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This article reports a theoretical study on the reconstruction artefacts in Bragg

coherent diffractive imaging caused by dynamical diffraction effects. It is shown

that, unlike the absorption and refraction effects that can be corrected after

reconstruction, dynamical diffraction effects have profound impacts on both the

amplitude and the phase of the reconstructed complex object, causing strong

artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer

correct, as a result of the strong extinction effect. Simulations for hemispherical

particles of different sizes show the type, magnitude and extent of the dynamical

diffraction artefacts, as well as the conditions under which they are negligible.

1. Introduction

Bragg coherent diffractive imaging (BCDI) emerged recently

as a powerful tool to probe the internal deformation field of a

nanocrystal on the basis of coherently diffracted X-ray data

(Robinson et al., 2001; Pfeifer et al., 2006). It has attracted a

great deal of attention and interest owing to its unique

capability for quantitative three-dimensional strain mapping

(Clark et al., 2003; Huang et al., 2015; Ihli et al., 2016; Ulvestad

et al., 2015, 2017). In this technique, a sequence of two-

dimensional diffraction patterns are recorded at rocking

angles near a Bragg peak and then assembled into a three-

dimensional reciprocal space map of the crystal structure.

Although only intensities in reciprocal space are measured,

the unknown complex object function in real space can be

reconstructed by phase-retrieval algorithms (Fienup, 1982;

Miao et al., 1998; Williams et al., 2003). In the Bragg case, the

amplitude of the reconstructed function corresponds to the

Bragg electron density, while its phase represents the internal

displacement field. Owing to the brilliance and coherence of

the source at third-generation synchrotron facilities, and the

development of phase-retrieval algorithms, many successful

BCDI applications have been reported (Miao et al., 2003; Song

et al., 2007; Yang et al., 2013; Robinson & Harder, 2009; Ihli et

al., 2016; Ulvestad et al., 2017) and have demonstrated the

great capability of BCDI in measuring strain in three dimen-

sions at the nanoscale.

Current applications, however, are limited to nanocrystals

with sizes ranging from �100 to �700 nm. The obstacle of

going smaller is mostly the coherent flux. The diffraction signal

from smaller nanocrystals has poor signal-to-noise ratio. The

difficulty of going larger is twofold. On the one hand, satis-

fying the oversampling condition for larger crystals requires a

long detector-to-sample distance. In some cases it becomes

practically prohibitive. On the other hand, the wavefield inside

a nearly perfect large crystal undergoes a multiple-scattering
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process, a phenomenon known as the dynamical diffraction

effect. The iterative phase-retrieval algorithm used in BCDI is

based on the assumption that X-rays diffract kinematically

from a nanocrystal, in which case the assembled diffraction

patterns correspond to a reciprocal space map and can be

calculated by a three-dimensional Fourier transform of the

Bragg electron density and the displacement field of the

nanocrystal. The phase-retrieval algorithm propagates a

complex quantity back and forth between reciprocal and real

space using a Fourier transform. When dynamical diffraction

occurs, this mapping relationship can be broken. Conse-

quently, BCDI may lead to erroneous results with strong

artefacts. In the literature, dynamical diffraction induced

phase variation in the transmitted beam was investigated

before (Gorobtsov & Vartanyants, 2016), but there has not

been a thorough discussion on the reconstruction artefacts due

to dynamical diffraction effects.

In this work, we present a theoretical study on this topic,

with the aim of identifying dynamical diffraction artefacts in

the retrieved amplitude and phase. It is important to under-

stand the type, extent and magnitude of these dynamical

artefacts in the reconstruction so that they are not interpreted

as real structural variations. It is also important to explore the

range of validity of kinematical diffraction so that experi-

mental conditions can be optimized to minimize the dynamical

diffraction effect. We first discuss the formulism difference in

kinematical and dynamical diffraction. We then compare the

difference in far-field diffraction patterns calculated using

different models, and discuss the dynamical diffraction arte-

facts in BCDI by comparing the reconstruction results with

those obtained from kinematical diffraction calculation under

the same conditions. A systematic study is carried out to

investigate the dependence of dynamical artefacts on crystal

size. It is shown that a strong extinction effect can lead to an

incorrect crystal shape in the reconstructed amplitude, and the

retrieved phase can exhibit a complex pattern that is not

related to the true displacement field. We show that dynamical

diffraction artefacts are negligible for a crystal size below the

extinction depth, but when its size approaches the Pendellö-

sung distance, even the shape cannot be reconstructed

correctly. As a result, energy and reflection indices that ensure

this criterion is satisfied should be chosen to minimize these

undesirable artefacts in a real BCDI experiment.

2. Kinematical and dynamical diffraction formulism

Kinematical diffraction theory is an approximation to the

more rigorous dynamical diffraction theory and is valid for a

small or ideally imperfect crystal where the diffracted wave is

very weak. In such cases, we can only consider the interactions

between the primary incident wave and the atoms, and neglect

all high-order effects (Born approximation). If we further

ignore photoelectric absorption and the small difference from

unity of the refractive index in a medium that causes a phase

change, the recorded diffraction patterns on a far-field two-

dimensional detector at a set of crystal rocking angles can be

expressed for an incident plane wave as (Warren, 1990;

Vartanyants & Robinson, 2001)

Ið�qÞ ¼ A
R R R

OðrÞ expð�i�q � rÞ d3r
�� ��2;

OðrÞ ¼
exp½�ih � uðrÞ�; r ¼ V;

0; r 6¼ V;

�

A ¼ Fh=v; �q ¼ kðXþ YÞ=Lþ h�ĥh; k ¼ 2�=�;

ð1Þ

where Fh is the structure factor representing scattering from a

unit cell, v is the volume of the unit cell, V is the volume of the

crystal, L is the distance from the sample to detector, X and Y

are position vectors in the detector plane, � is the angular

deviation from the exact Bragg angle, ĥh is an angular unit

vector in the rotation plane, � is the wavelength in vacuum, h

is the unstrained reciprocal lattice vector, and u is the

displacement vector. Their relationships are displayed in Fig. 1.

Here we assume the structure factor is a constant across the

crystal so that it is taken out of the integral. As a matter of

fact, the right-hand side of equation (1) is the square modulus

of a three-dimensional Fourier transform. Given that the

oversampling condition is satisfied, it has been shown that the

complex object function, O, can be reconstructed from the

square modulus of its Fourier transform using iterative phase-

retrieval algorithms (Fienup, 1982; Miao et al., 1998; Elser,

2003; Williams et al., 2003; Marchesini, 2007). From its phase,

we can obtain the strain information. As can been seen, three-

dimensional Fourier transformation is the mathematical basis

of BCDI.
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Figure 1
A schematic drawing of the diffraction geometry. X-rays are diffracted by
a crystal and then captured by a pixel-array detector placed perpendi-
cular to the diffracted beam. The recorded diffraction pattern
corresponds to a slice in the reciprocal space near the reciprocal lattice
vector, h, of the excited reflection. At each rocking angle, this slice is
shifted along the swing direction of the reciprocal lattice vector, ĥh. An
assembly of far-field diffraction patterns at different angles forms a data
set describing the intensity distribution in the reciprocal space in three
dimensions.



In the case of dynamical diffraction, however, the diffracted

wave is too strong to be negligible. Consequently, the multi-

wave scattering effect, which takes into account interactions

between the diffracted wave and the atoms, needs to be

considered as well. X-ray dynamical diffraction theory has

been developed for a long time and there are many mono-

graphs (Pinsker, 1978; Authier, 2001). A dynamical diffraction

calculation from crystallites with an arbitrary shape, however,

remains a challenging problem because of the mixture of

boundary conditions in Bragg and Laue geometry. In a recent

publication, Yan & Li (2014) developed a modelling approach

based on the integral representation of the Takagi–Taupin

equations (Takagi, 1962; Taupin, 1964) that unifies both

boundary conditions. It allows a rigorous dynamical diffrac-

tion calculation from a crystallite with arbitrary shape. The

iterative solving process represents the transition from kine-

matical to dynamical diffraction, which is a great advantage

compared to other methods. Throughout this work, we use this

approach to calculate both kinematical and dynamical

diffraction patterns. In their paper, Yan and Li derived an

analytical expression of the far-field diffraction pattern:

Ið�qÞ ¼ A
R R

V

R
Oð�; rÞ expð�i�q � rÞ d3r

����
����

2

;

Oð�; rÞ ¼

D0ð�; rÞ expf�ih � uðrÞ þ ikðn� 1Þ

�½s�
h ðrÞ � s0hðrÞ�g; r 2 V;

0; r =2 V;

8><
>:

n ¼ 1þ�n; �n ¼ ��þ i�:

ð2Þ

Both � and � are very small quantities. The former results in a

phase change and the latter determines the absorption. D0 is

the envelope function of the transmitted wave, n is the

complex refractive index of the crystal and s�
h ðrÞ � s0hðrÞ is the

path difference along the diffracted beam direction, which

accounts for the refraction and photoelectric absorption

effects of the diffracted beam associated with the refractive

index deviation from unity. Note that similar effects of the

transmitted beam are included in the envelope function of the

transmitted wave, D0, though it is not expressed explicitly

(Yan & Li, 2014). Compared to the expression in equation (1),

the object function now includes two more terms. If the

transmitted wave is independent of the rocking angle of the

crystal, equation (2) indicates that a Fourier transform

assumption is still valid, with the consideration of refraction

and photoelectric absorption along the transmitted and

diffracted path inside the crystal. The difference, as compared

to equation (1), is that a correction accounting for the non-

unity of refractive index is needed to retrieve the correct

displacement function, u. When dynamical diffraction occurs,

however, D0 is also a strong function of the rocking angle. In

other words, it depends on �q. As a result, it is not a Fourier

transform and the wavefield in the detector plane does not

represent a slice cut on the Ewald sphere of the crystal.

We emphasize that the propagation of the diffracted wave

from the crystal to the detector is always governed by a two-

dimensional Fourier transform as long as the Fraunhoffer

diffraction condition is satisfied, and it is independent of the

diffraction mode in the crystal. One should not confuse it with

equation (2), which accounts for both Bragg diffraction inside

the crystal and wave propagation to the detector. Under the

kinematical diffraction condition, equation (2) states that the

assembled far-field diffraction patterns near the Bragg angle

can be interpreted as a three-dimensional Fourier transform of

the crystal function, with its amplitude representing the

absorption effect and its phase reflecting the change of the

refractive index and the displacement field in the crystal.

When dynamical diffraction occurs, this relationship is broken.

3. Difference in far-field diffraction patterns

We first studied the difference in far-field diffraction patterns

calculated using two models. We considered a hemispherical

Au particle with a radius of 500 nm. Au 002 Bragg diffraction

was selected. We assumed that a two-dimensional detector

placed perpendicular to the diffracted beam intercepts the

beam and records the diffraction pattern at a distance of 1 m.

The detector has 128 � 128 pixels and a pixel size of 55 mm.

The incident beam was considered as a plane wave at 7.5 keV.

At the exact Bragg angle (� = 0), far-field diffraction patterns

were calculated using a kinematical diffraction model (K-M,

�n = 0), a kinematical diffraction model with the considera-

tion of absorption and refraction effects (K-M, �n 6¼ 0), and a
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Figure 2
Far-field diffraction patterns in logarithmic scale for an Au hemispherical
crystal (500 nm radius) at the Bragg angle, calculated using the
kinematical diffraction model without (a) and with (b) the consideration
of absorption/refraction effects, and the dynamical diffraction model (c).
The energy is 7.5 keV and the reflection index is 002. (d) shows line
intensity variations across the centre of these images (white dashed lines)
in logarithmic scale.



dynamical diffraction model (D-M). For simplicity, the particle

was assumed to be a perfect single crystal with no strain, i.e. u =

0. Figs. 2(a)–2(c) show the results. In reciprocal space, the

images correspond to a slice of the diffraction intensity

distribution at a tilted angle with respect to the reciprocal

lattice vector, h, as shown in Fig. 1. One can see that these

images all exhibit similar interference fringes associated with

the shape of the particle. The latter two images are almost

identical, and their diffraction patterns extend further into the

high-q region. To quantify the difference, line profiles of the

intensity along the vertical direction (as marked by the white

dashed line) are depicted in Fig. 2(d). In logarithmic scale, an

appreciable difference can be observed. We notice that the

latter two models yield a diffraction peak shifted toward a

higher angle. Recall that the refractive index of the crystal is

slightly smaller than unity. As a result, the wavelength is larger

in the crystal than in vacuum, and so is the Bragg angle. The

non-unity refractive index also causes a slight change of the

interference pattern. With the consideration of the refraction

effect, the kinematical and dynamical models differ mostly in

the relative intensities of the side lobes. In addition, the

dynamical model has less visibility of the fringes. The question

arises here as to how these subtle differences in the diffraction

pattern will impact the reconstruction of the particle shape

and strain field when using the phase-retrieval algorithm, and

whether a correction can be applied afterwards.

4. Absorption/refraction effect versus dynamical
diffraction effect

For the same 500 nm radius Au hemisphere, we computed

diffraction patterns at 128 angles with an angular step size of

0.0039� using the models mentioned in the preceding section.

The angular step size was determined by matching the reso-

lution in detector coordinates (Williams et al., 2003). The

oversampling ratio was estimated from the ratio of the size of

the entire array (128 � 128 � 128) to the size of the support

obtained from the shrink-wrap method in BCDI reconstruc-

tion. This sets an oversampling ratio of about 105 and is

sufficient for a phase-retrieval reconstruction (Miao et al.,

1998; Marchesini, 2007). We then reconstructed the complex

object function from the 128 � 128 � 128 diffraction data set.

A shrink-wrap procedure was used to constrain the support

gradually (Marchesini et al., 2003). To rule out any numerical

errors originating from the phase-retrieval algorithm itself, we

used the same procedures and reconstruction parameters in all
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Figure 3
(a) Au hemispherical crystal (500 nm radius) reconstructed in three dimensions using the kinematical model and viewed along the axis perpendicular to
the diffraction plane (defined by the incident and diffracted directions). The Au 002 reflection at 7.5 keV is assumed. (b) Optical path difference along
the incident and diffracted beam directions inside the crystal, which determines the attenuation and the amount of phase shift the X-ray wave
experiences as a result of a non-unity complex refractive index. (c) and (d) are the cross-sectional views of the reconstructed amplitude and phase in the
central diffraction plane obtained from the K-M (�n = 0) data set, respectively. (e) and ( f ) are the reconstructed amplitude and phase in the same plane
obtained from the K-M (�n 6¼ 0) data set, and (g) and (h) are the corresponding images after absorption/refraction correction. (i) and ( j) are the
reconstructed amplitude and phase obtained from the D-M data set, and (k) and (l) are the corresponding images after absorption/refraction correction.



cases. A combination of hybrid-input-output and error-

reduction algorithms were applied (Gerchberg & Saxton,

1972; Fienup, 1982; Pfeifer et al., 2006), and the shrink-wrap

procedure was triggered twice and applied to the support as a

constraint with an interval of ten fixed-support iterations

(Clark et al., 2003; Ihli et al., 2016).

Fig. 3(a) shows the reconstructed three-dimensional object

for the K-M (�n = 0) data set; the incident beam is along the ŝs0

direction and the exit beam is along the ŝsh direction. For this

study, we focused on the central diffraction plane which cuts

through the centre of the hemisphere in Fig. 3(a). In the

following discussion, we will only show the reconstructed

results in this diffraction plane. The optical path of the beam at

each position in the crystal was calculated and is shown in

Fig. 3(b), including contributions from both incident and

diffracted beams. For a radius of 500 nm and a Bragg angle of

23.9�, the optical path varies from zero at the top of the

hemisphere to 1 mm at the bottom surface. Fig. 3(c) and 3(d)

are the reconstructed amplitude and phase in the central

diffraction plane. One can see nearly constant amplitude and

phase with an r.m.s. error of 0.03 and 0.02, respectively. These

small fluctuations are numerical errors originating from the

adopted reconstruction algorithm at the given oversampling

ratio and are considered to be intrinsic. Any larger variations

are artefacts due to other factors.

As we discussed before, the non-unity refractive index will

result in a complex function that can be calculated from the

optical path difference inside the crystal. The optical path

shown in Fig. 3(b) corresponds to a phase change as large as

�2 radians and needs to be corrected. The reconstruction

amplitude and phase obtained from the K-M (�n 6¼ 0) data set

are plotted in Figs. 3(e) and 3( f), and absorption/refraction-

corrected images are shown in Figs. 3(g) and 3(h). The

correction works as expected and completely removes arte-

facts induced by refraction and absorption effects. The r.m.s.

errors of the corrected amplitude and phase were 0.03 and

0.03, respectively. The corrected images of Figs. 3(g) and 3(h)

barely show any difference from Figs. 3(c) and 3(d). This is not

a surprising result since equation (2) can still be considered as

a three-dimensional Fourier transform even with the absorp-

tion and refraction taken into account. We point out that the

refraction effect causes a shift of the peak position (Fig. 2d),

which resulted in a linear phase ramp in the reconstruction (a

property of Fourier transform). In our case we do not remove

this phase ramp at the end of the reconstruction since it

corresponds to the refraction effect.

The D-M data set leads to very different results. Figs. 3(i)

and 3( j) are the reconstructed amplitude and phase, and

Figs. 3(k) and 3(l) are the images with absorption/refraction

correction. First, we observe that the convergence of the

reconstruction is slower and the residual error is larger when

using the D-M data set. This indicates an inconsistency of the

dynamical diffraction model with the phase-retrieval algo-

rithm, even though the data are perfect and all parameters

used in the reconstruction are the same. Bear in mind that only

under a kinematical diffraction condition does the far-field

diffraction image correspond to a slice on the Ewald sphere of

the crystal. Second, we observe that absorption and refraction

corrections cannot remove all the observed variations. The

object after correction shows a core–shell-like structure. The

core has a weaker amplitude. The phase varies significantly

from the shell to the core. The reconstructed amplitude and

phase are not as smooth as those in the first two cases, with

r.m.s. fluctuations of 0.12 and 0.06. Right under the bottom

surface, we start to see a small phantom crystal that should not

exist. As we can see from this comparison, the subtle changes

of the diffraction pattern from the kinematical to dynamical

models depicted in Fig. 2(d) can have a profound impact on

the reconstruction. From equation (2) we see the root cause is

that the envelope function of the transmitted wave is a func-

tion of the rocking angle; therefore the assembly of the

diffracted waves arriving at the detector plane can no longer

be formulated into a three-dimensional Fourier transform of

the crystal. Even if the phase of the diffracted wave is known,

a direct inverse three-dimensional Fourier transform will not

correctly recover the object function, O. A recent paper

showed similar artefacts when an inverse Fourier transform

was directly applied to the simulated complex wavefield in the

detector plane (Shabalin et al., 2017). For a better under-

standing of this issue, in Figs. 4(a) and 4(b) we plot the

transmitted wave intensity distribution inside the crystal at

two angles. One angle is far away from the Bragg angle so it

mostly suffers from photoelectric absorption, and the other is

at the Bragg angle so extinction is strongly excited. The

transmitted intensity decreases much faster in the latter case,

and therefore a correction based on a constant refraction

index fails.

5. Size dependence of dynamical diffraction effects

Currently there is no good way to remove dynamical diffrac-

tion artefacts in the BCDI reconstruction without the devel-

opment of an advanced phase-retrieval algorithm involving a

dynamical diffraction calculation. Therefore, it is important to

know the conditions under which the artefacts are negligible.

As we discussed in the preceding section, whether or not a
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Figure 4
Transmitted wave intensity variations inside the Au hemispherical crystal
(500 nm radius) at the Bragg angle (a) and �0.1� away (b). Intensity is in
logarithmic scale. The attenuation coefficient in the former case is five
times that in the latter because of the extinction effect.



kinematical approximation is valid boils down to the depen-

dence of the envelope function of the transmitted wave, D0, on

the rocking angle. If it is nearly unchanged at different angles,

one would expect very minimal dynamical diffraction effects.

To ensure this condition, the size of the particle has to be

smaller than the extinction depth defined as

�e ¼
�0

2�
; �0 ¼

� sin �B

j	h	 �hhj
1=2
; ð3Þ

where 	h, 	 �hh are the Fourier components of the dielectric

susceptibility and �0 is called the Pendellösung distance in

Laue geometry (or extinction distance in Bragg geometry)

(Authier, 2001). For a particle reaching the size of �0 and

beyond, we are at the dynamical diffraction limit. For simpli-

city, in equation (3) a symmetric reflection case is assumed.

For the Au 002 reflection at 7.5 keV, the extinction depth, �e, is

126 nm, and the Pendellösung distance, �0, is 792 nm. We

expect that the dynamical diffraction artefacts will diminish as

the size decreases and eventually vanish. To illustrate this

tendency, in Figs. 5(a)–5(c) we show reconstruction results for

hemispheres with radii of 750, 300 and 100 nm, respectively. A

recent study reveals that, within a kinematic diffraction

regime, the image reconstruction quality is subject to

measurement parameters, such as oversampling conditions

and detection dynamic range (Öztürk et al., 2017). To ensure a

fair comparison, we scaled the detector-to-sample distance

and the rocking angle so that the oversampling ratio was the

same. At a radius of 750 nm where dynamical diffraction is

dominant (Fig. 5a), even the reconstructed shape is incorrect.

It shows a thin shell and a phantom crystal at the bottom, with

a gap in between. The phase variation is over �/2. At a radius

of 300 nm (Fig. 5b), reconstruction artefacts were visible, but

may be still manageable. At a radius of 100 nm, which is below

the extinction depth (Fig. 5c), a nearly perfect reconstruction

was obtained. Fig. 5(d) shows the r.m.s. variations of the

amplitude and phase as a function of size. From the plot we

infer for a particle with size below the extinction depth that

the reconstruction is as good as that in the kinematical

diffraction case. When the size approaches the Pendellösung

distance, dynamical diffraction artefacts are dominant in the

reconstruction and even the shape cannot be reconstructed

correctly.

6. Dynamical diffraction from a strained nanoparticle

Another factor that affects the diffraction mode is the strain

variation, which weakens dynamical diffraction effects (Yan et

al., 2007). Since all nanoparticles measured in a real experi-

ment are imperfect and undergo some sort of deformation, it

is important to understand how strongly dynamical diffraction

will affect the reconstruction of a strained particle. In this

section we perform a simulation on a hemisphere-shaped Au

particle with a radius of 500 nm and a displacement field

function along the reciprocal lattice vector direction only,

h � u ¼ �jhj 8:0� 10�4z02 (see Fig. 3a). This corresponds to a

linear strain with a maximum value of 8 � 10�4 and a total

phase variation of 2�. We chose the Au 002 reflection and an

energy of 7.5 keV so that we could compare it with the case

shown in Fig. 3. In Fig. 6 we depict reconstruction results based

on data simulated using either the kinematical or the dyna-

mical model. For clarity, absorption and refraction effects

were removed from these images. Cross-sectional views of the

amplitude and the phase of the reconstructed object function

are depicted in Figs. 6(a) and 6(b) for the K-M data set and in

Figs. 6(c) and 6(d) for the D-M data set. To make a quanti-

tative comparison, a line was drawn across the particle, as

shown in Figs. 6(a)–6(d), to plot profiles of the amplitude in

Fig. 6(e) and the phase in Fig. 6( f). As evident from the plot,

the K-M data set yields a fairly constant amplitude profile and

a phase profile in good agreement with the input function.

Some small deviations are observed. These are numerical

errors due to the reconstruction algorithm itself. The recon-

struction based on the D-M data set, however, produces a less

uniform amplitude profile and a phase profile considerably

different from the input phase function, particularly at the

bottom of the particle. This observation suggests – for a large

crystal with a constant structure factor – that if the recon-

structed amplitude shows more fluctuation at the bottom this

is a sign of dynamical diffraction artefacts.

In comparison to Figs. 3(k) and 3(l) where the crystal is

perfect, we see much less pronounced dynamical diffraction

artefacts in Figs. 6(c) and 6(d) in the presence of a strain

variation, as expected. When the strain gradient increases
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Figure 5
Reconstructed complex object function in the central diffraction plane of
particles with radii of 750 nm (a), 300 nm (b) and 100 nm (c). The
brightness and colour of the image represent the amplitude and phase of
the complex function [see the inset image in (d)]. All the results have
been corrected for the absorption and refraction effects. (d) shows the
r.m.s. fluctuations of the reconstructed amplitude and phase in the central
diffraction plane as a function of the size. The size zero refers to the
kinematical diffraction limit.



further, we would expect a complete transition to the kine-

matical diffraction, but this discussion is out of the scope of

this paper.

7. Conclusion

In summary, we have performed a thorough theoretical

investigation of reconstruction artefacts resulting from dyna-

mical diffraction effects in Bragg coherent diffractive imaging.

We showed that the kinematical diffraction model, the

mathematical foundation of BCDI which can be formulated

into a three-dimensional Fourier transform, is no longer valid

for a large crystal, and the rigorous dynamical diffraction

model has to be employed. The inconsistency between the

forward dynamical diffraction formulism and the inverse

BCDI reconstruction can lead to strong artefacts, which do not

correspond to real structural variations inside the crystal. To

illustrate this phenomenon, BCDI reconstructions were

performed for Au hemispherical particles of various sizes.

These reconstructions were based on synthetic diffraction data

calculated using both kinematical and dynamical diffraction

models. Even though these two models yield far-field diffrac-

tion patterns with subtle changes on the interference fringes,

strong reconstruction artefacts arise in the latter case. In the

case of dynamical diffraction, we showed that the root cause

was the strong dependence of the transmitted wave on the

rocking angle. An investigation of the size dependence of the

dynamical artefacts in the reconstruction was carried out and

showed that extinction depth and Pendellösung distance can

serve as good criteria for predicting artefacts. Dynamical

diffraction effects are negligible for particles with sizes below

the extinction depth, while they can be dominant for particles

with sizes approaching the Pendellösung distance. We also

studied the dynamical diffraction effects from a hemispherical

particle with a linear strain field, and we showed that dyna-

mical diffraction artefacts were present, even though they

were less pronounced than the effects observed in the

unstrained case. From this study, we conclude that more

caution should be exercised in the interpretation of BCDI

reconstruction results for a nearly perfect crystal with a size

larger than the extinction depth, and an appropriate combi-

nation of energy and reflection indices should be chosen to

minimize dynamical artefacts in a real experiment whenever it

is possible.
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Figure 6
Reconstruction results for an Au hemisphere (500 nm radius) with a
linear strain field. The Au 002 reflection at 7.5 keV is assumed. (a) and (b)
are the cross-sectional views of the amplitude and phase obtained from
the K-M data set, and (c) and (d) are from the D-M data set. Absorption
and refraction corrections have been applied. (e) shows amplitude
variations along the white dashed line in (a) and (c), compared with the
input amplitude function (black). ( f ) shows phase variations along the
white dashed line in (b) and (d), compared with the input phase function
(black).
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Yan, H., Kalenci, Ö. & Noyan, I. C. (2007). J. Appl. Cryst. 40, 322–

331.
Yan, H. & Li, L. (2014). Phys. Rev. B, 76, 115425.
Yang, W., Huang, X., Harder, R., Clark, J., Robinson, I. & Mao, H.

(2013). Nat. Commun. 4, 1680.

research papers

174 Hu, Huang and Yan � Dynamic diffraction artefacts in BCDI J. Appl. Cryst. (2018). 51, 167–174

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5023&bbid=BB29

