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A key step in the analysis of powder X-ray diffraction (PXRD) data is the

accurate determination of unit-cell lattice parameters. This step often requires

significant human intervention and is a bottleneck that hinders efforts towards

automated analysis. This work develops a series of one-dimensional convolu-

tional neural networks (1D-CNNs) trained to provide lattice parameter

estimates for each crystal system. A mean absolute percentage error of

approximately 10% is achieved for each crystal system, which corresponds to a

100- to 1000-fold reduction in lattice parameter search space volume. The

models learn from nearly one million crystal structures contained within the

Inorganic Crystal Structure Database and the Cambridge Structural Database

and, due to the nature of these two complimentary databases, the models

generalize well across chemistries. A key component of this work is a systematic

analysis of the effect of different realistic experimental non-idealities on model

performance. It is found that the addition of impurity phases, baseline noise and

peak broadening present the greatest challenges to learning, while zero-offset

error and random intensity modulations have little effect. However, appropriate

data modification schemes can be used to bolster model performance and yield

reasonable predictions, even for data which simulate realistic experimental non-

idealities. In order to obtain accurate results, a new approach is introduced

which uses the initial machine learning estimates with existing iterative whole-

pattern refinement schemes to tackle automated unit-cell solution.

1. Introduction

Powder diffraction is a powerful technique for studying

materials and has applications across a wide range of scientific

areas. With the development of dedicated powder diffraction

instruments at high-flux synchrotron beamlines, along with the

development and widespread adoption of fast large-area

detectors, data rates for powder diffraction have exploded.

Development of high-throughput experimental setups and a

greater emphasis on in situ and operando methods have

compounded this problem. Characterizing materials as they

are forming, or their structural response under intended

operation, is crucial to design materials across application

spaces that address pressing problems from energy security to

domestic manufacturing (Krishnadasan et al., 2007; Ren et al.,

2018). However, these types of measurements collect massive

data sets and have already outpaced the capabilities of

experimentalists to analyze these data manually (Blaiszik et

al., 2019). The time lag between collecting and analyzing data

precludes the possibility of actionable information that can

guide experimental design in real time. Fast automated data

analyses are required which work on the timescale of an

experiment, often seconds or minutes, to guide the next
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measurement towards the most informative one. The ability to

parse massive data sets, recognize patterns not discernible by

humans, accelerate data interpretation and provide real-time

feedback to enable smart data collection is going to be an

indispensable component of future materials research.

In this work, we focus on the problem of automatic

analysis of powder X-ray diffraction (PXRD) data using a

combination of machine learning (ML) and classical pattern-

fitting approaches. A PXRD pattern is the result of three-

dimensional atomic structure information condensed to a

single dimension. The observed peaks are determined by the

unit-cell structure (lattice parameters), symmetry constraints

(space group) and atomic positions within the unit cell. The

goal of a PXRD experiment, then, is the determination of

these parameters. This experiment is particularly well suited to

ML approaches, as the data can be readily simulated from

known parameters, large databases of previously solved

structures are available and patterns can be simulated on the

basis of purely hypothetical materials.

Much previous work has focused on the problems of space-

group and crystal-system prediction. Park et al. (2017) trained

convolutional neural networks (CNNs) on simulated powder

patterns, based on structural information contained in the

Inorganic Crystal Structure Database (ICSD; https://icsd.fiz-

karlsruhe.de/index.xhtml), to predict the correct crystal

system and space group for a given material. The authors

achieved an accuracy of 84% for the space-group task and an

accuracy of 95% for the crystal-system task on simulated

testing data. Subsequent analyses focused on the general-

ization gap between training on simulated data and testing on

experimental data. Vecsei et al. (2019) developed fully

connected architectures for the same problem which yielded

superior generalization on their experimental data. Oviedo et

al. (2019) developed a number of different models, including

random forests, support vector machines, multilayer percep-

trons and CNNs to predict space groups and dimensionality

for thin-film perovskite structures. For their data, CNN

models, trained on a combination of simulated and modified

experimental data, were most effective. In particular, the

approach used a physics-based augmentation scheme in order

to correct for strain and preferred orientation in thin films

(Oviedo et al., 2019). More recent work has focused on

developing extremely randomized trees for more inter-

pretable ML predictions (Suzuki et al., 2020) and on methods

to emphasize differences between patterns with closely related

space groups (Tiong et al., 2020). Similar types of classification

analysis have also occurred in the fields of electron diffraction

(Aguiar et al., 2019), single-crystal X-ray diffraction (Souza et

al., 2019) and neutron diffraction (Garcia-Cardona et al.,

2019). In addition, ML methods have been applied to tasks

such as phase mapping (Utimula et al., 2020; Stanev et al., 2018;

Long et al., 2009), phase quantification (Lee et al., 2020;

Szymanski et al., 2021), rapid database identification (Wang et

al., 2020), and automatic peak alignment for sequential data

(Guccione et al., 2018).

In this work, we present an ML approach for predicting

lattice parameters from raw PXRD patterns. ML has

previously been applied to tackle the unit-cell indexing

problem (Habershon et al., 2004). Similarly to traditional

indexing approaches, the method applied by Habershon and

co-workers requires the explicit extraction of the first 20 peak

positions prior to making a prediction. Furthermore, since the

lowest 20 reflections are needed, deviations away from this set

arising from artifacts such as missing peaks and impurities can

greatly damage the ML prediction. The key distinction in our

approach is that our procedure is fully automated and can

make predictions directly on raw intensity arrays, without the

need for peak finding. We bypass the peak extraction step and

automatically couple our ML predictions to a globally opti-

mized whole-pattern fitting approach. We hope that this

strategy might help enable a fully automated approach to

powder diffraction pattern indexing suitable for the ever-

increasing rate of data generation.

Other related work focuses on the analysis of particular

materials systems with only small changes in composition and

atomic positions (Garcia-Cardona et al., 2019; Doucet et al.,

2020; Dong et al., 2021). More recently, deep ensemble CNNs

have been used to predict phase, symmetry and lattice para-

meters for an Ni–Pd/CeO2–ZrO2/Al2O3 multiphase system

and have achieved results comparable to Rietveld refinement

(Dong et al., 2021). In contrast to these two approaches, our

work seeks to be agnostic to particular material systems and

instead to be able to yield lattice parameter estimates for any

given crystalline material. Specifically, we are interested in

understanding how well an ML approach for lattice parameter

prediction can work without incorporating prior knowledge.

In order to understand the motivation for using ML for this

task, it is worth reviewing the classical methods of analysis.

Traditionally, lattice parameter calculation employs three

steps: peak finding, peak indexing and refinement. The peak-

finding step identifies the position of observed peaks in the

diffraction pattern. The indexing step assigns Miller indices to

each peak and obtains potential unit-cell assignments. Finally,

the refinement step improves the estimate by minimizing a

mean-squared-error loss between the experimental and

calculated data. For clean high-resolution single-phase data

with 20–25 non-overlapping reflections, it is sometimes

possible to automate these three steps. A general peak-finding

algorithm can select d spacings, and standard auto-indexing

and refinement methods automatically solve the unit-cell

structure (Visser, 1969; Coelho, 2018; Boultif & Louër, 1991;

Altomare et al., 2009; Le Bail, 2004).

However, data from real experiments can often be noisy

and contain highly overlapped regions from data with more

than one phase. In these situations, it is difficult to determine

the number of reflections in a given region, which makes

accurate determination of peak locations challenging.

Furthermore, for multiphase samples, assigning peaks to their

correct corresponding phase is a significant challenge. In fact,

for many low-symmetry crystals, automatic peak finding can

even fail on simulated data (Park et al., 2017). In these cases,

peak finding and indexing often become a human-supervised

procedure, which impedes progress towards continuous-

analysis paradigms.
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In this work, we train CNNs to predict lattice parameters

for each crystal system on the basis of data from the

Cambridge Structural Database (CSD; Groom et al., 2016) and

ICSD (Hellenbrandt, 2004). Together, these data sets contain

crystal structures with a large range of lattice parameters and

whose structures involve different types of bonding and

compositions. The ML approach to the indexing problem is

fundamentally different from the classical methods. Instead of

assigning (hkl) indices to each peak, ML methods rely on

learned correlations to make predictions. These relationships

are found by looking at a vast database of different crystal

structures. ML approaches have the potential to outperform

conventional methods in at least two key areas:

(i) Stability to noise. ML methods learn patterns that are

characteristic of particular lattice parameters. This opens the

possibility of leveraging prior knowledge of crystal systems to

condition predictions on noisy, overlapped and multiple-phase

data.

(ii) Speed. The prediction process can be run in real time

during experimental data acquisition, as inference with pre-

trained models is faster than the time required to acquire data.

In this paper, we present an ML method which can be used

to predict the lattice parameters from generic raw PXRD

patterns. In doing so, we also highlight various challenges with

such an approach and, where possible, suggest areas for future

improvement. As part of our analysis, we analyze various

experimental conditions which are known to present chal-

lenges to the indexing process, including baseline noise, zero-

offset error, peak broadening, multiple impurity phases and

intensity modulations due to preferred orientations. We use

data modification strategies to mitigate these problems and

quantify the improved performance of the ML models. We

validate our results on simulated data from the ICSD and CSD

and on a small selection of synchrotron data from Beamline

2-1 at the Stanford Synchrotron Radiation Light Source

(SSRL). Finally, we present a proof-of-concept approach by

combining our initial lattice parameter estimates with the Lp-

Search algorithm, a recently introduced whole-pattern fitting

approach which can refine unit-cell structures without

extracting d spacings (Coelho, 2017). Our intention is that this

work, and the associated code base, will be valuable to the

community in providing a guide for future ML-based indexing

for generic PXRD patterns.

2. Analysis of simulated data from the ICSD and CSD

2.1. ICSD and CSD combined data

We begin by considering the problem of predicting lattice

parameters under conditions of perfect information. Lattice

parameters are specified by the Bragg equation and can be

determined from the peak positions in a PXRD pattern alone.

Intensities are modulated by other factors, such as the crystal

structure factor or sample and detector effects. For this reason,

it should be possible to combine information from different

types of databases to improve the prediction of lattice para-

meters. Here we simulate PXRD data from the ICSD, a

database for inorganic crystals which is significantly populated

with high-symmetry structures with relatively small lattice

parameters. We also simulate data from the CSD, a repository

for small-molecule organic and metal–organic crystal struc-

tures. This database is significantly populated with lower-

symmetry structures and contains some entries with very large

lattice parameters. The full details of the PXRD simulations

are described in the supporting information (Section S2.1).

Together, these two databases are highly complementary and

combining them increases the diversity of the data (Fig. 1).

The combined data set has 961 960 entries with at least 15 000

patterns for each crystal system (Table 2).
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Figure 1
Visualizations of data distribution by crystal system in (a) the ICSD, (b) the CSD, and (c) both the ICSD and the CSD. These two databases exhibit
complementary distributions which justifies the choice to combine them.



Our approach is to train one-dimensional convolutional

neural networks (1D-CNNs) on raw intensity arrays and

without any direct feature engineering. We approach this task

as a supervised regression problem where the labels are the

numerical values of the lattice parameters which, for each

structure, are contained in either the ICSD or the CSD. For

each set of labels, there is a corresponding PXRD pattern

which is denoted as the input. At a high level, a supervised ML

regression model can be interpreted as a nonlinear map from

the input data (PXRD pattern) to the predicted output (lattice

parameters). We train seven separate models corresponding to

each one of the seven crystal systems. At test time, the correct

crystal system is specified and the corresponding 1D-CNN is

used to make predictions of the values of the lattice para-

meters for new PXRD patterns. In this work, we assume that

the crystal system is provided beforehand. In doing so, we

assume that in a real operando implementation this informa-

tion could be obtained by leveraging the highly accurate 1D-

CNN models recently developed for crystal-system classifica-

tion (Park et al., 2017; Vecsei et al., 2019; Oviedo et al., 2019;

Suzuki et al., 2020; Tiong et al., 2020). Here, we see our work as

highly complementary to other ML-based approaches in the

community.

The choice to train models conditioned on each crystal

system has two primary motivations. Firstly, each crystal

system has a different number of independent lattice para-

meters which generate the data. Secondly, indexing is not

unique and therefore it is possible for a crystal to be indexed

in more than one crystal system; these types of non-one-to-one

tasks are typically more challenging from an ML perspective.

Note that CNN models trained for each extinction class or

space group should perform even better than models for each

crystal system (Habershon et al., 2004). Although we explore

this idea further in the supporting information (Section

S1.3.1), the primary focus of the paper is on crystal systems,

since we wanted to keep our analysis as general as possible.

For this reason, we also opt to keep the same 1D-CNN

architecture for every analysis presented in the paper

(Table 1). Here, the connectivity between all the layers is the

same, but the weights will change according to the data.

Briefly, the layers denoted Conv1D correspond to convolu-

tional layers that learn a series of filters which are able to

process PXRD patterns. Each convolutional layer has an

activation function which is a nonlinear transformation used

to increase the representational power of the neural network.

Early convolutional layers generally learn simple features

such as identifying regions of large intensity variation

including peaks and valleys. The MaxPooling1D operation

downsamples the input by performing the maximum opera-

tion. The reason for these layers is to consolidate information

from various learned filters and represent them in a lower-

dimensional space. Finally, the Dense layers correspond to

simple fully connected layers which are generally useful for

nonlinear regression tasks. The details of this model are

described in further detail in Section S2.2. An extensive

review of CNNs is provided by Rawat & Wang (2017).

We train baseline 1D-CNN models for each crystal system

and report the testing mean absolute percentage error

(MAPE) for the prediction of the a, b and c lattice parameters

(Table 2). We consider the cases where the PXRD pattern is

simulated from 0 to 30� and 0 to 90� in 2� with a wavelength of

1.54056 Å. As a baseline, we compare the predictions against a

null model which uses the mean lattice parameters in the full

data set as the prediction output. A null model is important to

this analysis because it shows whether an ML approach is

able to learn any information about the mapping between

PXRD patterns and lattice parameters. Importantly, the
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Table 1
The 1D-CNN architecture used for PXRD data sets.

The same architecture was used for all experiments, although the weights were
allowed to vary according to the data.

Layer (type) Output shape No. of parameters

InputLayer (9000, 1) 0
MaxPooling1D (pool size = 3) (3000, 1) 0
Conv1D (kernel = 5, filter = 3,

activation = ReLU)
(3000, 5) 20

Conv1D (kernel = 5, filter = 3,
activation = ReLU)

(3000, 5) 80

MaxPooling1D (pool size = 2) (1500, 5) 0
Conv1D (kernel = 10, filter = 3,

activation = ReLU)
(1500, 10) 160

Conv1D (kernel = 10, filter = 3,
activation = ReLU)

(1500, 10) 310

MaxPooling1D (pool size = 2) (750, 10) 0
Conv1D (kernel = 15, filter = 5,

activation = ReLU)
(750, 15) 765

Conv1D (kernel = 15, filter = 5,
activation = ReLU)

(750, 15) 1140

MaxPooling1D (pool size = 3) (250, 15) 0
Conv1D (kernel = 20, filter = 5,

activation = ReLU)
(250, 20) 1520

Conv1D (kernel = 20, filter = 5,
activation = ReLU)

(250, 20) 2020

MaxPooling1D (pool size = 2) (125, 20) 0
Conv1D (kernel = 30, filter = 5,

activation = ReLU)
(125, 30) 3030

Conv1D (kernel = 30, filter = 5,
activation = ReLU)

(125, 30) 4530

MaxPooling1D (pool size = 5) (25, 30) 0
Flatten (750) 0
Dense (activation = ReLU) (80) 60080
Dense (activation = ReLU) (50) 4050
Dense (activation = ReLU) (10) 510
Dense (activation = ReLU) (3) 33

Table 2
MAPE for 1D-CNNs for each crystal system.

Null prediction refers to a MAPE prediction based on the mean lattice
parameters of the data set. ML full corresponds to the prediction from the 1D-
CNN models for 0–90� in 2�. ML reduced corresponds to the prediction from
the 1D-CNN models for 0–30� in 2�.

Symmetry
Null
prediction

ML
prediction
full

Ratio
1

ML
prediction
reduced

Ratio
2

Training
data set
size

Cubic 51.49 7.55 6.8 4.08 12.6 30 705
Hexagonal 47.37 7.35 6.4 8.94 5.3 17 842
Trigonal 46.58 15.72 3.0 15.30 3.0 25 784
Tetragonal 48.77 11.56 4.2 9.09 5.4 37 183
Orthorhombic 29.94 10.06 3.0 12.92 2.3 161 087
Monoclinic 24.76 11.79 2.1 11.23 2.2 445 708
Triclinic 20.06 3.11 6.5 2.68 7.5 243 651



interpretation is not that any improvement over the null

model is intrinsically meaningful, but rather that the degree of

relative improvement over the null model can give a sense of

how well the ML approach works. For instance, we seek to

avoid claiming that the ML model performs well in crystal

systems where it is simply the case that the data have a narrow

distribution of lattice parameter values. The motivation for

choosing the mean null model is that it does not require any

peak-finding operations in order to provide an estimate. We

also consider other null models in Section S1.3 and find that

the various null models perform similarly, with no individual

model the clear winner for all crystal systems.

From this analysis, we are able to predict lattice parameters

for all crystal systems with roughly 10% MAPE for both

angular ranges (Table 2). We quantify the extent to which the

ML models outperform the null model by taking the ratios

(ratio 1 and ratio 2) of the relevant MAPEs. Clearly, the ML

predictions far outperform the null models, and this highlights

the predictive potential of ML for the parameter estimation

task. In addition, the models perform similarly for both

angular ranges, which suggests that it might not be necessary

to include higher-angle data. This finding agrees with the

conventional wisdom that a smaller range, containing 20–30

peaks, is generally sufficient to index a powder pattern.

Nevertheless, we focus on the 0–90� range in this work in order

to avoid needing to specify a range containing a certain

number of peaks.

Note that we were not able to predict accurately the three

angle parameters, �, � and �. For these cases, our predictions

were comparable to a null prediction based on the mean angle

parameters in the data set. There are a few possible reasons

for this result which are considered further in Section S1.2.

However, this result only affects the predictions for the

monoclinic and triclinic crystal systems, since angle informa-

tion is implicitly considered by training independent models

for each crystal system. We recognize that the lack of angle

information does hinder the predictive ability for low-

symmetry structures. However, in Section 3.2 we show that, in

some cases, a coupled scheme involving ML and automated

refinement can be used to recover the angles for the mono-

clinic and triclinic systems.

2.1.1. Training and testing on modified data. Real-life

experimental conditions introduce various deviations to

PXRD patterns simulated from crystal structure factors. To

develop effective ML algorithms for automatic prediction, it is

critical to determine possible experimental non-idealities in

the input data that significantly affect predictive performance.

On the basis of experimental guidelines and previous work

(Oviedo et al., 2019; Park et al., 2017), we consider the

effect of the following modifications due to experimental non-

idealities: peak broadening, baseline noise, random intensity

modulation, detector zero shifting and the presence of

multiple unknown phases. The motivation for and details of

these experimental modifications are described in Section S2.3.

First, we consider the situation where our models are

trained on clean (no experimental modifications) simulated

data and tested on simulated data containing one of the

aforementioned experimental modifications. Fig. 2 shows the

effect of different experimental modifications for a repre-

sentative high-symmetry class (cubic crystals) and a repre-

sentative low-symmetry class (triclinic crystals); the full data

for all crystal systems are also presented in Table 3.
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Figure 2
The effect of including experimental modifications in testing data on
models trained without including any experimental modifications. Results
are shown for unit-cell length predictions for (a) the cubic and (b) the
triclinic crystal systems. The modifications studied correspond to zero
error, intensity modulation, Gaussian broadening, Gaussian baseline
noise and multiple impurity phases. Perfect refers to unmodified data and
null refers to prediction using the mean lattice parameters of the data set.
Zero error and intensity modulation have little effect on ML prediction.
On the other hand, baseline noise and multiple phases are particularly
damaging modifications.

Table 3
MAPE for 1D-CNNs trained on unmodified data and tested on data
containing modifications.

Baseline noise, broadening and impurities damage ML performance, while
intensity modulations and peak shifting have little effect. Null refers to
predictions based on the mean lattice parameters of the data set. Perfect refers
to training and testing on unmodified data and is intended as a control.

Symmetry Null Perfect Broaden Baseline Intensity Shift Impurities

Cubic 51.49 7.55 8.62 71.26 7.84 7.53 59.22
Hexagonal 47.37 7.35 10.92 57.87 7.53 7.47 48.36
Trigonal 46.58 15.72 19.03 41.14 15.97 15.97 39.25
Tetragonal 48.77 11.56 17.15 43.02 11.74 11.62 42.02
Orthorhombic 29.94 10.06 18.45 34.85 10.45 10.02 27.34
Monoclinic 24.76 11.79 20.01 38.21 12.16 11.74 22.94
Triclinic 20.06 3.11 19.87 24.11 3.46 3.15 16.02



In both cases, random intensity modulation and zero

shifting clearly have little effect on the model prediction.

Here, the performance, as quantified by MAPE, is similar to

the prediction on perfectly clean data. The results for the

intensity modulation experiment indicate that the models are

correctly learning the physics that lattice parameter prediction

should be dependent on peak location and not intensity.

We note that the method for modifying the intensities does

not entirely capture the process of preferred orientation

effects in PXRD patterns. It is possible that a more physically

realistic model for intensity modulation, which is dependent

on Miller indices, might be detrimental to the ML perfor-

mance. However, we can be confident that, at least for small

modulations in intensity, the ML performance should be

relatively stable. Although outside the scope of the present

work, to study the effect of strong orientation effects it will be

important to incorporate a more realistic physical model.

The results for the zero-error experimental modification

indicate that the 1D-CNN models are largely invariant to

small total translations of the input image. In other words, for

small offsets, only relative distances between peaks matter.

This is an unsurprising result, as translational invariance is one

key feature of CNN approaches. On the other hand, it is

evident that baseline noise and the presence of multiple

phases are extremely damaging to model prediction (Table 3).

Under these conditions, the prediction is comparable to a null

model which predicts lattice parameters based on the mean

lattice parameters of the full data set. This indicates that the

initial unmodified models are highly sensitive to the presence

of small additional peaks and are not suitable for application

to real data sets. Another interesting result is that modification

with peak broadening affects the triclinic system far more than

the cubic crystal system (Fig. 2). This is probably because the

triclinic system has a large number of peaks (due to lower
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Figure 3
The impact of (a), (b) broadening, (c), (d) baseline noise and (e), ( f ) multiple impurity phases on ML predictions for unit-cell lengths for (left-hand
column) cubic and (right-hand column) triclinic crystal systems. NM refers to a pattern with no modifications and M refers to a pattern with the
corresponding experimental modification. The notation A/B indicates training with modification A (NM or M) and testing with modification B (NM or
M). The null column is a prediction based on the mean lattice parameters of the data set. The performance of ML models is greatly improved when
training and testing with modifications (M/M) relative to training on unmodified data and testing on modified data (NM/M).



symmetry) which become highly overlapped with increased

broadening. This trend of worsening performance for lower-

symmetry crystals with peak broadening also holds for other

crystal systems (Table 3).

To improve the resilience of the model to experimental

modifications, we analyzed the effect of including modified

examples in the training data. For example, to improve the

performance of our model against baseline noise on the

triclinic system, we trained a 1D-CNN with data that had

variable baseline noise. We focus only on improving the

performance against multiple phases, baseline noise and peak

broadening, since random intensity modulation and zero

shifting have little impact on predictive performance (Table 3).

For each type of modification, we consider four tests which

constitute all possible choices of training and testing on

unmodified (NM) and modified (M) data. The results are

shown graphically in Fig. 3 for the cubic and triclinic crystal

systems. More complete information for all crystal systems is

presented in Tables 4 and 5.

For the experimental broadening condition, we find that it is

possible to stabilize greatly the predictions for all crystal

systems. For example, the MAPE for the triclinic system is

more than four times lower for training and testing on modified

data versus training on unmodified data and testing on modi-

fied data [Fig. 3(a)]. Interestingly, we find that training on data

with broadening even helps prediction on unmodified data;

this is indicative of classical augmentation improvement effects

that are often seen in training ML models (Perez & Wang,

2017). In short, our analysis suggests that it should be relatively

easy to stabilize predictions against peak broadening by incor-

porating the broadening modification into the training set.

Incorporating baseline noise into the training set also

greatly reduces the testing MAPE [Fig. 3(b) and Table 4].

However, for a number of crystal systems, the performance is

not as good as the default of training and testing without

baseline noise. Furthermore, it appears that a model trained

on modified data and applied to data without any modification

yields a slightly worse prediction than a trained unmodified

model (Table 5). We believe that the reason for these obser-

vations is that a model trained on baseline noise becomes less

sensitive to low-intensity peaks. This would primarily affect

high-angle/high-q data. Therefore, training using baseline

noise should help the performance on a modified test set, but,

since there is a loss of information in training, the model

performs slightly worse on clean data.

We also analyzed how the ML performance changes as the

baseline noise level is increased, reducing the number of

visible peaks. Here, a peak is defined as no longer visible if it

has lower intensity than the surrounding baseline noise. As a

representative example, we show the results for the tetragonal

crystal system in Table 6. Although the performance de-

creases, even at a noise level of 0.1 (10% noise relative to the

largest peak) where only 33% of peaks are visible, the predic-

tions are significantly better than those of the null model.

Finally, we consider the impact of including multiple

impurity phases on model testing performance [Fig. 3(c) and

Tables 4 and 5]; here we consider the case where we have up to

three low-phase-fraction impurities (Section S2.3). We note

similar trends to the baseline noise case, but the magnitude of

the deteriorating effect is more pronounced. This is consistent

with the intuition that the presence of multiple impurity

phases is one of the most challenging obstacles in classical

indexing procedures. Interestingly, we still get reasonable

predictions, even without filtering the impurities, especially for

higher-symmetry structures. Furthermore, we emphasize that

our analysis incorporates extremely stringent tests for

impurity peaks at a level far beyond that of conventional

indexing. On average, a given pattern might be corrupted by a
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Table 4
MAPE for 1D-CNNs trained and tested on modified data.

Incorporating modifications into the training set reduces the MAPE for
baseline noise, broadening and multiphase impurities. Null refers to
predictions based on the mean lattice parameters of the data set. Perfect
refers to training and testing on unmodified data and is intended as a control.

Symmetry Null Perfect Broaden Baseline Impurities

Cubic 51.49 7.55 3.4 5.2 9.4
Hexagonal 47.37 7.35 8.0 10.2 13.6
Trigonal 46.58 15.72 15.8 16.9 22.9
Tetragonal 48.77 11.56 12.6 15.6 18.2
Orthorhombic 29.94 10.06 10.3 11.5 17.46
Monoclinic 24.76 11.79 12.4 12.3 16.02
Triclinic 20.06 3.11 3.7 4.6 10.48

Table 5
MAPE for 1D-CNNs trained on modified data and tested on unmodified
data.

Prediction is generally worse relative to the perfect condition. However, some
classical ML augmentation improvements are apparent for the broadening
condition. Null refers to predictions based on the mean lattice parameters of
the data set. Perfect refers to training and testing on unmodified data and is
intended as a control.

Symmetry Null Perfect Broaden Baseline Impurities

Cubic 51.49 7.55 3.1 4.4 9.9
Hexagonal 47.37 7.35 8.5 10.0 13.5
Trigonal 46.58 15.72 16.7 15.5 20.0
Tetragonal 48.77 11.56 13.0 16.5 17.5
Orthorhombic 29.94 10.06 9.5 10.3 15.71
Monoclinic 24.76 11.79 12.6 11.6 13.5
Triclinic 20.06 3.11 3.1 3.8 7.5

Table 6
MAPE for 1D-CNNs as a function of the number of visible peaks for
models trained on both 0–30� and 0–90� 2� for the tetragonal crystal
system.

The noise level value indicates the fraction of the largest reflection. For
example, 0.05 corresponds to baseline noise which does not exceed 5% of the
largest peak. ML full corresponds to the prediction from the 1D-CNN models
for 0–90� in 2�. ML reduced corresponds to the prediction from the 1D-CNN
models for 0–30� in 2�.

Noise
level

Percentage of
visible peaks Null

ML prediction
full

ML prediction
reduced

0.0 100.0 46.58 11.56 9.09
0.001 85.3 46.58 13.56 12.29
0.005 73.4 46.58 14.76 13.38
0.01 67.0 46.58 14.12 14.19
0.05 44.90 46.58 17.21 18.35
0.1 33.30 46.58 19.12 19.15



large number of peaks with non-negligible intensities (Table 7).

In general, the problem of solving unit cells in the presence of

multiple phases is an important unsolved problem in powder

diffraction. Our results indicate that ML approaches can

provide pathways to estimating the lattice parameters of

PXRD patterns in the presence of multiple small impurity

phases.

Overall, the results of this analysis of possible experimental

modifications show that it is essential to incorporate appro-

priate modified data into ML training sets. Furthermore,

proper modification strategies can substantially recover lost

predictive power.

2.2. Percentage within bound metric

In this section, we introduce the percentage within bound

(PWB) metric to analyze further the performance of the ML

predictions. The PWB is the percentage of test examples which

have all three lattice parameters within a given MAPE

(Section S2.2). Concretely, a PWB10 metric measures the

likelihood that all three lattice parameter predictions are

within 10% of their true values. We believe this is a better

(although harsher) metric than MAPE and is more suitable for

assessing performance. For this analysis, we train models on

ICSD/CSD data with all data augmentations mentioned in

Section 2.1.1. The performance on a test set of ICSD/CSD

data for each crystal system compared with a null prediction

based on the mean lattice parameters of the data set is shown

in Table 8. For testing on ICSD/CSD data, for every bound,

the ML prediction significantly outperforms the null prediction.

3. Perspectives on automated analysis

So far, we have shown that it is possible to estimate lattice

parameters on simulated data with approximately 10% MAPE

(Table 2). Although this is a promising result for an ML

approach, these results do not solve the unit cell from a

practical viewpoint. Generally, in order to solve a unit cell, it is

necessary to estimate the lattice length parameters a, b and c

to within 0.1–0.01 Å and the angles to within 0.1�. In this

section we first quantify the extent to which ML predictions

reduce the search space needed to find the true lattice para-

meters. Following this, we present a coupled scheme which

uses ML estimates and iterative whole-pattern fitting to solve

unit cells automatically. Finally, we apply this methodology to

a small data set from Beamline 2-1 at the SSRL.

3.1. Volumes of parameter search space

Using an ML prediction, we are able to reduce greatly the

volume of parameter search space around the true values. Our

baseline range for the three lattice parameters is between 2

and 2dmax Å, where 2dmax represents an upper bound on the

largest lattice parameter, and this estimate forms a cube in

lattice parameter space. dmax is calculated by using the

knowledge of the correct crystal system to solve directly for

the largest d spacing (Section S2.5). This bound was chosen as

it is used as the default bound for the whole-pattern fitting

approach described in Section 3.2. The lower bound was

chosen to include all structures from the testing sets. Real

indexing strategies often contain other constraints, such as a �

b � c, on the search space volume. These strategies reduce

both the ML and the default bound and are hence not

considered here. We calculate the percentage of the testing

data set which falls within 10 and 5% bounds (PWB5 and

PWB10) around the ML estimates, as well as the corre-

sponding reductions in search space volume for these bounds,

VR5 and VR10 (Table 9). The volume metrics are calculated as

ratios of the baseline search space volume to the ML search

space volume, averaged over all the testing set predictions

(Section S2.5). Note that the predicted ML volume is a

rectangular prism, as opposed to the 2–2dmax cubic volume for

the baseline.

Unsurprisingly, the reduction in search space is much more

pronounced for lower-symmetry systems than for higher-

symmetry systems. For example, VR10

exceeds a factor of 1000 for low-symmetry

crystals (Table 9). In this work, the ML

search space volume only takes into

account predictions of the lattice length

parameters. We expect that, with the

development of better models which can

accurately predict lattice angle para-

meters, the relative difference between

the baseline search space and the ML

search space volumes will be even larger

for the triclinic and monoclinic crystal

systems. These results will probably be

generally useful to the indexing commu-

nity at large, since popular indexing
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Table 7
The average number of impurity peaks for each intensity range of a given
PXRD pattern.

The intensity level value indicates the fraction of the largest reflection. For
example, 0.05 implies that the largest impurity peak does not exceed 5% of the
largest peak in the original PXRD pattern.

Intensity level Average number of peaks

0–0.001 363.3
0.001–0.005 104.0
0.005–0.01 19.1
0.01–0.05 18.9
0.05–0.1 3.7

Table 8
Showing how the 1D-CNN models trained on the ICSD/CSD database significantly outperform
null predictions.

PWB reports the percentage of testing examples which have all three length parameters within a given
MAPE bound. PWB10, for example, indicates the percentage of testing examples for which all three
predicted lattice parameters are within 10% of their true lattice parameters.

Cubic Hexagonal Trigonal Tetragonal Orthorhombic Monoclinic Triclinic

PWB ML Null ML Null ML Null ML Null ML Null ML Null ML Null

PWB1 19.1 1.3 1.9 0.0 1.4 0.0 0.8 0.0 0.0 0.0 0.0 0.0 1.1 0.1
PWB5 78.3 2.9 34.1 0.0 15.0 0.0 15.5 0.0 9.6 0.0 5.9 0.0 50.1 0.6
PWB10 91.3 15.4 60.7 0.0 32.3 0.0 35.2 0.0 34.5 1.1 23.6 1.8 83.4 4.4
PWB20 96.6 23.8 79.6 0.6 53.9 2.0 56.3 2.4 64.5 10.8 51.0 14.9 93.9 28.5
PWB30 98.1 32.4 86.1 15.5 67.0 8.3 70.9 8.8 80.3 29.7 69.9 36.7 97.7 54.2
PWB40 98.6 44.0 90.7 15.5 75.3 18.1 81.9 21.0 87.8 50.1 83.7 58.0 98.8 72.7
PWB50 99.6 50.8 94.3 29.4 82.4 32.4 88.1 35.8 93.6 64.8 90.6 73.3 99.7 83.0



approaches such as trial and error and Monte Carlo search

(Altomare et al., 2009; Le Bail, 2004), the dichotomy method

(Boultif & Louër, 1991), and singular value decomposition

(Coelho, 2003) could directly incorporate these restricted

ranges into their analyses. This would be a trivial addition to

these algorithms as each optionally allows for constrained

search within specified unit-cell ranges.

3.2. Whole-pattern fitting using ML initial guess

In this section, we combine our ML estimates with Lp-

Search, a recently developed whole-pattern refinement

method based on Pawley refinement (Coelho, 2017). The

guiding motivation for using Lp-Search is that it has wider

minima for the objective loss function than in Pawley refine-

ment and can work with less accurate initial parameter esti-

mates. Lp-Search often performs quite well on simulated data

and can sometimes solve unit cells using the default 3–2dmax

parameter ranges. We present three case studies comparing

ML+Lp-Search with default Lp-Search and analyze the results

in terms of speed and convergence. The PXRD patterns we

consider here correspond to a high-symmetry cubic structure,

a low-symmetry triclinic structure and a hexagonal dominant

zone problem (Table 10).

3.2.1. Example 1: case study of a high-symmetry system.

We first consider Example 1 (Baffier & Huber, 1969), which is

the simple case of indexing a crystal with cubic symmetry

(Table 10). Here the true lattice parameter a has a value of

8.292 Å and the ML prediction yields an estimate of 8.666 Å.

For the ML+Lp-Search method, we initialize Lp-Search with

ML lattice parameter ranges that are within 10, 20 and 50% of

the predicted values. These estimates are fed into the Lp-

Search algorithm, along with the correct crystal system, and

the average times taken to converge to the true lattice para-

meters are recorded. In addition, we report the fraction of

times a full Lp-Search minimization converges to the correct

answer within 50 000 iterations. The minimization was also

performed using the Lp-Search default range of (3–2dmax) for

each lattice parameter (Table 11).

In this example, while ML+Lp-Search yields a reduction in

search space and is faster than default Lp-Search, the corre-

sponding volume reduction and speedup are modest.

Furthermore, in both cases, the minimizations converge to the

true answer in every minimization. This is an unsurprising

result as the cubic system is generally easy to index since the

search space is one dimensional.

3.2.2. Example 2: case study of a low-symmetry system.

Next, we consider a low-symmetry triclinic structure (Oder-

matt et al., 2005) with dissimilar values for the lattice para-

meters (Example 2; Table 10). The predicted and true a, b and

c lattice parameters are 11.559548, 13.5853405 and 38.7705 Å

and 11.2927, 13.455 and 37.9436 Å, respectively. The corre-

sponding percentage converged and average times taken to

converge are shown in Table 12. For this example, the angular

lattice parameters were initialized to be 90� in 2� with an

allowable range of [60�, 120�] 2� in the Lp-Search procedure.

In this case, ML+Lp-Search is much faster than default Lp-

Search and converges every time. As expected, the tighter the

ML bound, the faster the ML+Lp-Search method reaches

convergence. This speedup can be directly attributed to the

large reduction in search space using our initial ML estimates.

Note that the ML was useful for this problem even in the

absence of predictions for �, � and �. We expect that future

work on accurate prediction of lattice angle parameters will

further significantly accelerate the method.

3.2.3. Example 3: case study of a dominant zone system.

Finally, in Example 3 (Huang et al., 2018) we investigate an
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Table 9
Volume of search space ratio for each crystal system.

Symmetry PWB10 PWB5 VR10 VR5

Cubic 91.3 78.3 369.1 2926.8
Hexagonal 60.7 34.1 139.4 557.7
Trigonal 32.3 15.0 242.5 969.4
Tetragonal 35.2 15.5 181.9 727.5
Orthorhombic 34.5 9.6 3908.7 31 369.3
Monoclinic 23.6 5.9 2139.1 17 017.4
Triclinic 83.4 50.1 1902.1 15 216.7

Table 10
Description of case studies for automatic experiments using Lp-Search.

Example Structure
Crystal
system Lattice parameters (Å, �)

1 F0.5Ga1.8251Mg0.9975O3.5 Cubic 8.292, 8.292, 8.292, 90, 90,
90

2 C116H1O4�4CH4O�4H2O Triclinic 11.2927, 13.455, 37.9436,
83.672, 89.873, 80.841

3 C48H62ErN7O2Si2 Hexagonal 13.1144, 13.1144, 57.64, 90,
90, 120

Table 11
Time taken and percentage converged for Example 1 using the ML+Lp-
Search method.

Automatic performance is similar to that obtained using default Lp-Search.
Converged refers to the fraction of time that Lp-Search converges to the true
lattice parameters in 20 minimizations of 50 000 iterations. VR is the search
space volume ratio for each lattice parameter bound.

Lattice parameter range Converged hTimei (s) �(Time) (s) VR

10% bound 1.0 0.12 0.02 7.85
20% bound 1.0 0.204 0.025 3.93
50% bound 1.0 0.21 0.0 1.57
(3–2dmax) 1.0 0.28 0.07 1

Table 12
Time taken and percentage converged for Example 2 using the ML+Lp-
Search method.

ML+Lp-Search is considerably faster than default Lp-Search performance.
Converged refers to the fraction of time that Lp-Search converges to the true
lattice parameters in 20 minimizations of 50 000 iterations. VR is the search
space volume ratio for each lattice parameter bound.

Lattice parameter range Converged hTimei (s) �(Time) (s) VR

10% bound 1.0 37.00 27.79 7239
20% bound 1.0 97.97 91.53 920
50% bound 1.0 847.22 860.60 59
(3–2dmax) 1.0 3989.61 3297.83 1



example of a structure which exhibits a dominant zone

problem (Table 10). In this situation, one lattice parameter is

much larger than the others and therefore the first set of peaks

correspond to just the largest lattice parameter. These

problems are typically challenging for all conventional

indexing programs, as well as for Lp-Search (Coelho, 2017).

The corresponding percentage converged and average times

to converge are shown in Table 13.

In this case, the ML+Lp-Search method correctly deter-

mined the lattice parameters using a 10% bound in all of the

minimizations; this situation corresponds to VR10 = 404. As

the bound increases, the fraction of converged solutions

decreases, while the average time taken to converge increases

(Table 13). Notably, default Lp-Search did not converge to the

correct lattice parameters in any of the 20 minimizations.

Again, this result is attributable to the large reduction in

search space for initial ML estimates. These results highlight

that the ML+Lp-Search method has the potential to index

structures, automatically, which are challenging for conven-

tional methods.

In these three case studies, our analysis specifies a priori the

bound that contains the true lattice parameters. This is not

necessarily a problem as it is possible to try, iteratively,

different bounds of increasing width. One avenue of future

research will be to quantify the uncertainty of the ML

prediction using probabilistic models to learn the appropriate

bounds directly. Here, one approach could involve ensembling

various 1D-CNN models and using the predicted 95% inter-

vals as the Lp-Search bounds. In addition, although the time

taken to make a prediction on lower-symmetry systems may

appear relatively long, in practice this implementation could

require far fewer than the 50 000 iterations used here. The

case studies were run with 50 000 iterations in order to give the

default Lp-Search range the maximum chance of converging.

In addition, as Lp-Search is trivially parallelizable (Kirk & Wen-

Mei, 2016), an implementation of this procedure at a beam-

line could easily operate using a small cluster of CPU cores.

3.3. Quantifying necessary bounds for Lp-Search

In addition to the case studies on simulated data, we studied

how tight the range for a prediction needs to be in order to

converge with Lp-Search in just 1000 iterations for 100

samples from each crystal system (Fig. 4). Specifically, amax–

amin , bmax–bmin , cmax–cmin , �max–�min , �max–�min and �max–�min

were chosen as 1, 5, 10 and 20 percentage deviations from the

true lattice parameters. In doing so, we quantify how good an

ML design needs to be in order to converge reliably with Lp-

Search on simulated data using a very small number of mini-

mizations.

Our results indicate that ML predictions within 1–5% of the

true lattice parameters are likely to converge automatically in

a short number of Lp-Search iterations. The intuition for

choosing a small number of Lp-Search iterations was to

formulate the problem as an ML-guided local optimization

problem which can be run on a single local CPU. However, it is

certainly possible to use a greater number of minimizations.

For a larger number of minimizations, we expect that the

probability of convergence will increase monotonically for

every bound threshold. Such an approach would enable more

successful attempts for lower thresholds. Nevertheless, we

hope that this analysis will be helpful in setting a concrete

target for improvements on the approach presented here. For

fast high-throughput experiments, we expect fully automated

methods such as ML+Lp-Search to be quite valuable for

indexing data with a single dominant phase.

3.4. Application to synchrotron data

Finally, we apply the models from Section 2.2 to experi-

mental data collected from Beamline 2-1 at the SSRL. Since

these data are collected at different wavelengths (typically

0.729 Å) from the training data, they are first linearly inter-

polated to fit the same q range as the training data. We present

the ML unit-cell predictions (ML a, b, c), the ML+Lp-Search

predictions (ML/Lp a, b, c) and ground-truth parameters from

expert refinement in Table 14.

The ML+Lp-Search method performs reasonably well and,

in the majority of high-symmetry cases, the procedure

converges to the correct lattice parameters automatically. The

performance in certain monoclinic low-symmetry cases,

however, is not so good. We speculate that there are at least

two reasons for this observation. First, the monoclinic system

contains a large quantity of data from various extinction

classes which might be confusing the ML predictions. This
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Table 13
Time taken and percentage converged for Example 3 using the ML+Lp-
Search method.

ML+Lp-Search is considerably faster and converges more often than default
Lp-Search. Converged refers to the fraction of time that Lp-Search converges
to the true lattice parameters in 20 minimizations of 50 000 iterations. VR is
the search space volume ratio for each lattice parameter bound.

Lattice parameter range Converged hTimei (s) �(Time) (s) VR

10% bound 1.0 44.8 38.5 404
20% bound 0.85 185.6 142.5 101
50% bound 0.50 354.2 155.1 16
(3–2dmax) 0.0 1

Figure 4
Percentage of times that Lp-Search converged to the correct answer as a
function of percentage bound for 100 test samples for each crystal system.



reasoning seems to be supported by our observations that it is

possible to train better ML models when space-group infor-

mation is utilized (Section S1.3.1). The second probable

reason for worse performance in the monoclinic system is the

lack of predictability of the angle using the ML approach. Lp-

Search is given the full range for the possible angle and it is

possible that this search space is too large for Lp-Search to

converge in the specified number of iterations. Possible

reasons for the difficulty in predicting the lattice angle para-

meters are detailed in Section S1.2. Also, for a few cases, the

minimization converges to lattice parameters that are trivial

multiples or divisors of the refined ground truth. These

predictions are highlighted with an asterisk (*) in Table 14. In

order to tackle this issue and to obtain the preferred higher-

symmetry solutions, training models for each space group or

extinction class will probably be necessary.

4. Conclusions

The ability to refine a unit cell without human supervision will

help drive future work in the optimization of materials. In this

work, we help build the framework necessary to realize this

goal. By training deep convolutional neural networks on

nearly a million unique PXRD patterns drawn from across the

chemical spectrum, we are able to provide estimates of unit-

cell lattice parameters for each crystal system. In doing so, we

analyze key experimental non-idealities that might affect ML

predictions and conclude that the presence of multiple phases,

baseline noise and peak broadening are particularly damaging.

Incorporating these experimental conditions into the training

is absolutely necessary and, in many cases, can improve model

prediction and stability.

We emphasize that our approach is independent of parti-

cular chemical environments and instead should apply to all

crystalline systems at large. However, there are many situa-

tions in which the possible phases, elemental constituents and

bonding are known. If the constituent elements are known,

this can be used to construct a prior model for the neural

network, since atomic features such as ionization energies and

electronegativities are generally correlated with lattice length

parameters (Li et al., 2021). For instance, if the constituent

elements and compositions can be obtained using another

characterization method, a joint model can be trained over the

elemental features and the PXRD patterns in order to yield

better predictions. In addition, the modular nature of our work

allows our models to be directly combined with other similar

analyses for different types of characterization data in order to

leverage multiple sources of information simultaneously

(Aguiar et al., 2020).

The primary focus of this work was predicting the lattice

parameters of a dominant phase in the presence of relatively

weak impurities. However, a more general and useful task is

the prediction of lattice parameters for all sets of phases

within a PXRD pattern. This task is ill-posed under the

current formulation since only the label of the dominant phase

is provided during training. It is also difficult to extend this

directly to multiple phases because the labels would need to

have variable dimensionality to account for the different

numbers of phases. In order to train such an algorithm, a

training set would need to be constructed which consists of

linear combinations of phases and their corresponding lattice

parameters. In this situation, the size of the data set scales

combinatorially with the number of possible patterns. For the

cases where all possible phases within the system are specified,

either from theory or prior knowledge, it is possible to train

such an algorithm and achieve successful results (Lee et al.,

2020; Dong et al., 2021). Unfortunately, the more interesting

case applies in the regime of materials discovery, where not all

phases present are known beforehand. In order to approach

this problem, additional information is needed. Specifically,

if the system can be observed with different linear combina-

tions of phases (e.g. through high-throughput sputtering or

time-series experiments), it may be possible to utilize our

algorithm on plausible reconstructed single phases obtained
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Table 14
ML+Lp-Search method applied to predict lattice parameters on synchrotron data automatically.

An asterisk (*) next to a prediction indicates that the predicted lattice parameter is an integral multiple or divisor of the true lattice parameter.

Material Crystal system Real a Real b Real c ML a ML b ML c ML/Lp a ML/Lp b ML/Lp c

LaB6 Cubic 4.1568 4.1568 4.1568 4.0950 4.0950 4.0950 4.1584 4.1584 4.1584
SiO2† Trigonal 4.9142 4.9142 5.4057 4.6304 4.6304 7.4401 4.9030 4.9030 5.4448
(C4H5KO6)n‡ Orthorhombic 7.6130 7.7872 10.6546 6.8423 9.8300 11.5349 7.6128 7.7871 10.6544
ZnO Hexagonal 3.2483 3.2483 5.2041 3.1494 3.1494 5.5284 3.2485 3.2485 5.2044
In2O3 Cubic 10.1146 10.1146 10.1146 10.1178 10.1178 10.1178 10.1152 10.1152 10.1152
Fe2O3§ Hexagonal 5.0329 5.0329 13.7420 4.1460 4.1460 9.5030 5.0329 5.0329 6.8710*
CaCO3 Hexagonal 4.9865 4.9865 17.0609 4.8977 4.8977 8.9315 4.9876 4.9876 8.5330
NaHCO3 Monoclinic 3.4800 9.6844 8.0555 5.4356 6.9519 9.4572 6.7952 12.2167 7.9012
NaCl Cubic 5.6411 5.6411 5.6411 5.0638 5.0638 5.0638 5.6448 5.6448 5.6448
KCl Cubic 6.2933 6.2933 6.2933 6.6645 6.6645 6.6645 6.2978 6.2978 6.2978
Na2S2O3 5H2O Monoclinic 5.9501 7.5349 21.6000 6.4716 10.2068 15.2701 5.9553 15.2145 22.0355
MgCl2 6H2O Monoclinic 6.0748 7.1084 9.8619 4.8602 6.5877 7.5698 6.0751 7.1089 9.8626
(CH6N)2PbI3Cl} Orthorhombic 4.6447 15.4300 19.2880 7.3973 14.7956 23.1625 9.2914* 15.4322 19.2914
KHCO3 Monoclinic 3.7131 5.6299 15.1794 4.7047 9.6333 16.1360 6.2625 9.8191 24.1920
C†† Cubic 3.5656 3.5656 3.5656 2.7742 2.7742 2.7742 3.5655 3.5655 3.5655

† �-Quartz. ‡ Naturally occurring potassium bitartrate. § Contains 7.5 wt% Fe3O4 impurity. } Contains 5.4 wt% of methylammonium chloride and 0.7 wt% of (CH6N)PbI3

impurities (Kim et al., 2020). †† Diamond.



via non-negative factorization methods (Utimula et al., 2020;

Stanev et al., 2018; Long et al., 2009).

Finally, we have demonstrated that the initial parameter

estimations can lead to a substantial reduction in search space

volume around the true lattice parameters. We believe that

these results, by themselves, are useful to the powder

diffraction community due to their ease of integration with

conventional indexing techniques such as singular value

decomposition and the dichotomy method. Furthermore, we

demonstrate that these estimates can be directly passed to

whole-pattern refinement schemes in order to solve the unit

cell for cases automatically. Future work on the angle

prediction problem will probably increase the success rate for

lower-symmetry materials. The significant reduction in search

space volume enabled by lattice parameter prediction brings a

corresponding acceleration of such whole-pattern refinement

schemes. Full solutions are achievable on timescales suitable

for feedback into the experimental process. Accelerated and

fully automated analysis pipelines are a prerequisite for

Bayesian optimization or reinforcement learning approaches,

which will allow for the exploration of high-dimensional and

complex materials parameter spaces becoming common for

operando or in situ experimentation.

5. Code and data availablility and supporting
information

Models for all modification experiments, the SSRL Beamline

2-1 data set and scripts to generate Lp-Search input files can

be accessed at https://github.com/src47/DeepLPnet. Please

contact the ICSD and CSD for access to the simulated struc-

tures described in this paper.

The supporting information contains details of additional

analysis, methods and data. For further literature related to

the supporting information, see Chollet (2015) and René de

Cotret & Siwick (2017).
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