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Hungarian Academy of Sciences, Temesvári körút 62, Szeged, Csongrad 6726, Hungary, eM4I Division of Nanoscopy,

Maastricht University, PO Box 616, MD Maastricht, 6200, The Netherlands, fXRD1 Beamline – Elettra, CNR – Istituto di
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The installation of multi-axis goniometers such as the ESRF/EMBL miniKappa

goniometer system has allowed the increased use of sample reorientation in

macromolecular crystallography. Old and newly appearing data collection

methods require precision and accuracy in crystal reorientation. The proper use

of such multi-axis systems has necessitated the development of rapid and easy to

perform methods for establishing and evaluating device calibration. A new

diffraction-based method meeting these criteria has been developed for the

calibration of the motors responsible for rotational motion. This method takes

advantage of crystal symmetry by comparing the orientations of a sample

rotated about a given axis and checking that the magnitude of the real rotation

fits the calculated angle between these two orientations. Hence, the accuracy and

precision of rotational motion can be assessed. This rotation calibration

procedure has been performed on several beamlines at the ESRF and other

synchrotrons. Some resulting data are presented here for reference.

1. Introduction

Exactly 50 years after the kappa patent granted to Nonius

(Poot, 1968), we can state that, although multi-axis goni-

ometers have long been exploited in the realm of small-

molecule crystallography, their size as well as implementation

challenges at user-oriented facilities has limited their adoption

by the macromolecular crystallography (MX) community. A

renewed focus on miniaturization has led to the development

of devices that integrate seamlessly with many current sample

environments at synchrotrons (McCarthy et al., 2009; Broc-

khauser et al., 2011, 2013; Waltersperger et al., 2015; Mueller-

Dieckmann et al., 2015; Grama & Wagner, 2017). By greatly

expanding the range over which a given sample can be reor-

iented, automated multi-axis goniometer systems provide

additional freedom and convenience in the optimal design of

diffraction experiments.

A major problem in MX continues to be radiation damage

(Hendrickson, 1991; Zeldin et al., 2013), and it has been a

major driving factor behind a great deal of innovation owing

to its role in undermining MAD (multi-wavelength anomalous

dispersion) or SAD (single-wavelegth anomalous dispersion)

phasing experiments (Ravelli et al., 2005). The inverse-beam

method has historically proven useful in mitigating this issue
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(Dauter, 1997; Ravelli et al., 1997). Unfortunately, a number of

challenges associated with this method often render it inef-

fective. For example, many seconds may be required to rotate

and launch a data acquisition every half turn. Furthermore, in

the case of room-temperature data collection, where the

amount of collectable isomorphous data from a single crystal

is strongly limited by radiation damage, such a frequent and

rapid acceleration can cause the sample to move relative to

the original. In all such cases, the resulting data will be more

susceptible to errors related to crystal misalignment or poor

spindle synchronization.

The alternative solution made possible by a multi-axis

goniometer is quite elegant in comparison. The even-fold (2�,

4�, 6�) symmetry axis of the crystal can rapidly be aligned

with the spindle to record Bijvoet pairs (a reflection and the

Friedel pair of its symmetry equivalent, i.e. hkl and hkl) on the

same diffraction image. This optimized data collection strategy

reduces radiation damage occurring between recording the

reflection pairs used for measuring the anomalous differences,

and eliminates technical issues related to constantly rotating

the sample back and forth at high speed. This method can also

be performed manually on single-axis goniometers or non-

automated multi-axis instruments, but limitations in available

rotational degrees of freedom prevent its usefulness because

of difficulties related to properly aligning the twofold

symmetry axis of a sample along the spindle axis (Dauter,

1999).

Another symmetry-related advantage of the alignment of a

crystal along specific crystallographic axes relates to the

optimization of dose required for point group and space group

determination. Applications such as POINTLESS (Evans,

2006) and AIMLESS (Evans & Murshudov, 2013) are capable

of determining the space group of a sample on the basis of

diffraction statistics such as the presence of systematic

absences. Simply reorienting the crystal to measure these

reflections can enable the experimental determination of the

space group directly.

One of the most common problems for macromolecular

complex structures is their tendency to form crystals with large

unit-cell dimensions. While dependent on crystal morphology

and mounting processes, it is common to encounter some

rotation angles with reflection overlap when using the oscil-

lation method. Although an adequate rotation range per

single exposure can be determined, it is often too small for

even a fine-slicing approach, especially for CCD-based X-ray

detectors. Fortunately, the maximum usable range is also

governed by the length of the primitive unit-cell dimension

along the direction of the X-ray beam and can be optimized by

aligning the densest reciprocal space axis (usually the c*

crystallographic axis) along the spindle. Note that such a cell

alignment results in a blind zone (Dauter, 1999), which does

not allow the collection of a full data set in that orientation.

Finding a slightly tilted alignment where the full data set can

be collected while the long axis approaches the spindle as

much as possible is a good compromise, but such precise

realignment is only possible in many cases with a multi-axis

system. A less elegant but commonly used alternative is to

manually bend the pins, but such an approach is not optimal

and cannot be automated.

The crystal-reorientation capabilities of multi-axis goni-

ometers also permit the precise scaling of data collected from

multiple crystals or from multiple locations on large single

crystals. A data collection protocol can be designed to incor-

porate diffraction images from multiple crystals oscillated

about the same crystallographic axis with exact overlaps.

The greater rotational freedom afforded by multi-axis

systems is useful with respect to phasing strategies as well.

Bricogne et al. (2005) originally noted substantial dichroism

and anisotropy in resonant scattering in X-ray data collected

from selenated protein with a brominated inhibitor near the

Se and Br K edges. The authors subsequently proposed a

methodology for optimizing the anomalous phasing signal

obtained from SAD or MAD experiments based on crystal

alignment relative to the incident beam. Anisotropy in reso-

nant scattering is fundamentally connected to the orientation

of a sample’s chemical bonds relative to the polarization of

incoming X-radiation, and the information contained therein

can be examined prior to any knowledge of the precise loca-

tions of scattering sites. However, taking advantage of the

polarization anisotropy of anomalous scattering (AAS)

requires a motorized multi-axis goniometer in order to

reorient the crystal such that the maximum anomalous phasing

signal can be attained. Schiltz & Bricogne (2008) subsequently

took these studies a step further and have shown that AAS

can also be used to effectively amplify the phasing power in

SAD or MAD experiments. This method requires precise

knowledge of the orientation of the crystal with respect to the

direction of X-ray polarization. The authors subsequently

describe the computation of AAS using a multi-axis goni-

ometer setup knowing precisely the direction vectors of the

goniometer rotation axes (Schiltz & Bricogne, 2009). These

studies together with improved S-SAD phasing (Olieric et al.,

2016) present compelling arguments for the use of multi-axis

goniometers in MX. Other reorientation-based techniques,

like flattening CrystalDirect loops (Zander et al., 2015) or

aligning needles for helical scans (Flot et al., 2010), all rely on

the accurate and precise knowledge of the location and

direction vectors of the goniometer’s rotational axes.

2. Calibration methodology

2.1. Crystal orientation

Geometrically speaking, the UB matrix is a product that

describes the rotation of a square orthogonalization matrix B

about the square rotation matrix U in three dimensions and

thus links the coordinates of some vector vRL in the reciprocal

lattice basis of a crystal to the equivalent vector vLab in the

laboratory Cartesian system (Busing & Levy, 1967; Paciorek et

al., 1999; Schiltz & Bricogne, 2009). As such, some indexed

scattering vector Hcc in the Cartesian coordinate system of the

crystal can be calculated from its corresponding vector
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h ¼ h k l
� �T

ð1Þ

of integer Miller indices and an appropriately calculated

orthonormalization matrix B that accounts for crystal

symmetry:

Hcc ¼ Bh: ð2Þ

B is typically defined in three dimensions using the convention

established by Busing & Levy (1967), where a* is collinear

with the x axis of the Cartesian system and c is collinear with

the z axis.

The U rotation matrix can be decomposed into the

sequence of rotations about the three coordinate axes (x; y; z)

as described by Paciorek et al. (1999), where

U ¼ Rz;’z
Ry;’y

Rx;’x
: ð3Þ

Ra;� is the matrix representation of the rotation about the

normalized vector a by the angle �, and can also be repre-

sented in axis–angle form ha, �i, in the rotation vector form of

�a or in the form of a quaternion

qa;� ¼ cosð�=2Þ; a sinð�=2Þ½ �: ð4Þ

The orthonormal coordinates are then transformed by the

rotation matrix such that all of the axes from the original

crystal Cartesian system are parallel to the corresponding axes

in the laboratory frame of reference when all used goniometer

angles are equal to zero. Therefore,

H0
Lab ¼ UHcc; ð5Þ

which depends entirely on the fixed laboratory coordinate

system chosen. Here, the right-handed Cambridge laboratory

frame is used, with the x axis along the incident beam, the z

axis perpendicular to the x axis and being in the plane

established by the beam and the spindle, and the y axis

perpendicular to the x and z axes. Additional conventions

followed by different data processing programs have been

summarized by Schiltz & Bricogne (2008).

An additional rotation matrix U containing geometric

information about all rotational goniometer axes is then

applied such that

HLab ¼ UH0
Lab: ð6Þ

In the case of kappa goniometers, like the multi-axis

EMBL/ESRF miniKappa goniometer head, the goniometer

rotation U is a product of sequential rotations about the

direction vectors of the goniometer axes (X;K;U) at zero-

valued settings by the actual datum applied (!; �; ’), where

U ¼ RX;!RK;�RU;’ ð7Þ

and, in terms of the original variables,

HLab ¼ RX;!RK;�RU;’UB

h

k

l

0
@

1
A: ð8Þ

Note that U is representing a rotation that is affected by both

the angular accuracy of the goniometer and the precision of its

axes. The use of an inaccurate U, for example during indexing,

leads directly to a systematically disturbed UB matrix calcu-

lation.

A properly calibrated goniometer setup is often difficult to

maintain, especially in the context of a system under constant

use at an MX beamline. Previous studies have focused on long

and laborious methods for initial calibration of such systems

(Paciorek et al., 1999), but no methods currently address the

need in MX to rapidly ensure the rotational accuracy of a

goniostat. In this paper, a rapid and robust rotation calibration

(RC) method is presented. The method takes advantage of the

relationship between the two unique sets of vectors HLab1 and

HLab2 derived from separate indexings of data collected on a

given crystal to calculate the angular direction and magnitude

of a rotation about any of the axes in a goniometer system.

The result of this calculation, when compared to the expected

value, yields valuable information regarding the rotational

accuracy and precision of the system. Furthermore, recom-

mendations regarding a proper calibration technique will be

presented and efforts to integrate such methodology into

current data collection systems will be discussed.

2.2. Calibration protocol

Calibration of one of the rotation axes on a multi-axis

goniometer requires precise and accurate knowledge of a

crystalline sample’s orientation matrix at a reference angle

 ref and at some other angle  2. Each axis must be calibrated

independently to avoid convolution of its own error with that

of the other rotation axes. For calibration of a three-axis �
goniometer with rotation axes (X;K;U), two diffraction data

sets are collected per axis from a crystal of known geometry at

settings of  ref and  2 ( 2 f!; �; ’g) while the other goni-

ometer settings �j are kept unchanged. The diffraction images

are then autoindexed as if they had been collected on a single-

axis goniometer with starting spindle position equal to zero,

where U ¼ I, the identity. This yields two ½UB�s0 matrices per

axis, referred to here as orientation matrices Oref and O2,

which describe the orientation of the sample’s unit cell in the

fixed laboratory coordinate system. Following the multi-axis

convention, the orientation matrix can thus be written as

O ¼ UB½ �s0 ¼ Ur UB½ �r; ð9Þ

where the single-axis ½UB�s matrix is decomposed into the

product of the real ½UB�r matrix and the real multi-axis reor-

ientation matrix. Note that the matrix ½UB�r does not depend

on the goniometer settings. Hence, in the case of the ith axis,

where X;K;U of a � goniometer are the first, second and

third axis, respectively,

Oref ¼
Q
j<i

RWj;�j

� �" #
RWi; ref¼�i

Q
j>i

RWj;�j

� �" #
UB½ �r; ð10Þ

O2 ¼
Q
j<i

RWj;�j

� �" #
RWi; 2 6¼�i

Q
j>i

RWj;�j

� �" #
UB½ �r: ð11Þ
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To calculate the angular offset between the two orienta-

tions, we assume that there is some transformation matrix T

that converts Oref to O2, where

TOref ¼ O2: ð12Þ

Then, upon rearranging and using the abbreviation

Rn
Wj;�j
¼
Q
n

RWj;�j

� �
; ð13Þ

T ¼O2O�1
ref ¼ R

j<i
Wj;�j

RWi; 2
R

j>i
Wj;�j

UB½ �r UB½ �
�1
r

� Rj>i
Wj;�j

� ��1

RWi;� ref
Rj<i

Wj;�j

� ��1

; ð14Þ

which reduces to

T ¼ RR
j<i

Wj ;�j
Wi;ð 2� ref Þ

: ð15Þ

Hence, knowing the direction vectors and the applied angles

of all the axes in front of the axis in question, the direction

vector of the axis at zero-valued goniometer settings (Wi) can

be calculated by transforming the rotation axis represented by

T using the inverse of the product (Rj<i
Wj;�j

). If all the angle

settings for the axes in front as well as the reference are kept at

zero, the transformation matrix, T, represents a rotation about

the directional vector of the axis at zero-valued goniometer

settings by the angular difference applied between the two

data sets ( 2).

Owing to possible equivalent indexing of the same lattice,

however, multiple solutions for the orientation matrix may

exist, where

O2l ¼ O2El ð16Þ

with matrices Ej corresponding to equivalent lattice re-

indexing transformations. As such, by comparing Oref with the

set of all possible values of O2l, the set of transformation

matrices

Tl ¼O2lO
�1
ref ¼ Rj<i

Wj;�j
RWi; 2

Rj>i
Wj;�j

UB½ �r2
El UB½ �

�1
rref

� Rj>i
Wj;�j

� ��1

RWi;� ref
Rj<i

Wj;�j

� ��1

ð17Þ

can be determined. Note that Tl forms a rotation matrix only if

the appropriate re-indexing transformation is applied such

that ½UB�r2
El ¼ ½UB�rref

.

In practice, however, T never forms a perfect rotation

matrix. Oref and O2 are generated by two different observa-

tions and thus two different indexing solutions, and may have

differences resulting from both rotational and non-rotational

instabilities related to mechanical problems with the motors

(e.g. slippage or loss of steps) as well as to minor issues with

unit-cell determination during auto-indexing. As such, T is re-

orthogonalized to form a pure rotation matrix R, where

RT
¼ R�1 and Rj j ¼ 1: ð18Þ

The re-orthagonalization can be performed using the singular

value decomposition (SVD) (Golub & Reinsch, 1971)

normalization method, similar to that described by Challis

(1995), although other methods involving the use of quater-

nions have also been developed to perform such a computa-

tion (Bar-Itzhack, 2000).

The re-orthogonalized Tl matrices (T0l) can be determined

in axis–angle representation hWl; �li:

�l ¼ cos�1 traceðT
0

lÞ � 1

2
; ð19Þ

Wl ¼
1

2 sin �l

T0l
� �

3;2
� T0l
� �

2;3

T0l
� �

1;3
� T0l
� �

3;1

T0l
� �

2;1
� T0l
� �

1;2

0
B@

1
CA: ð20Þ

Assuming mostly ideal rotation about the axis in question, the

final rotation matrix Robs with corresponding axis–angle

hWobs; �obsi can be found by identifying the observed angle

closest to the expected rotation, where

Robs ¼ T0argminl j�l�ð 2� refÞj
: ð21Þ

These metrics provide feedback on the precision and angular

accuracy of the system by illustrating the agreement between

the differences of rotation angles used as goniometer settings

for subsequent data collections  ref and  2 and the calculated

rotation angle �obs.

3. Discussion

For a precise reorientation, accurate information on the

direction vectors of the rotation axes is required. In the case of

traditional multi-axis goniometers, the manufacturer provides

such information and one simply assumes a perfectly aligned

instrument. Subsequent readjustment to this level of precision

is complex and can require a tremendous amount of work and

time. In contrast, the computational calibration solution
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Figure 1
Experiment setup on the ID30B beamline at the ESRF (McCarthy et al.,
2018) with a miniKappa goniometer. The rotation axes are mounted in
the following order, Omega (X), Kappa (K) and Phi (U). The angle alpha
(�) between Kappa and Phi is nominally 24� by design. In the captured
goniometer settings, Kappa is open by 180�, so Phi and Omega are
separated by 2�. A sample is mounted in a loop at the end of a
magnetically held pin on the Phi axis for positioning in the X-ray beam.



presented here offers a simple five-step calibration procedure

for multi-axis goniometers that can be performed in a matter

of minutes if automated as described below.

In practice, calibration takes very little time to perform on a

beamline when combined with the software solution STAC

(strategy for aligned crystals; Brockhauser et al., 2013), which

implements the RC method described here. Such a calibration

can be quickly performed for the EMBL/ESRF miniKappa

goniometer head (Fig. 1), or even others, as follows:

(i) After homing the rotation motors and mounting an

arbitrary well diffracting single crystal, collect one or more

diffraction images about X (the same spindle axis used for

collecting all the data during the calibration) at a starting

angle of 0� for indexing. STAC accepts indexing results from

MOSFLM (Leslie, 2006), XDS (Kabsch, 1988), DENZO

(Otwinowski & Minor, 1997) and the DNA expert system

(Leslie et al., 2002).

(ii) Rotate the U-axis motor by a given angle. Collect new

image(s), and index.

(iii) Rotate the K-axis motor by a given angle. Collect new

image(s), and index.

(iv) Rotate the X axis by a given angle. Collect new

image(s) at this new starting angle, and index.

(v) Provide the indexing results together with the applied

rotation angles to STAC, which then computes Robs for all the

rotation axes and displays them in an axis–angle representa-

tion (see Fig. 2.)

This method assumes that all other components of the

beamline are properly calibrated, as it is based on the

collection of diffraction images. A well diffracting low-mosaic

crystal should be used in order to generate the most accurate

orientation matrix possible. Since diffraction images are

collected in different orientations, it is important to always

expose the same part of the crystal in the X-ray beam, so the

diffracting volume does not change between orientations.

Where possible, it is best achieved using a beam size matching

the crystal size.

A number of variables were tested in order to determine

ideal calibration conditions with respect to the calculation of

correct orientation matrices and their subsequent use for RC.

Hen egg-white lysozyme, trypsin, thaumatin and insulin crys-

tals could all be rapidly auto-processed with XDS (Kabsch,

2010) to produce consistent orientation

matrices. Representative results from

insulin and thaumatin are presented in

Fig. 3 and Table 1.

3.1. Calibration accuracy

The presented RC method is based on

orientation determination at different

goniometer settings. Hence, it is impor-

tant to characterize the stability of the

indexing protocol used.

For this purpose, data were collected

from two insulin crystals (Nanao et al.,

2005) on ID14-4 at the ESRF. [Fig. 1

shows an identical setup on the

successor beamline ID30B (McCarthy et

al., 2018), which was also used to

produce the supplementary movie.]

From each crystal, a superset of 60

consecutive images were collected while

rotating about X using a 0.5 or 1�
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Figure 2
STAC graphical user interface facilitating the rotation calibration procedure. XDS indexing results
from four different goniometer settings [omega(start)–kappa–phi: 0�–0�–0�, 0�–0�–20�, 0�–30�–20�,
25�–30�–20�] are used as input. The results of rotation calibration are presented in axis–angle
representation using the Cambridge laboratory frame convention (Powell et al., 2013), as
implemented at the ESRF. Calculated rotation angles show good agreement with the input motor
movements requested. Also note that the angular difference between the calculated direction
vectors of the Phi and Kappa axes is 23.9966�, which is in a good agreement with the nominal alpha
value of the miniKappa design equal to 24�.

Table 1
Average angular error in rotation axis direction calculated from two
thaumatin data sets.

For each set, five images were collected with (!, �, ’) at different combinations
of [0�, 24�, 148�, 240�], such that the majority of rotational space was sampled.
Each set was processed using XDS. Rotation axis direction vectors Wobs for
each orientation matrix, the angle between each direction vector for a given
axis and the mean of all direction vectors for a given axis were calculated. Note
that in the case of a single observation no variance is shown.

Average angular error

Axis 0.1� wedges 1.0� wedges

! 0.20� � 0.09 0.09� � 0.01
24� 0.28� 0.07�

148� 0.10� 0.09�

240� 0.21� 0.11�

� 0.15� � 0.12 0.15� � 0.06
24� 0.19� 0.20� � 0.09
92� 0.12� � 0.12 0.15� � 0.10
124� 0.11� � 0.05 0.11� � 0.05
148� 0.13� � 0.11 0.13� � 0.05
216� 0.19� � 0.13 0.16� � 0.04
240� 0.23� � 0.24 0.17� � 0.02

’ 0.12� � 0.06 0.07� � 0.07
24� 0.24� � 0.08 0.19� � 0.10
92� 0.15� � 0.03 0.08� � 0.04
124� 0.12� � 0.05 0.06� � 0.03
148� 0.09� � 0.05 0.03� � 0.01
216� 0.11� � 0.06 0.04� � 0.02
240� 0.14� � 0.11 0.08� � 0.06



oscillation range. XDS was used to auto-index these supersets

and provide a benchmark orientation. The orientation was

then determined using XDS auto-indexing from a smaller

number of consecutive images. For each set of a given number

of consecutive images, five subsets were randomly selected.

The RC method was then used to compare all five orientation

matrices with the benchmark matrix, and to calculate the

difference between the observed and expected rotation. The

data collections were done using only the well characterized

and precise X axis on the MD2m diffractometer at ID14-4

(McCarthy et al., 2009). The data were collected at 12.7 keV

using a beam size of 100 � 100 mm (horizontal � vertical) to

ensure the full coverage of the crystal on an ADSC Q315r

detector with a closed miniKappa (� = 0) configuration.

Experiments were performed at 100 K on flash frozen crystals

with a mosaicity < 0.5�, as reported from the reference data set

by XDS. Hence, all deviations in angular orientation resulted

purely from the uncertainty of the indexing applied, including

mosaicity as well as the limitations of the experimental

observations. To determine the minimal requirements for

useful experimental observations the statistics on the indexing

stability were calculated using two to ten consecutive images.

The angular differences between the supersets and the

corresponding five randomly selected subsets are shown in

Fig. 3.

While the variance is high when using only two consecutive

images, we found that three consecutive images spanning 1�

each were sufficient to reliably construct the orientation

matrix; the inclusion of additional data increased the consis-

tency of matrix determination, but the benefits were marginal.

3.2. Stability of rotation vector determination

The precision of the direction vector determination of the

rotation axes depends on how well the orientation (before and

after the rotation) can be calculated as well as the mechanical

accuracy of the goniometer movement itself. Hence, it is

important to characterize each rotation axis in greater detail,

and to perform a more complete and uniform sampling of the

rotational space.

Thaumatin crystals (Nanao et al., 2005) were used in omega

scans on ID14-4 at the ESRF to collect five consecutive images

at different orientations with starting goniometer settings of

!–�–’ at various combinations of 0, 24, 148 and 240�. Hence,

rotational difference could be compared not only with the

zero setting but also between any of the settings applied. For a

better characterization of the miniKappa goniometer head

(Fig. 1), an extended list of rotational path differences was

investigated for both kappa and phi motors. Next to the

rotational differences, the corresponding angular positions

used during the experimental observations are also provided

in brackets: 24� (between 0 and 24�), 92� (between 148 and

240�), 124� (between 24 and 148�), 148� (between 0 and 148�),

216� (between 24 and 240�) and 240� (between 0 and 240�).

For comparison, oscillation ranges were chosen as 0.1 and 1�

for all data sets collected from two different crystals. All data

sets were processed using XDS to determine the orientation

matrix for each individually. The RC between each data set,

differing in only one goniometer setting, was then applied to

calculate a direction vector for the given rotation axis. The

statistical angular differences between the mean of all calcu-

lated direction vectors of a given axis and the individual

vectors have been determined and are shown in Table 1.

While outliers and large angular errors could indicate a

problem with the hardware, a uniform distribution of small

deviations, as in case of the miniKappa goniometer head used

for this experiment, shows that a single discrete rotation about

an axis is sufficient for properly characterizing its direction

vector during routine calibrations (e.g. after unmounting and

remounting, or during regular maintenance checks).

While the calculated direction vectors can be used for

reorientation calculations, the agreement between the calcu-

lated and expected rotation angle for each axis provides

information regarding the angular accuracy and precision of

each motor. These statistics returned during rotation calibra-

tion are also useful in troubleshooting and provide comple-

mentary information to that gained during a translation

calibration as previously discussed by Brockhauser et al.

(2011).

Three primary factors affect sample orientation and loca-

tion accuracy: the sphere of confusion, angular accuracy and

goniometry precision (Davis et al., 1968). The sphere of

confusion refers to the minimum spherical volume traced by

the movement of an infinitesimally small sample rotated in full

about each axis under ideal conditions. This topic is outside

the scope of this paper, as it is primarily determined by the

goniostat design. The latter topics are of interest here as they

can be characterized and tuned at the instrument control level.

They directly affect the reorientation of the crystal, and

research papers

1426 K. Ian White et al. � Calibration of multi-axis goniometers in MX J. Appl. Cryst. (2018). 51, 1421–1427

Figure 3
Orientation matrix calculation for two sets of data collected from
separate cubic insulin crystals on ID14-4 at the ESRF. Two supersets of 60
images were collected, one with 0.5� wedges (filled circles) and the other
1.0� wedges (filled squares). For each, five subsets of images were
randomly generated for sets varying in length from two to ten images. The
supersets, and each subset, were processed using XDS. The angular
deviation difference between the orientation matrix for each subset and
the appropriate superset was then calculated The average values and
corresponding variances are shown.



ignoring either can lead to a failure of automated data

collection and analysis. As such, checking for errors related to

these effects while calibrating the goniometer and determining

the directions of the rotation axes is of great importance.

Analysis of goniometer rotation axis misalignment has been

addressed before (Paciorek et al., 1999; Schiltz & Bricogne,

2009; Brockhauser et al., 2011).

Both the angular accuracy and goniometer precision are

critical in reducing a data set to interpretable information. The

orientation matrix UB for a crystal of known unit-cell para-

meters provides an excellent standard from which to essen-

tially back-calculate such information. The UB matrix

describes the orientation of a crystal’s symmetry-defined

coordinate system relative to the experimental coordinate

system of the goniometer setup. For a calibration protocol, the

question relates to the amount of data needed to reliably

determine this matrix via the indexing of diffraction patterns.

The use of automatic indexing in programs such as MOSFLM,

DENZO, XDS and DIALS (Leslie, 2006; Otwinowski &

Minor, 1997; Kabsch, 1988, 2010; Waterman et al., 2016) makes

such a protocol easy to perform and integrate in beamline

maintenance.

4. Conclusions

This study illustrates the ease with which the rotation cali-

bration of a multi-axis goniometer system can be performed.

Such a procedure for all axes of a kappa goniometer can be

carried out on the beamline in a matter of minutes, as a

minimum of only four diffraction images from a well

diffracting test sample need to be collected in order to provide

an insight into the accuracy and precision of the rotational

aspects of a diffractometer setup.

The described rotation calibration together with the trans-

lation calibration (Brockhauser et al., 2011) is implemented by

the software STAC (Brockhauser et al., 2013) to support

precise crystal reorientations as integrated into the EDNA

framework (Incardona et al., 2009) and to support the auto-

mation of complex experimental protocols (Brockhauser et al.,

2012).
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