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Separation of size and strain effects on diffraction line profiles has been studied

in a round robin involving laboratory instruments and synchrotron radiation

beamlines operating with different radiation, optics, detectors and experimental

configurations. The studied sample, an extensively ball milled iron alloy powder,

provides an ideal test case, as domain size broadening and strain broadening are

of comparable size. The high energy available at some synchrotron radiation

beamlines provides the best conditions for an accurate analysis of the line

profiles, as the size–strain separation clearly benefits from a large number of

Bragg peaks in the pattern; high counts, reliable intensity values in low-

absorption conditions, smooth background and data collection at different

temperatures also support the possibility to include diffuse scattering in the

analysis, for the most reliable assessment of the line broadening effect. However,

results of the round robin show that good quality information on domain size

distribution and microstrain can also be obtained using standard laboratory

equipment, even when patterns include relatively few Bragg peaks, provided

that the data are of good quality in terms of high counts and low and smooth

background.

1. Introduction

X-ray diffraction (XRD) line profile analysis (LPA) is

frequently used to gain insight into the microstructure of

crystalline materials, often complementing evidence provided

by electron microscopy. The most commonly sought infor-

mation concerns the size of the crystalline domains, related to

the inverse of the peak width by the well known Scherrer

equation (Scherrer, 1918). A large variety of LPA methods

have been proposed, to account for the instrumental contri-

bution to the line profile and for specific features of the

microstructure, like line defects, faulting or anti-phase

boundaries, to mention just a few. Even though LPA methods

are still the object of active research, well established proce-

dures can be found in several textbooks (Klug & Alexander,

1974; Warren, 1990; Guinebretière, 2007), technical mono-

graphs and special issues (Snyder et al., 1999; Mittemeijer &

Scardi, 2004; Dinnebier & Billinge, 2008; Scardi & Dinnebier,

2010; Mittemeijer & Welzel, 2013).

In spite of the popularity of LPA, few studies have focused

on the reliability of the results, and still no specific reference

material is available to test measurement procedures and
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LPA, unless peak broadening is solely due to the finite size of

the crystalline domains. In a round robin organized about 15

years ago on nanocrystalline ceria (Balzar et al., 2004), XRD

peak broadening was found to be mostly related to the small

size of the crystalline domains, with just minor contributions

from the instrument and from a microstrain of unspecific

origin. Similarly, after extensive research work (Armstrong et

al., 2005; Cline et al., 2013), NIST recently released a new

Standard Reference Material, SRM 1979 (zinc oxide), which is

intended as a standard for crystallite size analysis, with just

minor contributions from faulting and apparently no strain

effects (Cline et al., 2016).

Size-induced peak broadening is well known, both in terms

of theory (see e.g. Stokes & Wilson, 1942; Bertaut, 1950;

Wilson, 1962; Langford & Wilson, 1978; Scardi & Leoni, 2001)

and experimentally, but most often peak broadening has

several sources. A common case concerns the effects of atomic

displacements, as invariably found in plastically deformed

materials with the presence of line defects (Wilson, 1952, 1955;

Krivoglaz & Ryaboshapka, 1963; Wilkens, 1970a,b), but also

and more generally in polycrystalline aggregates, with the

presence of grain boundaries (Rebuffi et al., 2016), and in

nanocrystalline powders, with the presence of surface relaxa-

tion (Scardi et al., 2015). In these common cases the primary

task of LPA is to separate the effects of finite domain size,

including the size dispersion invariably present in real samples,

from the broadening caused by atomic displacement (also

known as microstrain broadening).

It is, therefore, of interest (i) to compare data collection

strategies for specimens with domain size and microstrain

effects, (ii) to assess the reliability of results and the effec-

tiveness of procedures to separate instrumental contribution,

size and microstrain effects, and (iii) to identify potential

candidate materials for new standards for LPA. The present

work is mostly focused on (i), to assess the real possibility of

separating size and strain effects and how the result is influ-

enced by the quality and quantity of information available

from experiments performed with different optics and X-ray

wavelengths, using both commercially available equipment

and synchrotron radiation (SR) XRD instruments. To this end

we studied a ball milled metal powder which we consider as a

nearly ideal specimen, as it is stable, is available in large

amounts from the same production batch, and shows

comparable broadening effects of finite domain size and strain

caused by plastic deformation. The Fe–1.5 wt% Mo powder

used in this work also has the advantage of having been

characterized extensively in earlier work (Rebuffi et al., 2016;

Scardi et al., 2017), which makes clear which effects contribute

to the line broadening. There is no intention in this study to

propose the ‘best’ method to perform a separation of size and

strain effects, but a well documented state-of-the-art proce-

dure is used with the purpose of showing differences between

the different experimental setups and data quality, and to

demonstrate, in general, the possibility of separating size and

strain contributions. All experimental data, collected by

several laboratories participating in this project, are made

available to the community of XRD users, for future reference

and to test methods and procedures. This work might also seed

the development of new SRMs for the separation of size and

strain contributions to line broadening.

2. Experimental

2.1. Ball milled iron alloy sample

The studied sample is a commercial powder of iron alloyed

with 1.5 wt% Mo (Astaloy Mo, Höganäs) extensively ground

(64 h) in a planetary ball mill (Fritsch P4). The pristine powder

is composed of the ferritic phase [body centred cubic �-iron,

space group Im3m (229), unit-cell parameter 2.870 Å]. Details

of the preparation, chemical analysis, electron microscopy and

LPA can be found in the cited literature (Rebuffi et al., 2016;

Scardi et al., 2017).

Powder samples from the same batch [batch 4a; see Rebuffi

(2015) for details] were distributed to each participating

laboratory and measured under the different experimental

conditions provided by the specific instrumentation (see x2.2).

All samples are therefore equivalent, as shown in previous

work (Rebuffi et al., 2016), which also confirmed that the

sample is stable over time, for more than ten years (Troian et

al., 2015).

2.2. Diffraction measurements: instruments and setups

This study concerns how data quantity and quality influence

results in terms of accuracy and reliability. Thus we collected

‘top quality/quantity’ data exploiting SR beamline instruments

operated with high (�15 keV) energy, but also a number of

patterns from traditional laboratory instruments, including

some data sets of apparently ‘poor’ statistical quality (e.g.

collected in a short time) and/or encompassing few Bragg

peaks. This was done intentionally, to highlight the diversity of

the data sets that are regularly collected in measurement

laboratories, and also to show how data quantity/quality

influence the results, for example the different numbers of

peaks in measured patterns, counting statistics, instrumental
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Figure 1
Synoptic view of all data collected for this study. All patterns were
collected at room temperature [with the exception of 11bm, where data
(not shown here) are also available at 100 and 200 K]. To allow for a
direct comparison, all patterns are shown as intensity in arbitrary units
versus q, and are scaled upward according to the extension in q space.



resolution, the intrinsic quality of the peak profile modelling,

radiation energy etc.

The instruments and experimental conditions used in this

study are listed in Table 1, with the corresponding diffraction

patterns shown in Fig. 1. For an easier visual comparison,

intensities are reported as a function of q = 4�sin� /� (where �
is half the scattering angle and � is the wavelength of the

incident radiation) and appropriately rescaled.

3. Results and discussion

3.1. XRD pattern modelling procedure

3.1.1. Instrumental profile. The instrumental profile (IP)

was experimentally evaluated from the powder pattern of

standard materials (see Table 1), with a whole pattern fitting

procedure. The diffraction peak profiles of each spectral

component (e.g. K�1 and K�2) were empirically modelled by

pseudo-Voigt functions, defined as

pV 2�ð Þ ¼
1� �ð Þ

��
� ln 2ð Þ

1=2exp � ln 2
2� � 2�B

�

� �2
" #

þ
�

��

1

1þ 2� � 2�Bð Þ=�
� �2 ; ð1Þ

where the adjustable parameters are the Lorentzian fraction �,

the peak position 2�B, the full width at half-maximum

(FWHM = 2�) and a global scaling factor, not shown in

equation (1). When data sets provide an abscissa different

from 2�, e.g. s = 2sin� /� or q = 2�s, equation (1) is modified

accordingly. A Chebyshev polynomial was used to account for

the background in the powder patterns.

The IP was parameterized according to the Caglioti formula

(Caglioti et al., 1958) for FWHM, while � follows a polynomial

in �:

FWHM2 ¼ 2�ð Þ2 ¼ W þ V tan � þ U tan2 �; ð2Þ

� ¼ aþ b�=� þ c �=�ð Þ2: ð3Þ

The parameters of equations (2) (U, V, W) and (3) (a, b, c)

were refined for each instrumental setup so that afterwards the

IP was known at any desired diffraction angle. Aberrations on

peak position, as shown by Wilson (1963), can be modelled as

a primary effect on peak centroid, which is shifted by

� 2�ð Þ ¼ a�1 tan�1 � þ a0 þ a1 tan � þ a3 tan3 � ð4Þ

with coefficients a�1, a0, a1, a3 also refined from the experi-

mental pattern of the standard. A second-order coefficient

(a2) might also be added, although theory (Wilson, 1963) does

not predict its existence for powder diffractometers.

As an example of two typical configurations of this study, a

laboratory instrument and a synchrotron radiation beamline,

Fig. 2 shows experimental and modelled powder patterns of

LaB6, NIST SRM660b [laboratory (a) and SR (b)], and

corresponding results of the parameterizations are given in

Fig. 3: IP, equations (2) and (3), and peak position aberrations,

equation (4). Analogous results for all instruments in this

study are reported in the supporting information.
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Table 1
List of instruments used in this study and essential information on measurement conditions.

Details are reported in the supporting information. Energy; measurement geometry, optics and detector (scint. for scintillator; mon. for monochromator); line
profile standard (NIST Standard Reference Materials; Cline et al., 2000, 2010); number of peaks; sampling step; total counting time in the measurement.

Name Energy (keV) Geometry and detector Line profile standard Number of peaks Step (�) Total counting time (s) Time per step (s)

Synchrotron radiation sources
43ID22 31 Debye–Scherrer SRM660b 43 0.01 4200 0.667

9 scint./(111)Si mon.
28bm11 30 Debye–Scherrer SRM660b 28 0.005 2760 0.3

12 scint./(111)Si mon.
13BL01C2 24 Imaging plate SRM660a 13 0.0196 360
4BL01C2 18 Imaging plate CeO2 4 0.0168 30
19MCX 15 Debye–Scherrer SRM660a 19 0.05 61230 30

1 scint./(111)Si mon.
Laboratory sources
17MoK�1 17 Transmission/capillary SRM660a 17 0.0114 50407 7 � 192

PSD (192 channels)
6MCuK� 8 �/2�-Goebel mirror SRM660a 5–6 0.0307 39100 10 � 192

PSD (192 channels)
6CuK� 8 Bragg–Brentano SRM660 6 0.1 70920 60

1 scint./graphite mon.
4CuK� 8 �/� SRM660 4 0.03 14634 6

1 scint./graphite mon.
5CuK� 8 Bragg–Brentano SRM660b 5 0.0755 9540 6 � 192

PSD (192 channels)
4CoK�1 7 Bragg–Brentano SRM660b 4 0.0105 231624 18 � 192

PSD (192 channels)
8WB† 0.1–26.2 Energy dispersive SRM660a 8 ‡ 2800 400

Si-drift detector

‡ Different sampling steps for the data collected at seven angular positions of the Si drift detector: see supporting information for details. † For details see Mendoza Cuevas et al.
(2015).



The results of the parameterization of equations (2) and (3)

can readily be used to compute the Fourier transform (FT) of

the IP component, to be used in the modelling of the studied

sample in a convolution with the other effects contributing to

the line profile (see below). To this purpose it is convenient to

introduce

k ¼ 1

�
1þ

1� �

�ð� ln 2Þ1=2

� �
ð5Þ

such that the FT of the pV peak function representing the IP

can be written as

TIP
ðLÞ ¼ AðLÞ ¼ 1� kð Þ exp �

�2�2L2

ln 2

� �
þ k exp �2��Lð Þ:

ð6Þ

Here, L is the Fourier variable, with dimension of length. The

FT has only a real component because, to a reasonable

approximation, the IP peaks in this study are symmetrical in

the 2� range of interest. Better and more sophisticated

descriptions of the IP are of course possible, for example by

the fundamental parameter approach (Cheary & Coelho,

1992). This may be necessary if the IP accounts for a significant

part of the total experimental profile; in the present case, the

most relevant line broadening effect is caused by the micro-

structure, so that details of the IP are of lesser importance.

3.1.2. Whole powder pattern modelling. Once the para-

metric expressions for FWHM and � are known, the FT of

equation (6) can be used to convolve the IP with profile

components arising from the microstructure of the ball milled

powder. As shown by previous studies on this powder (Rebuffi

et al., 2016; Scardi et al., 2017), major contributions to the line
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Figure 3
(a) Parameterization of IP (FWHM and �) from the data in Fig. 2(a).
Refined coefficients for the 6CuK� laboratory instrument (Fig. 2a) are
W = 5.906369 � 10�3, V = �2.502974 � 10�3, U = 3.712228 � 10�3, a =
3.107787 � 10�1, b = 6.175673 � 10�3, c = 0. The lower line is the tan�
polynomial correcting aberrations on peak position [equation (4)]
(Wilson, 1963), with refined parameters a�1 = �5.978103 � 10�4, a0 =
1.437456 � 10�2, a1 = �9.797414 � 10�3, a2 = 0, a3 = 2.635631 � 10�4. (b)
The same analysis is made for the pattern in Fig. 2(b), 43ID22 with
31 keV radiation, showing a much narrower IP than in (a), and nearly
negligible peak position correction; the inset shows data with a �10
expansion of left ordinate axis. For most instruments � varies linearly with
�, as in the cases in this figure, or is even constant as for SR data. See
supporting information for results for all instruments in this study.

Figure 2
Whole pattern fitting of LaB6 standard data, using pV profile functions.
(a) Cu K�1,2 data (6CuK�) with indication of residual (above, difference
between experimental and fitting profile) and Miller indices. (b) 43ID22
with 31 keV radiation: and modelling using pV profile functions for 119
peaks of LaB6 (NIST SRM660b). Note the linear scale in (a) versus the
logarithmic scale in (b). See supporting information for results for all
instruments in this study.



profile are given by the finite domain size and by the

inhomogeneous strain, a frequent condition for ball milled

materials. Following a whole powder pattern modelling

(WPPM) approach (Scardi, 2008) based on the Fourier

theorem for convolutions, peak profiles can be modelled as

IhklðSÞ /
R

TIPðLÞASðLÞADðLÞ expð2�iLSÞ dL; ð7Þ

where S ¼ s� sBragg, while the proportionality symbol

includes known constants and trigonometric functions, as well

as structural information (square modulus of the structure

factor) and the thermal (Debye–Waller) factor (Warren,

1990).

The line profile components of the microstructure can be

conveniently modelled by considering the following:

(i) A size broadening effect, ASðLÞ, from spherical domains

with a lognormal distribution of diameters, gðDÞ (Scardi,

2008),

gðDÞ ¼ exp � ln D� �ð Þ
2
	

2�2
� �	

D�ð2�Þ1=2
� �

; ð8Þ

ASðLÞ ¼
X3

n¼0

Hnerfc
ln Lj j � �� 3� nð Þ�2

21=2�

� �

� exp �
n

2
2�þ 6� nð Þ�2
� �n o

Lj jn; ð9Þ

where � and �2 are, respectively, the lognormal mean and

variance, and Hn are numerical coefficients for the domain

shape (for spherical domains, H0 = 1
2, H1 = �3

4, H2 = 0, H3 = 1
4);

the distribution mean is hDi = exp(� + 1
2�

2), the standard

deviation is s.d. = {[exp(�2)� 1]exp(2� + �2)}1/2. Transmission

electron microscopy (TEM) studies reported previously

(Rebuffi et al., 2016; Scardi et al., 2017) have shown that the

crystalline domains after extensive ball milling are equiaxed

on average, so that the assumption of spherical domain shape

seems appropriate.

(ii) A strain broadening, ADðLÞ,

ADðLÞ ¼ exp �2�2s2h�L2
hkli

� �
; ð10Þ

where h�L2
hkli, the variance of the displacement distribution

for pairs of atoms at distance L along [hkl], is a function of L

and can be described by the Popa–Adler–Houska (PAH)

model (Adler & Houska, 1979; Popa, 1998; Scardi et al., 2015)

or by the Wilkens model (Wilkens, 1970a,b; Scardi, 2008, and

references therein) for dislocations:

h�L2
hkliPAH ¼ �hkl aLþ bL2


 �
; ð11aÞ

h�L2
hkliWilkens ¼

b2

4�
	Chkl f �ðL=ReÞL

2: ð11bÞ

Here, a and b are free (refinable) coefficients in equation (11a)

(Scardi et al., 2015; Leonardi & Scardi, 2016); b2 in equation

(11b) is the square modulus of the Burgers vector, 	 is the

average dislocation density, Re is the effective outer cut-off

radius of the dislocation system and f* is the so-called Wilkens

function (Wilkens, 1970a,b). Both strain models account for

broadening anisotropy according to a fourth-order invariant

form of the Miller indices (fourth-order polynomial in hkl)

(Scardi, 2008; Martinez-Garcia et al., 2009; Ungár et al., 1999):

�hkl � Chkl ¼ Aþ B h2k2 þ k2l2 þ l2h2

 �	

h2 þ k2 þ l2

 �2

¼ Aþ BH2: ð12Þ

�hkl and Chkl are functionally equivalent, with the important

difference that in the former case A and B are just additional

free parameters, to be adjusted according to the specific peak

broadening anisotropy in the studied sample, whereas for Chkl

(average contrast factor), A and B can be calculated from the

elastic constants and dislocation slip system (Martinez-Garcia

et al., 2009).

The WPPM procedure can also account for the temperature

diffuse scattering (TDS), according to Warren’s model

(Warren, 1990) extended to nanocrystalline domains (Beyer-

lein et al., 2012). Among all available data sets, only 28bm11

was collected at three temperatures (100, 200 and 300 K), thus

allowing for a detailed analysis of the static and dynamic

contributions to the diffuse scattering (Scardi et al., 2017).

However, TDS was also included in the analysis of 43ID22, as

the room-temperature data were collected with a high-energy

(31 keV)/high-brilliance beam, providing the longest list of

Bragg peaks of the present study, under controlled (i.e.

negligible) absorption conditions, which make possible a

reliable inclusion of the thermal scattering effects. As pointed

out in the cited paper, this ball milled sample is composed of a

ferritic (body centred cubic) iron phase, but contamination

from the milling vials (composed of NiCr steel) tends to

stabilize a small fraction of austenite, also included in the

WPPM. This secondary phase can only be identified in some of

the SR powder patterns.

3.2. Size–strain separation

All data sets can be modelled adequately by the WPPM

procedure described above. This is true of patterns with just

four peaks of the ferritic iron phase and relatively low quality

statistics like in Fig. 4(a) (4CuK�), as well as for top-quality

data, extended to large q, as in Fig. 4(b), showing the

experimental pattern and modelling of the 43ID22 pattern.

Results for all other data sets are reported in Figs. 4(c)–4(l).

As a complement to the WPPM of Fig. 4, it is useful to

compare the statistical quality of the different data sets. If NT

is the total intensity, including diffracted signal and back-

ground, and NB is the background intensity from the WPPM,

the standard deviation of the intensity distribution can be

estimated as �P ¼ ðNT þ NBÞ
1=2=ðNT � NBÞ (Klug & Alex-

ander, 1974). As shown in Fig. 5, SR data give �P < 2%, with

the exception of 4BL01C2, which was measured in a short time

(30 s) and with a high background from the two-dimensional

detector. The laboratory measurements are above this

threshold, with the exception of 4CoK�1 and 5CuK�, where

the high count rate and smooth background give a low stan-

dard deviation. The values of �P are also quite high for 8WB,

which is a noisy data set: the consequences for the size–strain

analysis are discussed in the following.
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4. WPPM results
Fig. 6 shows the size distribution obtained by WPPM for all

patterns in this study. Most curves cluster around the expected

result, confirmed by previous analysis and electron micro-

scopy, here reproduced as the black dashed curve: the results

for 28bm11 were obtained using equation (7), including the

TDS contribution, with a simultaneous analysis of three data

sets collected at 100, 200 and 300 K, respectively (Scardi et al.,

2017). Laboratory instruments tend to overestimate slightly

the extracted value of average crystallite size, partly because

the TDS is not included, but especially as a result of the lower

number of peaks in the patterns. Also SR beamlines with
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Figure 4
Experimental data (circular data points), modelling (line) and their difference (residual, upper line). (a) 4CuK�; (b) 43ID22, with detail in log scale in the
inset; (c) 6CuK�; (d) 4CoK�1; (e) 5CuK�; ( f ) 19MCX 15 keV, with detail in log scale in the inset. Miller indices are shown in each plot.



energy lower than the 30–31 keV of 28bm11 and 43ID22 fall

into this category, but the results, globally speaking, are in

good agreement.

Small s.u. values for mean domain size and standard

deviation of the domain size distribution (Fig. 6b) are obtained

from data sets with low �P. Whether it is achieved by the high

brilliance of the sources and/or long counting times, data

quality directly affects the reliability of the results. The results

from the 4CuK� and 8WB data sets lie outside the group: the

first has a 	30% overestimated hDi, while the second gives
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Figure 4 (continued)
Experimental data (circular data points), modelling (line) and their difference (residual, upper line). (g) 13BL01C2 24 keV; (h) 28bm11 30 keV [with
details of the modelling, in log intensity scale (left inset), and contributions of capillary and f.c.c. phase (blue line) and TDS (red line) together with the
experimental data (circles) (right inset)]; (i) 4BL01C2 18 keV, with detail of the imaging plate reading in the inset; (j) 17MoK�1 (the unindexed peak at
33� is a spurious effect of scattering from the glass capillary); (k) 6MCuK�; (l) 8WB, with the density plot of angle versus energy shown in the inset. Miller
indices are shown in each plot.



unreliable results for the standard deviation of the distribution

and an overestimated mean size. These two data sets combine

two main limitations: (i) few peak profiles in the pattern and

(ii) poor statistics, in terms of noisy data and high background.

Also the 4BL01C2 data (from an image plate detector), with

just four peaks in the pattern collected in a short time, exhibit

relatively poor statistics and consequently provide a reason-

able mean size but a large s.u. (Fig. 6b).

Strain broadening can be modelled equally well by equa-

tions (11a) and (11b), with no significant differences in the size

distributions just discussed. Although the Wilkens model

might appear more appealing than PAH, as the former is

based on a specific physical model for dislocation line

broadening, it is also true that the observed strain broadening,

as for most plastically deformed materials, is not solely due to

dislocations. Indeed, previous work on the studied sample has

shown that if strain broadening is attributed to dislocations

only, even assuming a cut-off radius as large as the domain size

(Re’ hDi = 8.2 nm), the calculated dislocation density is quite

high, 	 = 3.2 (4) � 1016 m�2. This value corresponds to an

average of nearly two dislocations per nanocrystalline domain,

a condition clearly proven wrong by electron microscopy

observations (Rebuffi et al., 2016) and by molecular dynamics

(MD) simulations (Scardi et al., 2017; Leonardi & Scardi,

2016). Dislocation dipoles have been found in a few domains

of the ball milled powder observed by high-resolution TEM,

but apparently most nanocrystals do not contain any disloca-

tions. As shown by MD simulations, much of the inhomoge-

neous strain contributing to the line broadening originates

from the grain boundary region, where dislocations tend to be

absorbed after slipping across grains; in this process the strain

field of the dislocation may decrease but it does not disappear,

and inhomogeneous strain tends to build up during the high-

energy milling process (Rebuffi et al., 2016).

Therefore, to avoid obtaining a dislocation density which is

clearly overestimated, we assume that the strain broadening in

this sample is given by a combination of grain boundary

effects with dislocations in only a few domains. The strain

broadening is then more adequately described phenomen-

ologically by the best fit values of A, B, a and b in equations

(11) and (12). This representation of the standard deviation of

the displacement distribution, h�L2
i

1/2, as a function of the

distance L along given crystallographic directions [hkl] in the

crystalline domain was introduced by B. E. Warren in one of

the early papers on his well known Fourier method (Warren &

Averbach, 1950; Warren, 1990). Most importantly, the Warren

plots do not require commitment to a specific model to justify

the observed strain broadening, which is appropriate to the

purpose of this work, i.e. to compare results obtained from

different instruments, geometries and data collection condi-

tions. Note that analogous results can be reported as a

‘microstrain’ plot (i.e. h"2
i

1/2 = h�L2
i

1/2/L versus L), easily

derived from the Warren plot.

Fig. 7 shows Warren plots for two crystallographic direc-

tions, [hhh] (a) and [h00] (b), corresponding, respectively, to

the stiffest and softest crystallographic directions in cubic

metals like ferritic iron. As expected, the h�L2
i

1/2 values are

higher along [h00] than [hhh], thus representing the corre-

sponding upper and lower bounds of the broadening effect. As

with the size broadening component, the results from most

data sets tend to group about those of SR beamlines (11bm,

ID22 and MCX), apart from 8WB and 4BL01C2 which over-

estimate the h�L2
i

1/2 trends. As already noted, these data sets

comprise too few peaks for a reliable separation of size/strain
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Figure 6
(a) Lognormal size distribution, g(D), from WPPM of all patterns in this
study; (b) mean size, hDi, and standard deviation of the distribution. The
green line in (b) is the weighted average of all mean sizes (except 28bm11
and 43ID22, where WPPM included the TDS contribution: see text for
details).

Figure 5
Comparison of counting statistics of the different data sets, expressed as
standard deviation of the intensity distribution (Klug & Alexander, 1974),
�P ¼ ðNT þ NBÞ

1=2=ðNT � NBÞ, where NT and NB are, respectively, total
and background intensity.



effects, especially for the concurrently poor counting statistics/

high background leading to a high �P.

Apart from these data sets, which demonstrate the limita-

tions of collecting data over q ranges that are too narrow and

the well known effects of poor counting statistics, the overall

result of WPPM in this study is remarkably good. The size and

strain values are reasonably close to the expected results. It is

of course ideal to collect data by SR XRD up to high q,

encompassing tens of peak profiles with good statistics (low

noise, low background), with high instrumental resolution (i.e.

narrow IP) and at different temperatures for a reliable

assessment of the TDS contribution; but the present results

clearly demonstrate that an effective and even reliable size–

strain separation can be achieved with much less information,

on easily accessible laboratory instruments equipped with

conventional sources, and even with the few peaks observable

by relatively low energy X-rays (e.g. 4CoK�1 data), provided

that the measurement statistics are good.

The overall agreement amongst measurement configura-

tions found in this study is partly related to the nature of the

studied powder sample, where size and strain broadening

effects are easily visible and of comparable magnitude.

Samples with little peak broadening, i.e. a microstructural

broadening that is small with respect to the IP component, and

samples with a marked predominance of one of the two effects

(size or strain) might give less positive results when comparing

different instruments and data collection conditions.

5. Integral breadth analysis

Integral breadth (IB) methods (Klug & Alexander, 1974) are

simple and informative, although they present some issues in

their practical use and the reliability of the results [see Scardi

et al. (2004) for a critical review]. The most used method is

based on the so-called Williamson–Hall (WH) plot

(Williamson & Hall, 1953), with modifications to include

effects of faulting and anisotropy [so-called modified WH

(mWH) (Ungár et al., 1999)].

Determination of IB values is not so straightforward.

Problems arise from (i) the instrumental profile contribution,

which must be correctly removed, and (ii) signal overlap

(between peaks and with background), which must also be
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Figure 7
Warren plots for all samples in the study. Trend of the variance of the
atomic displacement distribution as a function of the distance L between
pairs of atoms along the two directions, (a) [hhh] and (b) [h00],
corresponding to soft and stiff elastic response in ferritic iron,
respectively.

Figure 8
(a) Integral breadth, 
(s), as a function of s = 2 sin� /�, for all data in the
present study. A detail of the low-s region is shown in (b).



considered. WPPM can address (i) and (ii), as IBs can be

obtained numerically by exploiting the properties of Fourier

transforms:


hklðsÞ ¼ 2
RLmax

0

ASðLÞAD
hklðL; sÞ dL

� ��1

; ð13Þ

where the integral extends to Lmax, the maximum distance

along [hkl] in the crystalline domain. Equation (13) intrinsi-

cally solves problems with IP contributions and overlapping,

and provides IBs, 
hklðsÞ, which are as good as the profile

modelling (see results shown previously).

Fig. 8 shows the IB trends for all samples in this study, with a

scattering of values which is characteristic of the elastic

anisotropy of iron (Rebuffi et al., 2016).

The trend of IB versus s can be modelled by the mWH

expression. Differently from the original WH method, which

provides for linear dependence of IB on s, the mWH equation

entails dependence on s2 (Ungár et al., 2001; Scardi et al.,

2004):
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Figure 9
Results of the mWH analysis. Data points (circles) from equation (13); fit by least squares using equation (16) without (blue line) or with (red line)
weights (relative integrated intensity). With few data points the two trends, with and without weights, overlap nearly identically. (a) 4CuK�; (b) 43ID22;
(c) 6CuK�; (d) 4CoK�1; (e) 5CuK�; ( f ) 19MCX; (g) 13BL01C2; (h) 28bm11; (i) 4BL01C2; (j) 17MoK�1; (k) 6MCuK�; (l) 8WB.




hklðsÞ ¼
1

hLiV
þ ksð Þ2	1=2Ch00 1� qH2


 �
þOðs4C

2

hklÞ; ð14Þ

where hLiV is the volume-weighted mean column length, 	 is

the dislocation density and k is a parameter related to the

dislocation system (interaction/arrangement) (Guinebretière,

2007; Scardi et al., 2004). The average contrast factor, Chkl ,

defined in equation (12) for cubic materials, can also be

written as

Chkl ¼ Aþ BH2 ¼ Ch00 1� qH2

 �

; ð15Þ

so that A ¼ Ch00 and q ¼ B=A in equation (14). From a

practical point of view, equation (14) can be written as


ðsÞ ¼ C1 þ C2s2 1� C3H2

 �

; ð16Þ

where C1, C2 and C3 can be refined against experimental data.

The results of fitting equation (16) to the IBs given by

equation (13) are shown in Fig. 9, where blue and red lines

stand, respectively, for least-squares fits of equation (16)

without and with weights. The weights were the relative

integrated intensities of the peaks. The use of weights has no

effect when only a few peaks are used, whereas it gives

significant (and more credible) results when many peaks are

considered. The data in Table 2 are from weighted fitting.

If we assume, coherently with the assumptions used so far,

that crystalline domains are represented by spheres, then

hDi ¼ ð4=3Þ=C1. This allows for a direct comparison of domain

size results with those provided by WPPM, as reported in

Table 2. Interpretation of C2 and C3 is less straightforward

than that of C1. In fact, we cannot directly compare C2 with

previous (WPPM) results, other than to point out that, ideally,

all data sets should give the same result, whereas the devia-

tions approach 100% (clearly larger than in the Warren plots

of Fig. 7). C3 can be compared with the corresponding

anisotropy parameter (�B/A) refined by WPPM, showing

reasonable consistency in Table 2.

Owing to instability (few peaks, noisy data, high back-

ground), WPPM of 4BL01C2 was performed while keeping �2

(variance of the lognormal size distribution) fixed. The

17MoK�1 data, although providing results not far from those

of SR data, tend to instability in the least-squares modelling

because of the high background, in particular the sloping trend

of the region of the most intense reflections of iron (Fig. 4).

This is probably a consequence of removing the receiving slit,

or keeping the antiscatter slit wide open, both allowing high

count rates but responsible, at the same time, for the high

background signal and high �P (Fig. 5).

Note that the agreement between the mWH model and data

is better the lower the number of data points. This apparent

paradox, caused by using nearly as many parameters as data

points, suggests caution in the interpretation of the IB analysis.

A good match with few data points should not increase

confidence in the reliability of numerical results.

In summary, the anisotropy of microstrain is correctly

described by C3, while the C2 parameter, besides providing a

much less definite description of the microstrain effect than is

possible by WPPM, varies considerably. C1 gives just an esti-

mate of the mean domain size, as its values scatter more and

are systematically larger than those given by WPPM. This is

related to the weakness of the hypotheses underlying all IB

methods, including lack of consideration for the size disper-

sion (distribution variance), arbitrary additivity of size and

strain terms, and use of an extrapolation to s = 0 to provide

information on the mean domain size.

The discrepancy between mean size values obtained by

mWH and WPPM is not random, but increases as the number

of peaks in the pattern decreases (Table 2). This is better

shown in Fig. 10, where the mean size given by WPPM

for 28bm11 is taken as a reference to calculate the percen-

tage deviation of all other results. Systematic deviation
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Table 2
Comparison of the results of mWH analysis [equation (16)] with mean
domain size from the WPPM of Figs. 4, 6 and 7, and parameter C3 with B/
A from WPPM [cf. equations (12) and (15)].

Mean domain size hDi (nm)

Pattern mWH WPPM C2 C3 WPPM B/A

28bm11 10.0 (0.5) 8.0 (0.1) 0.0013 1.87 2.12
43ID22 8.8 (0.4) 8.6 (0.1) 0.0013 2.02 2.33
13BL01C2 12.3 (1.0) 10.1 (0.9) 0.0018 1.80 2.01
4BL01C2† 15.4 (0.6) 9.9 (3.3) 0.0022 1.62 1.60
19MCX 10.6 (0.7) 9.3 (0.8) 0.0016 1.81 2.01
4CoK�1 13.0 (0.2) 9.2 (0.13) 0.0024 2.07 2.11
6CuK� 12.3 (0.3) 9.0 (2.0) 0.0022 1.98 2.03
4CuK� 14.7 (0.3) 12.5 (3.8) 0.0025 1.86 1.87
5CuK� 12.4 (0.3) 8.7 (0.3) 0.0021 1.76 1.95
17MoK�1 10.8 (0.7) 9.5 (1.2) 0.0016 1.88 2.08
6MCuK� 12.1 (0.4) 9.1(1.6) 0.0022 1.96 1.79
8WB 9.9 (2.0) 10.4(5.0) 0.0018 2.23 1.41

† �2 in equation (9) (variance of lognormal distribution) was fixed during WPPM owing
to instability of the fit with just four peaks on a relatively high background.

Figure 10
Deviation of mean domain size from the reference WPPM value for
28bm11 data, (hDi � hDi28bm11) / hDi28bm11, as a function of the number of
peaks in the pattern. The mean size is calculated by the integral breadth
(mWH) method (squares) and by WPPM (open circles; filled circle for
the reference data).



(overestimation) of the mean size is large when just a few

peaks are used in the IB analysis, whereas WPPM seems much

less affected. It is then confirmed that IB methods should be

used with caution, especially when few Bragg peaks are

available; it would be better to use the results for a qualitative

analysis than for a quantitative assessment and separation of

size–strain effects, for which a modelling of the whole powder

pattern is more reliable and informative.

6. Conclusions

The separation of size and strain effects in line profile analysis

was the object of a round robin involving 11 laboratories

routinely operating powder diffractometers. The main

purpose of the study was to assess the reliability of LPA, and

how the result is influenced by the quality and quantity of

information available from experiments performed with

different optics and X-ray wavelengths, using both commer-

cially available equipment and synchrotron radiation XRD

instruments. The sample analysed, a ball milled iron alloy

powder, is considered an ideal case as the domain size and

strain contributions are of similar magnitude and large enough

to separate from the instrumental contribution.

As expected, SR XRD data give the best quality results. In

addition to the high count rate, the large number of peaks in

the pattern typical for high-energy beamlines is key in

improving the separation of size and strain with respect to the

stability and reliability of the refinements used. Furthermore,

the ability to measure XRD patterns at different temperatures

allows for consideration of the diffuse scattering, provided

that intensities are accurately measured. This condition can be

achieved using Debye–Scherrer geometry and high-energy

beams, making capillary absorption negligible. Nevertheless,

LPA can provide acceptable results even with data collected

by easily accessible laboratory instruments. This is also true

when low-energy radiation is used, which allows a limited

number of peaks to be observed, as long as the statistical

quality is good.

The round robin results show that, for the best results, data

should be collected with (i) high counts and (ii) low smooth

background, both contributing to good counting statistics, i.e.

to a low standard deviation of the intensity distribution. Stable

results and reliable size–strain separation are supported by

(iii) high-energy X-ray radiation, to collect as many Bragg

peaks as possible, but also require (iv) proper consideration of

the IP, determined under identical experimental conditions via

the available standard powder XRD samples.

Although the study did not provide a comprehensive

comparison of the different LPA methods, the superiority of

the methods based on the analysis of the entire profile is clear

compared to those that use only the width of the diffraction

peak. This difference is particularly evident when few peaks

are present in the experimental pattern; IB methods, like the

modified Williamson–Hall plot, can provide a perfect match to

the limited experimental data but clearly overestimate the

domain size, whereas Fourier methods, like the WPPM used

in this study, limit the overestimation to within acceptable

limits.
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