phan-

toms. To this end, we first used the maximum-likelihood (ML)

approach introduced by Elser & Eisebitt (2011). Accordingly,

a critical fluence �c can be defined, above which the correct

phantom (random bitmap) out of a selection of random

bitmaps could be identified with a chosen tolerance (error)

level " and for given photon shot noise (Jahn et al., 2017). In

this way, one can test the information content in noisy two-

dimensional diffraction patterns and investigate the depen-

dence of �c on object contrast levels, the accepted error level

and the bitmap size. For the experimentally relevant case of

weak phase contrast, applicable to most biological samples,

NFH required a lower dose than CDI for the optimum

propagation distance (Fresnel number) (Jahn et al., 2017).

However, apart from small oscillations in �c as a function of

distance, as expected based on the contrast transfer function,

the results in the near field were almost identical to the far-

field results (Jahn et al., 2017). Hence, as far as the encoding of

information is concerned, which can be tested by the ML

approach, far-field CDI and near-field NFH seem in principle

to be roughly equal in dose efficiency. What the ML approach

cannot address, however, is whether an unknown object can

actually be reconstructed from the noisy data, rather than just

comparing likelihoods between the true object and some

alternatives (bitmaps with randomly switched bits).

In this work, we fill this gap and actually test the real

process of reconstruction from noisy diffraction patterns and

not just an ML reconstructability criterion. The main control

parameter in this numerical work is again the fluence �, i.e. the

average number of photons per pixel in the plane of the

object. Using � we are able to tune our numerical experiment

from the case ‘barely reconstructing’ to ‘best object recon-

struction’. According to this parameter we generate test data

of two phantoms: (i) a cell, and (ii) a bitmap object [as done by
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Figure 1
Experimental implementations for (a) NFH and (b) CDI, shown in a
diverging beam geometry (in particular for a synchrotron setup; cf. Salditt
et al., 2015). The beam is focused by Kirkpatrick–Baez mirrors (KB), then
a pinhole (P) is commonly used as a low-pass filter for removing high
spatial frequencies in the probing beam. For CDI the specimen (S) is
placed in the focal plane (F), while for NFH it is placed at a defocus
position z1. The detector is then placed at a distance z2 behind S. This
yields for NFH a (de-)magnification of M = (z1 + z2)/z1. Note that in order
to satisfy the coherence requirements for CDI the effective source size
has to be reduced by slits (SL). (c) The imaging configurations transferred
to the setting of a collimated (parallel) beam. This is achieved via a simple
coordinate transform (i.e. Fresnel scaling; Paganin, 2006), where the
effective propagation distance is given by zeff = z2/M.



Jahn et al. (2017)] (see Fig. 2). Following the generation of

these noisy diffraction patterns, we run phase-retrieval algo-

rithms on the data and determine the resolution by Fourier

ring correlation (FRC) (Harauz & van Heel, 1986; van Heel &

Schatz, 2005). Appendix A presents a benchmark of the NFH/

CDI propagator without the need of a phase reconstruction. x2

gives details of the data generation and reconstruction

scheme. x3 presents the results of the comparison of NFH and

CDI. The paper closes in x4 with a summary and outlook.

Of course, implementing both NFH and CDI on the same

sample can be experimentally challenging owing to limitations

of the setup (coherence, beam size, sampling constraints).

These considerations are beyond the scope of this work.

Moreover, we consider only coherent scattering (elastic

Thomson scattering) and no further interactions of the

radiation with matter. Our main focus is the optical regime

and the decoding of (phase) information. Thus all simulations

are carried out in a dimensionless setting (pixel units and

Fresnel number), as detailed below.

2. Numerical setup

Fig. 2 introduces the concept of the numerical study. In

essence the two optical setups – far-field CDI and near-field

holography (NFH) – are simulated for two different phan-

toms, namely a phantom of two adhering biological cells [as

used by Giewekemeyer et al. (2011)] and a random binary

bitmap; see Figs. 2(a) and 2(d), respectively. Both phantoms

are pure phase-contrast objects, with phases ’x;y in the range

[�1, 0] rad (cell) and ’x;y 2 {0, �1} rad (bitmap). Note that

binary bitmaps with no correlations between pixels are to

some extent amenable to analytical treatments and have been

used before, for example by Elser & Eisebitt (2011) (one-

dimensional bitmap) and by Jahn et al. (2017) (two-

dimensional bitmap).

Both images have a size of 512 � 512 pixels embedded in

1024 � 1024 (Nx � Ny) pixels. This embedding ensures that

the simulated numerical aperture (NA) is sufficently large to

recover details down to the pixel level. The NA in a vacuum is

given by the opening angle � of the detector,

NA ¼ sin � ’ tan � ’ Nx �x=ð2 zeffÞ; ð1Þ

where paraxiality is assumed and �x is the pixel size. The

resolution limit dmin due to the NA is

dmin ¼ �=ð2 sin �Þ; ð2Þ

with wavelength �. Inserting equation (1) and using the defi-

nition of the Fresnel number Fr = ð�xÞ
2=ð� zeffÞ yields
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Figure 2
The setup of the numerical experiment. (a) The phase-only phantom of two cells with individual compartments and maximum (exaggerated) phase shift
of �1 rad. The size of the phantom is 512 � 512 pixels embedded in 1024 � 1024 pixels. (b) Simulated near-field intensity measurement at a Fresnel
number of 10�3 (linear scaling). The left half shows the noiseless measurement, while the right-hand side shows the measurement with noise for
200 photons per pixel in the detection plane. (c) Simulated far-field intensity measurement, analogous to panel (b); a count of zero photons corresponds
to white (logarithmic scale). (d) Bitmap pattern analogous to Jahn et al. (2017). The maximum phase shift is �1 rad and the size of one bitmap pixel is
represented by 10 � 10 pixels in the sample plane. (e), ( f ) Analogous to panels (b) and (c), respectively. The solid line surrounding the objects in panels
(a) and (d) marks the border of the support used in the reconstruction. The scale bar indicates 50 pixels.



dmin ¼
�zeff

Nx�x
¼

1

Fr ðNx=�xÞ
: ð3Þ

Setting dmin ¼ �x thus yields Fr � 1/N as a requirement for

the NA.

In both CDI and NFH, we assume perfect illumination by a

point source or in equivalent geometry by a plane wave (cf.

Fig. 1c), such that the exit wave � is given by the phantom � =

expði’x;yÞ. The measurements for NFH were generated by

applying the Fresnel propagator DFr given by

DFrð�Þ ¼ F
�1
F½�� exp ð�i�Þ=ð2FrÞ ðk2

x þ k2
yÞ

� �� �
; ð4Þ

where kx ¼ 2nx=Nx and ky ¼ 2ny=Ny are spatial frequencies in

Fourier space with nx,y 2 ½�Nx;y=2 . . . Nx;y=2� and a Fresnel

number of Fr = 10�3. The measurements for CDI were

generated by discrete Fourier transformation F of the corre-

sponding exit wave. Next, the generated intensity patterns

(far-field and near-field, respectively) in the detection plane

were subjected to Poissonian noise using the routine imnoise

(Matlab Inc.), with the average photon fluence � (in photons

per pixel) in the object plane as the only parameter. Figs. 2(b)

and 2(c), and 2(e) and 2( f), show in each case the ideal

noiseless simulated data or ‘measurements’ (left-hand side)

and a random realization of the noisy measurement for a

fluence of 200 photons per pixel (in the exit plane; right-hand

side). The example NFH and CDI measurements simulated

for the phantom nicely illustrate the completely different

nature of the signals. In the case of NFH, the signal varies

around one (normalized primary beam) by self-interference of

the primary beam with the diffracted beam behind the object,

and is best represented on a linear scale with a narrow range of

intensities. In contrast, the CDI data cover many orders of

magnitude from the central pixel to the edge of the detector,

where most pixels have zero photon counts. Note that in this

idealized simulation we take the full diffraction pattern into

account, i.e. the numerical aperture is sufficiently large, and we

assume that the detector does not need any kind of beamstop,

which would result in a loss of information.

Thus, in summary, the noisy measurements were generated

using the following recipe:

(i) Propagate the field � from the sample plane to the

measurement plane (detection plane) using the respective

propagator X (F or DFr).

(ii) Calculate the intensities of the field, yielding the

measurement M = kXð�Þk2. Normalize M so that M 0 =P
pixels2M Mðx; yÞ � 1.

(iii) Multiply M 0 by �NxNy and use the result as input for a

Poisson random number generator. This yields the noisy

measurement used in the phase reconstruction.

The reconstructions from the noisy data were obtained

using the relaxed averaged alternating reflections (RAAR)

algorithm (Luke, 2005). The iterations are given by

�nþ1 ¼
�n

2
RS RM �nð Þ
� �

þ�n

� �
þ 1� �nð ÞPM �nð Þ; ð5Þ

where RS=Mð�Þ = 2PS=Mð�Þ � � denotes a (mirror) reflection

by a given constraint set and n the iteration index. The

parameter �n controls the relaxation. It follows the function

�n ¼ exp � n=�sð Þ
3

� �
�0 þ 1� exp � n=�sð Þ

3
� �� �

�max; ð6Þ

where �0 denotes the starting value, �max the final value of �n

and �s the iteration number when the relaxation is switched.

This relaxation strategy follows equation (37) of Luke (2005).

The parameters were set for �0 = 0.99, �max = 0.75 and �s = 150

iterations for all reconstructions. The projection on the

measurements PM is the standard magnitude projector

PMð�Þ � X
�1 M1=2 exp i arg X �mð Þ

� �� �� �
; ð7Þ

where X is either F or DFr for far-field or near-field propa-

gation, respectively. In equation (74) of Luke et al. (2002) an

alternative version of PM is given which should handle

numerical inconsistencies such as noise. In our case, experi-

ments using this version did not show any improvement in the

resolution.

The operator PS is used to enforce the support S, which is

assumed to be perfectly known, and the pure phase constraint

in the object plane, i.e.

PSð�nÞ ¼
exp½i argð�nÞ� for pixels 2 S,

expði 0Þ for pixels =2 S.

�
ð8Þ

Details on the implementation can be found in the supporting

information.

3. Results

Before addressing the fluence–resolution relationship, we

present an example reconstruction to illustrate the steps that

are necessary to obtain the reconstruction data, which are then

analysed by massively parallel batch processing. Fig. 3 shows

an example reconstruction for � = 200 photons per pixel for

both phantoms (Figs. 3a and 3c), using the noisy measure-

ments shown in Figs. 2(b), 2(c), 2(e) and 2( f).

The left- and right-hand sides of Figs. 3(a) and 3(c) show the

phases of the NFH and CDI reconstructions, respectively,

again for both (a) the cell and (c) the bitmap phantom. The

reconstructions are based on the same set of parameters and

constraints as far as possible. There are two differences: (i) the

propagation operator (F or DFr) and (ii) the starting guess.

For the holographic reconstruction, an array uniformly initi-

alized with amplitude 1 and phase 0 was used, whereas the

CDI reconstruction used an initialization consisting of

uniform amplitude 1 but randomly chosen phases from the

range ½��; ��, both in the object plane. Changing the initial

guess typically had only a small effect on the results. Inspec-

tion of the holographic reconstructions in Figs. 3(a) and 3(c)

shows some high-frequency noise in the background of the

reconstructions, but the fine structures of the cells (small black

dots) are still clearly visible and the edges of the bitmap are

still sharp. The CDI reconstruction of the cell clearly shows a

loss of detail, but the background is less noisy. For the bitmap

we see washed out edges and some structured background
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which matches the length scale of the bits. Note that the

reconstructions show the object after the measurement

projection (before the support is enforced).

For a quantitative comparison of the resolution we used

FRC. To this end, the phases of the reconstructions were

correlated with the corresponding phantom phases (Fig. 2),

and the decrease in correlation was plotted as a function of

spatial frequency. The resolution is determined by the first

intersection of fr , the resolved spatial frequency, with the so-

called half-bit threshold, indicating the degree of correlation

at which sufficient signal has been acquired (van Heel &

Schatz, 2005). The results are shown in Fig. 3 for (b) the cell

and (d) the bitmap. The FRC curve in Fig. 3(b) for the CDI

reconstruction decays much faster ( fr = 0.17) than for the NFH

reconstruction ( fr = 0.48), in agreement with visual inspection.

Interestingly, the FRC curves for the bitmap phantom show an

oscillatory behaviour, but again the CDI curve decays faster

( fr = 0.2) than the NFH curve ( fr = 0.4), i.e. it shows lower

resolution.

Next, we turn to the fluence–resolution relationships, which

were computed by performing the automated reconstruction

and FRC analysis for measurements of systematically varied

fluence �. For each � covering the range from 1 to

20 000 photons per pixel (phantom plane), 30 realizations

were generated and reconstructed, each with the same para-

meters. Fig. 4 shows the results. Comparing the results for (a)

the cell and (b) the bitmap, we notice that in both cases the

NFH reconstruction reaches the maximum achievable reso-

lution at a significantly smaller fluence. Note that the spatial

frequency of 0.5 periods per pixel corresponds to the

maximum (half-period) resolution of a pixel. However,

reaching the full resolution does not necessarily equate to

having a perfect reconstruction. For example, the l2-norm of

the difference image (reconstruction phantom) can be non-

zero, while the FRC has already saturated. Comparing

Figs. 4(a) and 4(b), we notice that NFH reaches a maximum

resolution for both objects at the same fluence of around

300 photons per pixel. At the same time, the error bars of the
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Figure 3
Example reconstructions for 200 photons per pixel. (a) The phases (radians) of the reconstruction of the cells after 200 iterations of RAAR (�0 = 0.99,
�max = 0.75 and �s = 150 iterations) using a support and pure phase object constraint. The left half shows the reconstruction obtained from the near-field
data, the right-hand side the results for the far-field data. (b) Fourier ring correlation of the reconstructions with the phantom in Fig. 2(a). (c), (d)
Analogous to panels (a) and (b) for the bitmap object shown in Fig. 2(c). The scale bar indicates 50 pixels.



bitmap results are larger than those for the cell. In contrast,

CDI needs 11 000 photons to reach full resolution for the cell,

and 3000 photons for the bitmap. Furthermore, we analysed

the error of the reconstruction by the l2-norm [see Fig. 4(c) for

the cell and Fig. 4(d) for the bitmap]. To this end, the l2-norm

� of the phase difference,

� ¼
P

8 pixels2S

k arg ðphantomÞ � arg ðreconstructionÞk2; ð9Þ

was computed for all pixels within the support. The � curves

in Figs. 4(c) and 4(d) are normalized by the number of pixels in

S and show an unexpected behaviour. At low fluences the

error in CDI is smaller than that in NFH, but there is a

crossover at � = 140 (cell) and � = 4 (bitmap), where NFH

becomes superior in terms of �. On closer inspection of the

reconstruction result, however, it becomes clear that the

smaller � at low fluence is misleading. CDI yields an

unstructured reconstruction with no representation of struc-

tural details [see insets in Fig. 4(c)]. The reconstructions are

much worse than the NFH results for the same fluence, but

exhibit a smaller � by way of averaging the signal deviations.

We must conclude that � is not a well suited error metric at

low fluence.

Thus, it becomes clear that in all cases tested, NFH yields

superior results to CDI. Note that the absolute � values also

depend on the number of iterations (200 in both cases).

Running the algorithm for more iterations, e.g. 800, led to

further reductions in � of about 30% in the case of NFH and

10% for CDI (cell phantom). Furthermore, the introduction of

additional constraints can of course also change the error

value. For example, using the prior knowledge that the binary

bitmap must have discrete phase values 0, �1 suggests the use

of a thresholding constraint (binary value projector)

PSð�nÞ ¼
expð�iÞ if ’x;y < 0:5,

expð0iÞ if ’x;y � 0:5.

�
ð10Þ

Fig. 5 shows the results using this projection in addition to the

support and pure phase constraint for the bitmap phantom.

For these results we used a bitmap with 1:1 pixel correspon-

dence of bitmap to object plane pixel. Thus the entire object
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Figure 4
Resolution as a function of dose for holographic and coherent diffractive imaging. (a) The result for the cell phantom. (b) The result for the bitmap
phantom. The photon number ranges from 1 to 20 000 photons per pixel. Each photon number had 30 realizations for the near- and far-field
measurements. The reconstructions were carried out with RAAR and the same settings as before. (c) � (normalized by the number of pixels in the
support N) for the cell phantom as a function of fluence. The insets (200 � 200 central pixels of the cell phantom) show different phase reconstruction
snapshots (NFH left, CDI right) for fluences of 1 (black) and 50 (green) photons per pixel, with respectively coloured arrows. The inset scale bar is
20 pixels. (d) �/N for the bitmap. The coloured dots mark the critical fluence obtained by ML simulations.



has a size of only 10 � 10 pixels. Fig. 5(a) shows the �/N error

[as in Fig. 4(d), but now after the threshold constraint],

corresponding to the fraction of wrong pixels. Here we see the

expected behaviour in that NFH reconstructs better at low

fluence than CDI. For comparison, we also plot the theoretical

function �c(�/N) (solid line) based on the ML analysis,

describing the critical fluence to identify the correct bitmap

from the noisy diffraction pattern (CDI) out of a set of

neighbouring bitmaps (Jahn et al., 2017). Fig. 5(b) shows the

fraction of successful reconstructions, i.e. the fraction of

successful reconstructions (� = 0) from an ensemble of

100 runs as a function of fluence. Comparing these results, we

see that CDI reconstructions require substantially more flux at

any error level. Furthermore, the functional form of the curve

is smoother for NFH, while the transition from non-

reconstructible to reconstructible is extremely sharp for CDI,

similar to a phase transition.

4. Summary and outlook

In this work, we have investigated the fluence efficiency of

variants of lensless X-ray imaging techniques, notably

coherent diffractive imaging operating in the optical far field,

and inline holography operating in the optical near field.

Despite the entirely different nature of the signals and the

modes of image formation, which can be classified as hetero-

dyne and homodyne, i.e. with and without adding a reference

wave, it is commonly assumed that the information contents in

the diffraction pattern for a given photon fluence should be

equal. The analytical work and simulations of Jahn et al. (2017)

have already pointed out that this can never be exactly true,

since the oscillatory nature of the contrast transfer functions in

NFH results in a dependence on the Fresnel number. There-

fore, absorption and phase contrast have to be distinguished,

and also the regime of weak or strong contrast. However, the

maximum-likelihood approach of Jahn et al. (2017) addresses

the information content of the noisy pattern and not the

reconstruction quality, which can actually be obtained by

standard methods of iterative algorithms. As we have shown

here, the latter case is characterized by substantial differences

between NFH and CDI. In other words, while the information

content may be similar, the ability of the algorithms to decode

the diffraction pattern deviates significantly. These conclu-

sions have been substantiated both by the error metric of the

l2-norm � and by Fourier ring correlation. For example, Fig.

5(b) shows that both NFH and CDI reach full reconstruct-

ability within one decade of photon fluence, but for CDI the

fluence curve was shifted up by two decades. Furthermore,

both NFH and CDI reconstructions required substantially

higher fluence, as predicted by the ML approach. In conclu-

sion, our findings point to an important advantage of NFH, in

addition to its large tolerance for partial coherence, its

compatibility with extended specimens and its flexibility in

reconstruction constraints, e.g. the pure phase constraint is

often sufficient to reconstruct at least a coarse image of the

object. Some of these advantages may also apply to ptycho-

graphy, for example when mixed states are taken into account

(Thibault & Menzel, 2013). It goes without saying that these

conclusions await further validation by other reconstruction

codes, as well as by careful experimental testing. If the

evidence is substantiated, more imaging experiments of

radiation-sensitive specimens such as biological objects should

be carried out in the holographic regime, for which dedicated

synchrotron beamlines are now available.

APPENDIX A
Direct back propagation

Following the suggestion of a reviewer, we have investigated

to what extent the results obtained in this work depend on the

reconstruction (which always requires a specific choice of

constraints and reconstruction algorithm) and we have also

performed simulations in the simplest possible setting, based

on direct back propagation. To this end, the exit wave in the

sample plane was first propagated to the detector plane to
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Figure 5
Reconstructability results for the bitmap. (a) �/N evolution for the thresholded reconstruction on a bitmap object with 1:1 pixel correspondence of
bitmap and object plane pixels. (b) Fraction of successful, i.e. � = 0, reconstructions for 100 repetitions of a given fluence (cf. Jahn et al., 2017).



generate diffraction data as before. Then Poisson noise was

added to the intensity (amplitude), again as before. Finally, the

wave with noisy amplitude and ideal phase was propagated

back to the sample plane. The idea of this procedure was to

eliminate the role of the reconstruction algorithm used. The

ideal complex-valued data M is given as

M ¼ Xð�Þ; ð11Þ

where X is either DFr or F for NFH or CDI, respectively, and

� is the exit wave in the sample plane. Using the noising

procedure from the main text gives the noisy intensities kMk",

which are then combined with the phases to yield M̂M,

M̂M ¼ kMk"
� �1=2

exp½i argðMÞ�; ð12Þ

i.e. the noisy complex amplitudes. The M̂M are generated for

different fluences � ranging from 1 to 1000 photons per pixel

and are then used as input for the inverse propagator X�1 for

NFH and CDI. Fig. 6 shows the results of this numerical

experiment. We compare three different phantoms: (i) the cell

phantom, (ii) the bitmap phantom with one bitmap pixel

represented by 10 � 10 image pixels (oversampled informa-

tion) and (iii) one bitmap pixel represented by one image

pixel.

NFH again shows superior performance for the cell

phantom and the 1 � 1 bitmap, but not to the same degree as

before. Furthermore, CDI reaches a higher resolution at a

lower dose for the 10 � 10 bitmap. This can be understood

based on the fact that in this numerical experiment the phases

are given, and the main advantage of NFH in encoding phase

information by interference does not play a role.

In addition, we have varied the contrast of the object. The

results illustrate the same trend for both CDI and NFH: as the

phase shift of the phantom increases, fewer photons are

needed to reach maximum resolution, as expected. This is in

agreement with the findings of Villanueva-Perez et al. (2016).
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Figure 6
Results for direct back propagation. Three objects are compared: the cell,
a bitmap with each bitmap pixel represented by 10� 10 image pixels, and
a bitmap with direct 1:1 pixel correspondence. Solid lines correspond to
NFH results for a Fresnel number of 10�3 and dashed lines correspond to
CDI results. The results for each fluence � have been averaged over 30
noise realizations.
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