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The observation of neutron interference using a triple Laue interferometer

formed by two separate crystals opens the way to the construction and operation

of skew-symmetric interferometers with extended arm separation and length.

The specifications necessary for their successful operation are investigated here:

most importantly, how the manufacturing tolerance and crystal alignments

impact the interference visibility. In contrast with previous studies, both inco-

herent sources and the three-dimensional operation of the interferometer are

considered. It is found that, with a Gaussian Schell model of an incoherent

source, the integrated density of the particles leaving the interferometer is the

same as that yielded by a coherent Gaussian source having a radius equal to the

coherence length.

1. Introduction

Since its first demonstrations by Bonse and Hart in 1965

(Bonse & Hart, 1965) and Rauch and collaborators in 1974

(Rauch et al., 1974), perfect-crystal interferometry has been a

powerful tool to perform phase-contrast imaging and

metrology with X-rays and neutrons (Rauch & Werner, 2000;

Tamasaku et al., 2002; Momose, 2003; Klein, 2009; Pignol et al.,

2015; Massa et al., 2020; Sponar et al., 2021; Heacock et al.,

2021).

A proof-of-principle demonstration has shown that the

alignment and operation of a split-crystal interferometer with

the accuracy required for neutron interference are possible

(Lemmel et al., 2022). This prompts the design and operation

of skew-symmetric interferometers operating with both

X-rays and neutrons and having the potential of crystal

separations up to the metre scale.

This work aims to understand the machining and alignment

specifications necessary for the successful design, manufacture

and operation of such a skew-symmetric split-crystal inter-

ferometer. Becker & Bonse (1974) observed unexpected and

unexplained interference fringes associated with the relative

tilt of split crystals having a period of 0.3 mrad, which might

complicate the instrument’s operation. Windisch & Becker

(1992) proposed a mirror crystal with twice the thickness of

the splitter and the analyser to achieve fringe contrast also far

from the perfect Bragg alignment of the split crystals.

On the basis of the formalism developed by Sasso et al.

(2022), we here quantify the effects of the design parameters,

machining tolerances and misalignments on the inter-

ferometer operation. In contrast to previous studies (Becker

& Bonse, 1974; Bauspiess et al., 1976; Bonse & Graeff, 1977;

Bonse, 1988; Windisch & Becker, 1992; Mana & Vittone, 1997;

Authier, 2001; Mana & Montanari, 2004), we consider the
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propagation, in three dimensions, of partially coherent X-rays

and neutrons.

The paper is organized as follows. The dynamical theory of

X-ray and neutron propagation in perfect crystals is recalled in

Section 2. Section 3 gives the mathematical tools to propagate

X-rays and neutrons through a split-crystal skew-symmetric

interferometer by taking all the relevant degrees of freedom

into account. A partially coherent source is modeled in

Section 4. Sections 5 and 6 examine the interference of the

waves leaving the interferometer, first assuming coherent

illumination and then incoherent. The results of numerical and

Monte Carlo simulations investigating the interferometer’s

sensitivity to crystal thicknesses and misalignments and the

manufacturing tolerances are given in Sections 7 and 8.

We have omitted the effects of gravity, the Coriolis force

and interferometer accelerations (Bonse & Wroblewski, 1983,

1984). Taking them into account requires the quantum

propagators of neutrons subjected to the gravitational and

Coriolis forces in free space, and perfect crystals and crystal

interferometers; these will be the subject of a forthcoming

paper.

We carried out all the computations with the aid of Math-

ematica (Wolfram Research, 2021a); the relevant notebook

and a PDF rendering of the script are given as supporting

information. To view and interact with the notebook, the

reader may download the Wolfram Player free of charge

(Wolfram Research, 2021b).

2. Dynamical theory of diffraction

2.1. Crystal fields

As Fig. 1 shows, we assume symmetrically cut and plane-

parallel crystals. The normal ẑ to the surfaces and the reci-

procal vector h ¼ 2�x̂=d, where d is the spacing of the

diffracting planes, define a reference frame. The origin is on

the crystal surface and the y axis points up. The position vector

r = ðx; zÞ is split into the x = (x, y) component (on the crystal

surface) and the z component which determines the optical

axis and plays the role of fictitious time.

Let us introduce the single-particle state,

hxj’ðzÞi ¼ j’ðx; zÞi ¼ ’oðx; zÞjoi þ ’hðx; zÞjhi;

hx; nj’ðzÞi ¼ ’nðx; zÞ;

hrjoi ¼ exp ðiKo � rÞ
1

0

� �

exp ½iK�0z=ð2�Þ�;

hrjhi ¼ exp ðiKh � rÞ
0

1

� �

exp ½iK�0z=ð2�Þ�;

ð1aÞ

which belongs to the tensor product L2ðR
2Þ � V2 of the

L2ðR
2Þ space of the square-integrable two-variable functions

and the two-dimensional vector space V2. We use the 2 � 1

matrix representation of V2,

j’ðx; zÞi ¼
e’oðx; zÞ

e’hðx; zÞ

� �

: ð1bÞ

In (1a), � = cosð�BÞ, where �B is the Bragg angle, and

Ko;h ¼ K½cosð�BÞẑ� sinð�BÞx̂� ð2Þ

are the kinematic wavevectors satisfying the Bragg conditions

Kh = Ko + h and |Ko| = |Kh| = K = 2�/�, where � is the

wavelength of the incident radiation. We also consider a

coplanar geometry, that is, Ko, Kh, h and ẑ are in the same

(horizontal) reflection plane.

To discuss X-ray and neutron interferometry together, the

coefficients �h of the Fourier expansion of the periodic Fermi

pseudo-potential (Rauch & Werner, 2000) are linked to the

coefficients �h of the Fourier expansion of the crystal dielec-

tric susceptibility (Stepanov, 2004) by setting �h = � �h/K2.

Also, in the X-ray case, we consider only a polarization state

that is parallel or orthogonal to the reflection plane.

We kept the effects of absorption, � = Im(�0)K, and refrac-

tive index, n0 � 1 = Re(�0)/2, apart in the exp½iK�0z=ð2�Þ�

factor, where �0 = 0 in a vacuum. In our analysis, this factor is

irrelevant and will be omitted.

The ��h phases depend on the origin of the coordinate

system in the unit cell; a translation u changes ��h according

to ��h ! ��h expð�ih � uÞ. We assume that �(� x; z) = �(x; z),

so that �h = �� h. Furthermore, since expð�i�Þ ¼ � 1, the sign

of ��h can be either positive or negative.

2.2. Free-space propagation

Neglecting gravity and the Coriolis force, free-space

propagation is given by

je’ðp; zÞi ¼ Fðp; zÞje’ðp; 0Þi; ð3aÞ

where (see Appendix A)
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Figure 1
The incoming free-space o mode excites two guided modes within the
crystal, which are linear superpositions of the o and h modes. The guided
modes propagate parallel to the diffracting planes and spread into the
Bormann fan. At the exit, they excite the free-space o and h modes,
whose intensities depend on the crystal thickness (the dual of the impulse
duration in atom interferometry). In a symmetrically cut crystal, the
diffracting planes are orthogonal to the crystal surfaces.
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hp; nje’ðzÞi ¼ e’nðp; zÞ ¼
1

2�

Z1

� 1

’nðx; zÞ exp ð� ip � xÞ dx ð3bÞ

is the reciprocal-space representation of | (z)i, the resonance

error p ¼ px̂þ qŷ is the variable conjugate of x,

Fðp; zÞ ¼ exp �
iðp2 þ q2Þz

2Kz

� �

�
exp ipz tanð�BÞ

� �
0

0 exp � ipz tanð�BÞ
� �

" #

ð3cÞ

is the transfer matrix and Kz ¼ K cosð�BÞ is the Ko, h

component along the z axis.

2.3. Crystal diffraction

Still neglecting gravity and the Coriolis force, Laue

diffraction in a symmetrically cut crystal is given by

je’ðp; zÞi ¼ Uðp; zÞje’ðp; 0Þi;

where, assuming that x = 0 is a symmetry plane of the crystal,

the transfer matrix is

U0ðp; zÞ ¼
Tðp; zÞ Rðp; zÞ

Rðp; zÞ Tð� p; zÞ

� �

exp �
iðp2 þ q2Þz

2Kz

� �

: ð4aÞ

The reflection and transmission coefficients are

Rðp; zÞ ¼
i� sinð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p ; ð4bÞ

Tðp; zÞ ¼ cosð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
Þ þ �Rðp; zÞ=�: ð4cÞ

Here, � = �z/�e is the dimensionless propagation distance,

� ¼ �e tanð�BÞp=� is the dimensionless resonance error, �e =

2��/(K|�h|) is the pendellösung length and � = �h/|�h| is the �h

phasor. If the symmetry plane of the crystal is x = s, then

Rðp; zÞ expð� ihsÞ substitutes for Rðp; zÞ. A list of the main

symbols used is given in Appendix E.

3. Interferometer operation

To increase the separation and length of the arms, a skew-

symmetric interferometer is necessary (Kuetgens & Becker,

1998; Yoneyama et al., 1999). It consists of two independent

crystals that we denote I and II, each of which has two

diffracting slabs protruding from the same base. In this

configuration, the displacement of one crystal against the

other does not affect the interference. They can be positioned

far apart and the interferometer can be operated by tuning

two angles, the mutual yaw and pitch angles of the split

crystals.

Since the two crystals might be oriented and displaced

differently (Figs. 2, 3 and 4), the representations of the

neutron state and transfer matrix – equations (4a) and (1a),

respectively – cannot be simultaneously used for both because

the crystals’ kinematic vectors defined in (2) are different.
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Figure 2
Skew-symmetric triple Laue interferometer with split crystals I and II
(top view). The components are labelled as follows: S splitter, M1 and M2

mirrors, A analyser. Orange and blue rays indicate arms 1 and 2,
respectively. The rays forward transmitted by the two mirrors have been
omitted. The x axis is orthogonal to the diffracting planes. �B is the Bragg
angle and expðiKo � rÞ is the p = 0 rad m� 1 mode of the incoming single-
particle wavefunction. � (mutual pitch angle) and � (mutual yaw angle)
are rotation angles about the z and y axes, respectively. The y axis points
up.

Figure 3
Skew-symmetric triple Laue interferometer with split crystals (crystal II,
side view). The rays leaving the interferometer in the o and h states are
shifted vertically. Orange and blue indicate the first and second arms,
respectively. �y = 2ðzin þ tM=2Þ � tanð�BÞ is the vertical offset between
the interfering beams. �0 = 2� sinð�BÞ is the (vertical) reflection angle of
crystal II. � is the mutual pitch angle of the split crystals (the rotation
angle about the z axis).



To express the single-particle state leaving crystal I on the

basis of the kinematic wavevectors relevant to crystal II, we

observe that the position vector rI (as seen by crystal I and

relative to the interferometer focus, which is the point in the

reflection plane where the split particles are recombined) is

seen from crystal II as

rII ¼ MrI ¼ RðrIÞ þ sx̂I; ð5aÞ

where

R ¼

1 � � �

� 1 �  

� �  1

2

4

3

5: ð5bÞ

The yaw �, pitch � and roll  angles are the rotation angles

about the y, z and x axes, respectively. We introduced the

displacement s along the x axis because it shifts the reference-

frame origin versus the diffracting planes and it is not ab initio

evident that it is irrelevant. In contrast, the y (vertical) and z

(axial) translations are irrelevant and have been omitted.

From the viewpoint of crystal I, crystal II first rotates about

the focal axis (see Figs. 2 and 4),

rF ¼ zM1 � zM2 þ ðtM1 � tM2Þ=2
� �

tanð�BÞx̂þ yŷ

þ tS þ zM1 þ zM2 þ ðtM1 þ tM2Þ=2
� �

ẑ; ð5cÞ

and then translates by � sx̂I. From the vantage point of crystal

I, crystal II counter-rotates and counter-translates.

The problem to be solved is constructing the unitary

operator that implements the reference-frame transformation

in the L2ðR
2Þ � V2 space. Mutatis mutandis, it is the same

problem as constructing an operator that allows propagation

of a polarized photon through a birefringent crystal whose

transfer matrix is given in the basis of the crystal’s eigen-

vectors, while the photon polarization state is given in a

different basis.

The values of the single-particle wavefunction will remain

unchanged despite the change in the reference frame. If it is

the function ’I(rI) of the coordinate rI in the crystal I frame, it

will be the function ’II(rII) = ’I(rI) of the coordinate rII = MrI

of the same point in the crystal II frame. Therefore, the rele-

vant transformation of the crystal I (quantum) state |’I(z)i

into the crystal II one, j’IIðzÞi ¼ bMðzÞj’IðzÞi, can be obtained

by explicit construction as done by Sasso et al. (2022), but now

extended to a non-null roll angle. The result is (see Section 3 in

the supporting information)

je’IIðp; zÞi ¼

Z1

� 1

bMðp; p0; zÞje’Iðp
0; zÞi dp0; ð6aÞ

where

bMðp; p0; zÞ ¼ exp ½� iðp� � q Þz� �ðp0 � p � �qþ �KzÞ

�

exp þihðsþ �zÞ=2½ � 0

��ðq0 � q � h�=2 �  KzÞ

0 exp � ihðsþ �zÞ=2½ �

��ðq0 � qþ h�=2 �  KzÞ

2

6
6
6
4

3

7
7
7
5

ð6bÞ

and (p0, q0) and (p, q) are the variables conjugate to (xI, yI)

and (xII � s, yII), respectively. Since we assumed zII = zI, we

approximated the transformation by rotating the crystal II

diffracting planes, not the crystal itself.

The Dirac-delta arguments p + �q � �Kz and q � h�/2 +

 Kz encode the changes of the p-mode propagation direction

seen by crystal II. The ��z phase terms encode the displace-

ment of crystal II along the x axis due to the yaw angle �. The

phase factor exp½� iðp� � q Þz�, which is common to the o and

h states, corresponds to geometric optics. It encodes that the

incoming rays seen by crystal II are translated by ð�x̂þ  ŷÞz.

This phase factor is essential to account for the difference

between the free-space propagations from mirrors 1 and 2 to

the analyser. The first is carried out in the crystal I reference

frame, the second in the crystal II one.

Eventually, the propagation through the interferometer is

given by
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Figure 4
Skew-symmetric triple Laue interferometer with split crystals (top view).
� is the mutual yaw angle of the split crystals (the rotation angle about the
y axis). For the sake of simplicity, the interferometer geometry is ideal.
Orange and blue rays indicate arms 1 and 2, respectively; the dashed lines
indicate the second arm of the aligned interferometer. The solid and
dotted paths inside crystal II have the same length. The dotted red line is
the path difference DOPD. The rays forward transmitted by the two
mirrors have been omitted.

http://doi.org/10.1107/S1600576723010245


j’outi ¼ Xj’ini ¼ ½X1 þ X2�j’ini; ð7aÞ

where, by concatenating the crystal and free-space transfer

matrices and taking the (possible) misalignment of the split

crystals into account,

X1 ¼ FðzDAÞ bM
� 1ð�zþ tAÞU0ðtAÞ bMð�zÞ FðzA1ÞPhU0ðtM1Þ

� FðzM1ÞPoU0ðtSÞFðzSÞ; ð7bÞ

X2 ¼ FðzDAÞ bM
� 1ð�zþ tAÞU0ðtAÞFðzA2ÞPoUðtM2Þ

� bMð�z � zA2 � tM2ÞFðzM2ÞPhU0ðtSÞFðzSÞ: ð7cÞ

X1 and X2 propagate the initial |’ini state along the first and

second arms of the interferometer, respectively, Pn projects

into the |ni state, and the meaning of the geometric quantities

is shown in Figs. 2, 3 and 4.

Since the reciprocal-space representation of Xi is not

diagonal, the propagation of je’inðpÞi requires an integration.

Hence,

je’
ðiÞ
outðpÞi ¼

Z1

� 1

eXiðp; p
0Þje’inðp

0Þi dp0;

where eXiðp; p
0Þ ¼ hpjXijp

0i is a 2 � 2 matrix and i = 1, 2 labels

the interferometer arm. Here and in the following, we omit to

indicate the source and detector z coordinates, which are

implied in the in and out subscripts.

To achieve the maximum visibility of the interference

fringes, the interferometer geometry must be free of aberra-

tion, that is, � = � =  = 0 rad, tS = tA, tM1 = tM2, zA1 = zM2 and

zA2 = zM2, and consequently the defocus �z = (zA1 � zM1) �

(zM2 � zA2) is null.

4. Input wave: partially coherent source

To take the partial coherence of the source into account, we

describe each incoming particle as in the probabilistic super-

position of the (separable) single-particle Gaussian wave

packets (Appendix B),

j’inðxÞi / exp �
jx � x0j

2

l2
0

þ i�0 þ ip0 � x

� �

joi ð8aÞ

or, by using the reciprocal-space representation,

je’inðpÞi / exp �
jp � p0j

2l2
0

4
þ i�0 � ip � x0

� �

joi; ð8bÞ

where x0 is the origin, l0 is the radius and p0=K is the propa-

gation angle to the Ko wavevector.

Here, x0, �0 and p0 are uncorrelated normal variables having

zero mean. Without loss of generality, we made the x0 mean

and reference-frame origins coincide and, for the sake of

simplicity, assumed circular profiles for both the single-particle

states and their superposition.

After averaging over these single-particle states (see

Section 4 in the supporting information), we obtain a Gaussian

Schell model of the source (Schell, 1967; Mandel & Wolf, 1995;

Wolf, 2007). The relevant 2 � 2 position-space representation

of the density matrix is

hx1jJ injx2i ¼ J inðx1; x2Þ ¼ jinðx1; x2ÞPo; ð9aÞ

where

jinðx1; x2Þ / exp �
jx1j

2 þ jx2j
2

w2
0

�
ðx1 � x2Þ

2

2‘2
0

� �

; ð9bÞ

‘0 ’ l0/(1 + l0�0) measures the coherence length, �0 is the

standard deviation of the p0 distribution, w0 � ‘0 is the 1/e2

source radius and

Po ¼
1 0

0 0

� �

:

By using the 2 � 2 reciprocal-space representation, we have

hp1jJ injp2i ¼
eJ inðp1; p2Þ ¼ejinðp1; p2ÞPo; ð9cÞ

where, provided ‘0 � w0,

ejinðp1; p2Þ / exp �
2ðjp1j

2 þ jp2j
2Þ‘2

0 þ jp1 � p2j
2w2

0

8

� �

: ð9dÞ

Propagation of the density matrix is given by J out =

XJ inXy, where the dagger indicates the conjugate transpose

(Appendix B). The diagonal elements J nn
outðx; xÞ and eJ nn

outðp; pÞ

are the particle densities of the n = o, h states in the chosen

basis.

The density matrix associated with a completely incoherent

superposition is diagonal with identical elements. That asso-

ciated with a coherent (Gaussian) single-particle state |’ini

having radius w0 corresponds to (9b), where w0 � ‘0 and,

consequently, the term proportional to ðx1 � x2Þ
2 is omitted

(see Section 4 in the supporting information). The reciprocal-

space representation (9c) is accordingly recalculated as

ejinðp1; p2Þ / exp �
ðjp1j

2 þ jp2j
2Þw2

0

4

� �

: ð9eÞ

5. Exit waves: coherent source

When making explicit the components of (7a), (7b) and (7c) to

calculate the |’outi components, the resulting algebra is quite

abstruse so the reader is referred to Section 5 in the

supporting information. Here, therefore, we start by consid-

ering the simplest case of a coherent initial state. If the initial

single-particle state is ’inðxÞjoi, by application of (7a)–(7c), the

final state, after travelling through the interferometer, is

je’outðpÞi ¼
X

n¼o;h; i¼1;2

e’niðpÞjni

" #

exp �
iðp2 þ q2Þ zD

2Kz

� �

; ð10Þ

where zD is the detector distance from the source and (see

Section 5 in the supporting information)
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e’o1ðpÞ ¼ Rðpþ �Kz � �q; tAÞRðp; tM1ÞTðp; tSÞ

�e’inðp; q � h�Þ; ð11aÞ

e’o2ðpÞ ¼ Tðpþ �Kz � �q; tAÞRðpþ �Kz � �q; tM2ÞRðp; tSÞ

�e’inðp; q � h�Þ exp iðhs� þ p�x � q�yÞ
� �

; ð11bÞ

e’h1ðpÞ ¼ Tð� p � �Kz þ �q; tAÞRðp; tM1ÞTðp; tSÞe’inðp; qÞ;

ð11cÞ

e’h2ðpÞ ¼ Rðpþ �Kz � �q; tAÞRðpþ �Kz � �q; tM2ÞRðp; tSÞ

�e’inðp; qÞ exp iðhs� þ p�x � q�yÞ
� �

: ð11dÞ

These equations concatenate the relevant reflection and

transmission coefficients of the splitter, mirrors and analyser.

The �Kz � �q offset of the arguments and hs� phase originate

from the transformation of the second-crystal chain of transfer

matrices to take the misalignment of the split crystals into

account. Free-space propagations are responsible for the

exponential factor of (10), which encodes diffraction, and the

p�x � q�y phase.

We omitted the second-order terms.

�y ¼ 2ðzA2 þ tM2=2Þ� tanð�BÞ ¼ �0

zA2 þ tM2=2

cosð�BÞ
ð12aÞ

is the vertical offset between the interfering rays leaving the

source collinearly or that at the source between those inter-

fering collinearly (Fig. 3),

�0 ¼ h�=K ¼ 2� sinð�BÞ ð12bÞ

is the vertical component of the angle of reflection of the

particle bouncing off the crystal II diffracting planes (Fig. 3),

and

s� ¼ ðzA2 þ tM2=2Þ � ð13Þ

is the mutual displacement (along the x axis) between the

analyser and mirror 2 when crystal II rotates by an angle �.

The horizontal offset of the interfering plane waves (Fig. 2),

�x ¼ ðzA1 � zM1 þ zA2 � zM2Þ tanð�BÞ ¼ 2�z tanð�BÞ;

ð14aÞ

is null when the defocus

�z ¼ zA1 � zM2 þ ðtM1 � tM2Þ=2 ¼ zA2 � zM1 þ ðtM2 � tM1Þ=2

ð14bÞ

[where zF1 = zM2 + (tM2 � tM1)/2 and zF2 = zM1 + (tM1 � tM2)/2

(Fig. 2) are the focal plane distances from the mirrors] is zero.

Free-space propagation separates the o and h states leaving

the interferometer into two spatially localized states,

½’o1ðxÞ þ ’o2ðxÞ�joi and ½’h1ðxÞ þ ’h2ðxÞ�jhi, whose i = 1, 2

components interfere. Therefore, in equations (11a)–(11d), we

omitted non-essential phase terms shared by the i = 1, 2 waves

and associated the phase difference between the interfering

waves with ’n2ðxÞ.

If the detector counts the total particles per time unit, the

observed signals are

In ¼

Z1

� 1

’n1ðxÞ þ ’n2ðxÞ
�
�

�
�2 dx

¼ Jn 1þ � n cosð�nÞ
� �

; ð15aÞ

where, using the Parseval theorem to carry out the integra-

tions in reciprocal space, the mean count rate, interference,

visibility and phase are given, respectively, by

Jn ¼

Z1

� 1

e’n1ðpÞ
�
�

�
�2þ e’n2ðpÞ

�
�

�
�2

h i
dp; ð15bÞ

�n ¼

Z1

� 1

e’�n1ðpÞe’n2ðpÞ dp; ð15cÞ

� n ¼ 2j�nj=Jn; ð15dÞ

�n ¼ argð�nÞ: ð15eÞ

The phase hs� in (11b) and (11d) is the foundation of angle

measurements by crystal X-ray interferometry (Windisch &

Becker, 1992; Kuetgens & Becker, 1998). A rotation by an

angle � between the split crystals changes the interference

phase by hs� = h(zA2 + tM2/2)�. As a result, it yields travelling

fringes, the period of which depends on the crystal separation

zA2 + tM2/2. By noting that h = 2K sinð�BÞ, this phase can be

rewritten as

hs� ¼ KzxOPD� þ KxzOPD� ¼ Ko � DOPD; ð16Þ

where zOPD = zA2 + tM2, xOPD = zA2 tanð�BÞ, Kz = K cosð�BÞ,

Kx = K sinð�BÞ and DOPD is the length difference of the

interferometer arms (Fig. 4).

Therefore, two equivalent descriptions of the angular

sensitivity of the interferometer are possible. Firstly, from the

viewpoint of the incoming particles, mirror 2 moves by s�x̂

relative to the analyser but the arm lengths are unchanged.

Secondly, from the standpoint of crystal II, the source and

crystal I are displaced rigidly and the arm lengths change.

As in the symmetric counterpart, a defocused skew-

symmetric interferometer moves the interfering waves apart

horizontally by �x = 2�z tanð�BÞ and this shift is encoded –

via the ‘time-shifting’ property of the Fourier transform – by

the phase difference p�x in (11b) and (11d).

Differently from what happens with its symmetric

counterpart and as shown in Fig. 4, the pitch misalignment of

the split crystals does not misalign the interfering waves but

moves them apart vertically by �y, and this shift is encoded by

the phase difference q�y in (11b) and (11d). This raises

questions about the effect of source coherence that are

answered in the next section.

The interferometer is insensitive to the displacements and

roll rotations of the two blocks. In fact, the s and  degrees of

freedom disappear from equations (11a)–(11d). Also, by

neglecting gravity and the Coriolis force, it is insensitive to
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displacements along the z axis. In fact, a constant added to zM2

and zA1 does not change the defocus, which is the only

quantity in equations (11a)–(11d) that depends on the z

coordinate. These insensitivities make the skew-symmetric

geometry the best choice to obtain long and variable inter-

ferometer arms.

Last, but not least, equations (11a)–(11d) do not evidence

fast differential phase variations in the interfering beams

associated with the � angle between the split crystals, as

reported by Becker & Bonse (1974).

6. Exit waves: partially coherent source

The propagation of the particles emitted by a partially

coherent source through the interferometer – a linear system

described by the transfer matrix X – differs from (7a) only

because the 2 � 2 density matrix J in takes the place of the

single-particle wavefunction |’ini as the propagated quantity.

Therefore (Feynman, 2018; Cohen-Tannoudji et al., 2019),

J out ¼ XJ inXy ¼ ðX1 þ X2Þ J inðX
y
1 þ X

y
2 Þ: ð17Þ

The position- and reciprocal-space densities of the particles

leaving the interferometer in the n = o, h states,

SnðxÞ ¼ J
nn
outðx; xÞ ¼

X

i;j¼1;2

J ðijÞnn ðx; xÞ ð18aÞ

and

eSnðpÞ ¼
eJ nn

outðp; pÞ ¼
X

i;j¼1;2

eJ ðijÞnn ðp; pÞ; ð18bÞ

are the diagonal elements of the J out representations

J outðx; x
0Þ = hxjJ outjx

0i and eJ outðp; p
0Þ = hpjJ outjp

0i. The

elements of these representations are linked by

J nn
outðx; x

0Þ ¼
1

4�2

Z1

� 1

eJ nn
outðp; p

0Þ exp ðip � xÞ exp ð� ip0 � x0Þ dp dp0:

ð18cÞ

The ij elements of the propagated density matrix are

eJ ðijÞnn ðp1; p2Þ ¼

Z1

� 1

eXnn
i ðp1; p

0Þejinðp
0; p00ÞeX�nn

j ðp2; p
00Þ dp0 dp00;

ð19Þ

where eXnn
i ðp; p

0Þ are the nn = oo, hh diagonal elements of the

2 � 2 matrix eXiðp; p
0Þ = hpjXiPojp

0i. The operators Xi [equa-

tions (7a)–(7c)] concatenate the reflection and transmission

coefficients of the splitter, mirrors and analyser and propagate

the initial mixed state along the i = 1, 2 arms. The projector Po

originates from eJ inðp1; p2Þ = ejinðp1; p2ÞPo [equation (9c)].

More details of the derivation of (19) are given by Sasso et al.

(2022). The results of integration (19) are given in

Appendix C.

The integration of the particle density gives the total counts

of the particles leaving the interferometer in the n = o, h states.

Hence, the equivalents of equations (15a)–(15e) are

In ¼

Z1

� 1

SnðxÞ dx ¼

Z1

� 1

SnðpÞ dp

¼ Jn 1þ � n cosð�nÞ
� �

; ð20aÞ

where

Jn ¼

Z1

� 1

eJ ð11Þ
n ðpÞ þ

eJ ð22Þ
n ðpÞ

h i
dp; ð20bÞ

�n ¼

Z1

� 1

eJ ð12Þ
n ðpÞ dp; ð20cÞ

� n ¼ 2j�nj=Jn; ð20dÞ

�n ¼ argð�nÞ; ð20eÞ

and the eJ ðijÞn ðpÞ expressions are given in Appendix C.

The matrix elements eJ ðijÞn ðpÞ ¼
eJ ðijÞnn ðp; pÞ in equations

(20a)–(20e) are the incoherent dual of e’�niðpÞe’njðpÞ in equa-

tions (15a)–(15e). More precisely, by disentangling its alge-

braic structure, we can see that (19) propagates every single-

particle wave packet in the probabilistic superposition that

describes the source, calculates every producte’�niðpÞe’njðpÞ, and

averages them over the random origins, phase and propaga-

tion direction.

A noteworthy result [equations (34a)–(34h) in Appendix C]

is that, assuming a Gaussian Schell model of the source,

equations (20a)–(20e) differ from (15a)–(15e) only by a scale

factor. Therefore, they describe the integrated interference

observed when the source is Gaussian with a radius equal to

the coherence length ‘0. Also, the spherical wave approx-

imation of the initial state (Authier, 2001) corresponds to ‘0 =

0 and an incoherent source.

6.1. Moiré fringes

The pitch misalignment � shifts the interfering waves

vertically by �y = 2ðzA2 þ tM2=2Þ � tanð�BÞ. This offset stems

from the q�y phase of e’o2ðpÞ and e’h2ðpÞ [equations

(11a)–(11d)] because of the ‘time-shifting’ property of the

Fourier transform. Owing to the curvature of the interfering

wavefronts, it yields a pattern of horizontal fringes.

The particle density (18a) encodes this pattern. To see this,

let us consider the h state and the q factor of eJ hh
outðp1; p2Þ. By

neglecting the q� offset in the argument of the reflection and

transmission coefficients, the p factor of eJ
ðijÞ
hh ðp1; p2Þ is irrele-

vant. Hence, the terms of interest in (18b) [see also equations

(33a)–(33i)] are
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eJ
ð11Þ
hh ðq1; q2Þ /ejinðq1; q2Þ exp �

iðq2
1 � q2

2Þ zD

2Kz

� �

; ð21aÞ

eJ
ð22Þ
hh ðq1; q2Þ /ejinðq1; q2Þ exp �

iðq2
1 � q2

2Þ zD

2Kz

� iq� �y

� �

; ð21bÞ

eJ
ð12Þ
hh ðq1; q2Þ /ejinðq1; q2Þ exp �

iðq2
1 � q2

2Þ zD

2Kz

þ iq2�y

� �

; ð21cÞ

eJ
ð21Þ
hh ðq1; q2Þ ¼

eJ
ð12Þ�
hh ðq1; q2Þ; ð21dÞ

where q� ¼ q1 � q2,

ejinðq1; q2Þ ¼ exp �
ðq1 � q2Þ

2
w2

0

8
�
ðq2

1 þ q2
2Þ ‘0

4

� �

ð22Þ

and zD is the detector distance from the source.

The result of the inverse Fourier transform (18c) is (see

Section 6.1 in the supporting information)

J
ð11Þ
hh ðyÞ / exp �

2y2

w2
D

� �

; ð23aÞ

J
ð22Þ
hh ðyÞ / exp �

2ðy � �yÞ
2

w2
D

� �

; ð23bÞ

J
ð12Þ
hh ðyÞ / exp �

ð�yÞ
2

2‘2
D

�
y2 þ ðy � �yÞ

2

w2
D

þ
2�iy

��

� �

; ð23cÞ

J
ð21Þ
hh ðyÞ ¼ J

ð12Þ�
hh ðyÞ; ð23dÞ

where ‘D and wD are, respectively, the correlation length and

beam size at the detector plane z = zD (Appendix B). Finally,

the position-space density of the particles leaving the inter-

ferometer in the h state (18a) is

ShðyÞ ’ 2 exp ð� 2y2=w2
DÞ 1þ � cosð2�y=��Þ
� �

; ð24Þ

where

�� ¼
drD

�ðzA2 þ tM2=2Þ
ð25Þ

is the fringe period, 1/rD is the principal curvature of the

particle density jðy1; y2; zDÞ at the detector plane [equation

(32c) in Appendix B] and

� ¼
2jJ

ð12Þ
hh j

J
ð11Þ
hh þ J

ð22Þ
hh

¼ exp �
�2y

2‘2
D

� �

sech
�yð2y � �yÞ

w2
D

� �

ð26Þ

is the interference visibility.

The fringe period �� is the same as that of the moiré

pattern originating from the superposition of two (cylindrical)

wavefronts having the same radius of curvature rD= cosð�BÞ

and propagating parallel at the �B angle to the z axis and at

the �y vertical distance.

Regarding the visibility � , the hyperbolic secant comes from

the different amplitudes of the interfering beams at the

vertical coordinate y [equations (23a) and (23b)]. It expresses

the visibility of the fringes generated by a coherent source and

corresponds to the ‘D ! 1 limit of (26). In this case, the

visibility is a maximum (actually, one) when y = �y/2, because

the interfering beams have equal amplitude. It is also a

maximum when wD ! 1, because in such a case the wave-

front curvature is null. The exponential factor, where �y =

2ðzA2 þ tM2=2Þ � tanð�BÞ and � is the pitch angle between the

split crystals, takes the partial coherence of the source into

account.

To give a numerical example, with a divergent beam origi-

nating from a point source 2 m away from the detector, a 0.1 m

mirror-to-analyser separation and (220) reflecting planes, the

fringe period is �� = 3.8 mm mrad/�.

7. Results

The interferometer operation has been numerically simulated

to study its sensitivity to geometric aberrations and to quantify

the machining and alignment tolerances to attain a satisfactory

functioning. The values of the parameters used in the simu-

lations are given in Table 1. Owing to the significant X-ray

absorption, the choice of 15.7�e ’ 0.619 mm for the crystal

thickness follows the objective of combined X-ray and

neutron interferometry.

7.1. Crystal thicknesses

If the interferometer geometry is ideal, that is, tS = tA, tM1 =

tM2, �z = 0 and � = � = 0 rad, the visibility of the interference

of the particles that leave the interferometer in the o state is

one. Therefore, the thickness of the interferometer crystals

can be optimized by maximizing the visibility of the inter-

ference of the particles that leave the interferometer in the h

state. As anticipated in the Introduction, two cases are worth

considering, (i) tM1 = tM2 = tS = tA and (ii) tM1 = tM2 = 2tS = 2tA
(Bauspiess et al., 1976; Becker et al., 2001).

Fig. 5 shows the transmittances of the interferometer from

the initial to the final, n = o, h, states. They are calculated as

T n ¼
Jn

R1
� 1
ejinðp; pÞ dp

; ð27Þ
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Table 1
Parameters used in the numerical simulations.

The thickness tS = tA’ (m + 0.7)�e maximizes the interferometer transmission
and fringe visibility. The choice of 15.7�e ’ 0.619 mm is consequential to the

objective of combined X-ray and neutron interferometry.

�0 = �h = � 2.382 � 10� 6 � = � 1

n0 = 1–1.191 � 10� 6 �0 = 0

� = 0.272 nm d = 192 pm

K = 23.1 rad nm� 1 h = 32.7 rad nm� 1

�e = 39.4 mm �B = 0.786 rad = 45�

�z = 0 ‘0 = 5, 10, 20 nm

Case (i):
tM1 = tM2 = tS = tA = 15.7�e

Case (ii):
tM1 = tM2 = 2tS = 2tA = 2 � 15.7�e

http://doi.org/10.1107/S1600576723010245


where the particle density ejðp; pÞ is given by (9d) and the

correlation length ‘0 is set to 10 nm.

Due to the interferometer’s limited angular acceptance, the

transmittance depends on the angular width of the initial state.

The larger the former, the smaller the latter. The oscillations,

having periods of �e and �e/2, are what remains of the

pendellösung fringes. They originate in the periodicity of the

transmission and reflection coefficients (4b) and (4c) and are

damped by the scattering of the initial p modes. It is worth

noting that the crystal thickness is the dual of the laser pulse

duration in atom interferometry.

The visibility of the h-state fringes is given in Fig. 6.

Pendellösung fringes are again visible, having periodicity �e/2

[case (ii)] and �e [case (i)]. Both the particle densities and

visibility are maxima when tS = tA’ (m + 0.7)�e, where m is an

integer. This condition will be adopted from now on.

7.2. Rocking curves

The interferometer rocking curves are given by the total

counts

JðiÞn ð�; �Þ ¼

Z1

� 1

eJ ðiiÞn ðpÞ dp ð28Þ

of the particles leaving the interferometer in the n = o, h states

and crossing the interferometer along the i = 1, 2 arms. Among

them, the triple reflection rocking curve J
ð2Þ
h ð�; �Þ plays a

significant role in the alignment of the split-crystals’ yaw

angles. This is shown in Fig. 7 where the pitch angle � between

the split crystals is null.

The �q offset of the arguments of the R(p + �Kz � �q; tA)

and R(p + �Kz � �q; tM2) factors of eJ
ð22Þ
h ðpÞ [equation (34f)]

shifts the exact Bragg alignment of the q mode from � = 0

to � = �q/Kz. Therefore, if the mutual pitch angle of the

split crystals is not null, the integration (28) of eJ
ð22Þ
h ðpÞ over q

washes out the pendellösung fringes. In particular, it washes

out the central peak of Fig. 7. This peak loss might be used to

align the pitch angles of the split crystals.

Fig. 8 shows how the height of the � = 0 peak depends on the

mutual pitch angle �. The rocking curve generated by a

Gaussian Schell model of the source is the same as that yielded

by a fully coherent Gaussian source having a radius equal to

the coherence length ‘0 (see Appendix C). Therefore, the

greater the coherence, the greater the collimation of the initial

state and the greater the interferometer transmittance. For

this reason, in Fig. 8, to show how the peak visibility depends

on the source coherence, we normalized all maxima to the

same (unit) value.

In the case of coherent plane-wave illumination (i.e. if

K‘0!1 and Kw0!1), q = 0 and the rocking curves are
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Figure 6
Interference fringe visibilities (h state) of a perfectly aligned inter-
ferometer versus the crystal thicknesses. The parameters used in the
calculations are given in Table 1.

Figure 7
Triple reflection rocking curves J

ð2Þ
h ð�; � ¼ 0Þ versus the mutual yaw angle

of the split crystals �. The parameters used in the calculations are given in
Table 1. The mutual pitch angle � is null.

Figure 5
Transmission coefficients of a perfectly aligned interferometer versus the
crystal thicknesses. The orange and green lines refer to the output o and h
states, respectively, when the crystals have the same thickness. The blue
and grey lines refer to the output o and h states, respectively, when the
mirror crystals have double thickness. The transmissions in the h output
state (top lines) are greater than those in the o one (bottom lines) because
of the greater number of individual forward transmissions contributing to
them. The parameters used in the calculations are given in Table 1.



insensitive to the pitch misalignment. As the source coherence

decreases, the central peak of the triple-reflection rocking

curve disappears. In fact, the smaller coherence length and

collimation imply a greater spread of the q modes.

7.3. Fringe visibility

As shown in Fig. 9, the yaw misalignment causes a loss of

interference visibility, which is due to the averaging of the

pendellösung fringes implied by (20c). If zM1 = zM2 = 2zS =

2zA, the interference also preserves a significant contrast when

� 6¼ 0. In fact, if �n is approximated by averaging the oscil-

lating terms of eJ 12
o ðpÞ and � 6¼ 0, the result is zero. However, if

zM1 = zM2 = 2zS = 2zA, some of the arguments of the trigo-

nometric functions that replace the products and powers of

sines and cosines in eJ ð12Þ
o ðpÞ [equations (34c), (4b) and (4c)]

are null and thus the function value is independent of the

misalignment. Consequently, in this case and only in this case,

averaging the oscillating terms of eJ ð12Þ
o ðpÞ does not nullify �n.

The price to pay is the strictest alignment required to achieve

the maximum visibility.

The sensitivity of the visibility to the yaw misalignment

depends on the crystal thickness. Fig. 10 shows the full width at

half-maximum of the � = 0 peak for the interference of the

particles that leave the interferometer in the o state. The

thinner the crystals, the better.

The loss of visibility due to the pitch misalignment can be

investigated by considering the q factor of eJ ðijÞn ðpÞ [equations
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Figure 8
Rocking curves J

ð2Þ
h ð� ¼ 0; �Þ versus the mutual pitch angle of the split

crystals �. The transmittances are normalized so that they have unit
maxima. (Top) tM1 = tM2 = tS = tA = 15.7�e ’ 0.619 mm. (Bottom) tM1 =
tM2 = 2tS = 2tA = 2 � 15.7�e ’ 1.239 mm. The parameters used in the
calculations are given in Table 1. ‘0 is the coherence length. The mutual
yaw angle � is null. The horizontal dashed line pertains to coherent plane-
wave illumination.

Figure 9
Fringe visibility versus the mutual yaw angle � of the split crystals. The
parameters used in the calculations are given in Table 1. (Top) tM1 = tM2 =
tS = tA = 15.7�e ’ 0.619 mm. (Bottom) tM1 = tM2 = 2tS = 2tA = 2 �
15.7�e ’ 1.239 mm. The mutual pitch angle � is null.

Figure 10
The full width at half-maximum of the � = 0 visibility peak (o state, see
Fig. 9). The parameters used in the calculations are given in Table 1.



(34a)–(34h)] and neglecting the q� offset in the argument of

the reflection and transmission coefficients so that the p factor

of eJ ðijÞn ðpÞ is irrelevant. Also, for the sake of simplicity, we limit

the analysis to the h state. By application of equations

(20a)–(20d), we obtain (see Section 7.3 in the supporting

information)

� n / exp �
�2y

2‘2
0

� �

; ð29Þ

where �y ¼ 2ðzA2 þ tM2=2Þ � tanð�BÞ is the vertical offset of

the interfering rays.

With a skew-symmetric splitting of the crystals, the pitch

misalignment is less critical than with the symmetric splitting

used to demonstrate the feasibility of the interferometer

alignment. In fact, unlike what happens when only the

analyser is separated and the interfering beams are mutually

tilted by the analyser’s reflection, the loss of visibility depends

only on the coherence length ‘0. As examined in Appendix D

and the supporting information, the rationale of the visibility

being independent of the beam size and detector distance is

the parallelism of the interfering beams.

If the illumination is coherent (i.e. if w0=‘0 � 1) then

equation (29), where w0 substitutes for ‘0, holds. This is

because equations (20a)–(20e) describe equivalently the

operation of an interferometer illuminated by a fully coherent

Gaussian beam having a source size equal to ‘0. When both

Kw0 and K‘0 tend to infinity, the illumination is a plane wave

and the visibility is insensitive to the pitch misalignment. This

is consistent with the insensitivity of a skew-symmetric inter-

ferometer to the mutual slide of the split crystals and the null

curvature of the interfering wavefronts. A nomogram showing

(29) as a function of the correlation length ‘0 and pitch angle �

is given in Fig. 11.

8. Monte Carlo simulation

We used Monte Carlo simulations to evaluate how manu-

facturing errors affect the visibility of the interference fringes

and the uncertainty of the measurement of their phase.

8.1. Fringe visibility

To maximize the interferometer transmittivity and the

visibility of the h-state interference, the thickness of the

interferometer crystals was set to (i) tM1 = tM2 = tS = tA =

15.7�e ’ 0.619 mm and (ii) tM1 = tM2 = 2tS = 2tA = 2 �

15.7�e ’ 1.239 mm.

Although the splitter–analyser and mirror pairs should have

the same thickness and a null defocus, the removal of surface

damage after cutting causes geometric imperfections. To

simulate them, the actual thicknesses were obtained by adding

random errors sampled from a zero mean uniform distribution

having [� u, u] support, u being the targeted manufacturing

tolerance. In addition, a zero mean defocus �z was sampled

from the same uniform distribution. The crystals were

assumed to be perfectly aligned and therefore the yaw and

pitch angles were always set to zero. There were 10 000

simulation runs.

A visibility histogram when the manufacturing tolerance is

u = 2 mm and the interferometer is perfectly aligned, that is,

the crystals’ mutual yaw and pitch angles are null, is shown in

Fig. 12. The differences between cases (i) and (ii) are tiny but

visible. On average, case (i), i.e. all the crystals having the same

thickness, ensures a slightly greater visibility, mainly when the

post-selected state is the h one.
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Figure 11
An example of the visibility � o(‘0, �) versus the correlation length ‘0 and
mutual pitch angle � (ideal geometry and o state) [equation (29)]. Purple
denotes � o = 0 and green � o = 1. The black lines are contours corre-
sponding to the indicated visibility levels. The analyser-to-mirror distance
zA2 + tM2/2 is 0.1 m. The Bragg angle is 45�.

Figure 12
A histogram of the interference visibilities, (right) o state and (left) h
state. The interferometer is perfectly aligned. The manufacturing toler-
ance is u = 2 mm. The parameters used in the Monte Carlo simulations are
given in Table 1.
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8.2. Phase uncertainty

In the absence of extraneous noise, the utmost accuracy of

the fringe-phase determination is set by the dual wave and

particle nature of X-rays and neutrons, which produces a

count noise. The standard uncertainty of the phase estimate
b�n is given by (Bergamin et al., 1991)

�n ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

� 2
nNn

s

;

where n = o, h and Nn is the number of particles counted.

Accordingly, for any given observation duration and source

brilliance, the accuracy depends only on the fringe visibility

and transmission coefficient.

Assuming that both the o and h signals are considered and

that the b�o and b�h estimates are weighted, the measured

phase is

� ¼
�� 2

o
b�o þ �

� 2
h
b�h

�� 2
o þ �

� 2
h

:

The standard uncertainty of � is

�� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 2

o þ �
� 2
h

p
; ð30Þ

where, factoring the common proportionality factor
ffiffiffiffiffiffiffiffiffiffi
2=No

p
,

the standard uncertainties of b�o and b�h are normalized as

�o ¼ 1=� o;

�h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T o=T h

p

� h

:

The transmittances T o and T h are given by (27) and T o=T h =

No=Nh.

Fig. 13 shows the �� histograms for the (i) and (ii)

geometries (defined in Section 8.1). The manufacturing

tolerances were set to u = 2 mm and we assumed that the

interferometer was perfectly aligned. Because of the normal-

ization adopted, the uncertainty associated with the b�o esti-

mate is always greater than one. The unit value is achieved

when the interferometer geometry is ideal and the mutual yaw

and pitch angles of the split crystals are null. The smallest

uncertainty in Fig. 13 is less than one because we considered

the weighted mean of the b�o and b�h estimates. Crystals

having the same thickness still ensure slightly better accuracy.

To investigate how the manufacturing errors affect the

accuracy of the phase estimate, we repeated the Monte Carlo

simulation with manufacturing errors sampled from uniform

distributions having u = �(0, 1, 2, 4, 8) mm supports. The

results are recapped as violin plots in Fig. 14.

9. Discussion

For a triple Laue split-crystal interferometer, two geometries

are possible, symmetric and skew-symmetric. In the symmetric

one, the two mirrors are at equal distances from the splitter,

that is, zM1 = zM2 (Fig. 2). In this case, the crystal splitting

means the analyser is free to move. However, since the

distance of the analyser from the mirrors is constrained to be

the same as the splitter distance, there is no freedom to change

the length of the interferometer arms. Such interferometers

allowed measuring the lattice parameter of 28Si (Massa et al.,

2011, 2020) and led to the determination of the Avogadro

constant (Fujii et al., 2018) and the realization of the kilogram

by counting atoms (Massa et al., 2020).

To increase the arms’ separation and length the skew-

symmetric geometry is necessary. In this case, the inter-

ferometer consists of two independent crystal blocks, as shown

in Fig. 2. Since it is insensitive to parallel translation of one

block with respect to the other, they can be placed far apart, so

long arms are possible and their length can also be varied in

real time. This opens the way to experiments testing funda-

mental symmetries and interactions, such as the relation

between quantum mechanics and gravity.
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Figure 14
Violin plots of the phase estimate uncertainties [equation (30)]. The
manufacturing tolerances are 0, 1, 2, 4 and 8 mm. The parameters used in
the Monte Carlo simulations are given in Table 1. The crystal thickness is
tM1 = tM2 = tS = tA = 15.7�e’ 0.619 mm. Dots are the data medians. The u
= 2 mm plot is from the histogram in Fig. 13.

Figure 13
A histogram of the phase estimate uncertainties [equation (30)]. The
manufacturing tolerance is u = 2 mm. The parameters used in the Monte
Carlo simulations are given in Table 1.



To align and operate the interferometer, two angles (the

mutual yaw and pitch rotations, about the y vertical axis and z

optical axis, respectively) must be zero. Also, the residual

mechanical vibrations and the long measurement times imply

that an optical interferometer must be hosted in the gap

between the crystals to monitor these angles in real time and

actively nullify them with, typically, sub-nanoradian accuracy.

In particular, the interference phase is sensitive to the crystals’

Bragg alignment. The farther apart the arms, the greater the

sensitivity. Luckily, the sensitivity of both crystal and optical

interferometers increases equally with arm separation.

Nanoradian metrology and technologies have already been

developed in the measurement of the Si lattice parameter

(Ferroglio et al., 2008; Massa et al., 2009), in lattice compara-

tors (Mendenhall et al., 2023) and in �-ray spectroscopy

(Krempel, 2011; Massa et al., 2013). However, an order of

magnitude improvement is necessary.

To achieve a reasonable fringe visibility also far from the

perfect Bragg alignment, Windisch & Becker (1992) proposed

mirror crystals with twice the thickness of the splitter and

analyser. However, the maximum visibility peak is sharper

than that occurring with the equal-thickness choice. We have

observed that, in both cases, the angular width of the visibility

peak increases as the crystal thickness decreases.

For the first time we have quantified from first principles the

effects of the source coherence and pitch misalignment of the

split crystals on the visibility and phase of the interference

fringes. We found that, apart from a scale factor and using a

Gaussian Schell model of the source, the reciprocal-space

densities of the particles leaving the interferometer are the

same as those yielded by a fully coherent initial Gaussian state

having a radius equal to the coherence length of the source.

Unless one is interested in the spatial pattern of the inter-

ference, this significantly simplifies the analysis.

Varying the mutual pitch of the split crystals, Becker &

Bonse (1974) observed unexplained travelling fringes in the

integrated intensities of the beams leaving the interferometer.

We did not find clues to this potentially troublesome effect. It

may have been caused by an undetected parasitic change in

the Bragg alignment accompanying the pitch misalignment.

The goal of interferometry is to determine the phase

difference between the split beams. The minimum uncertainty

depends on the interference visibility, in addition to the

particle counts. The higher, the better. Therefore, we exam-

ined how the manufacturing tolerance impacts the visibility

and uncertainty of the phase estimate. A 3 mm tolerance seems

to be the maximum permitted before a significant loss of

accuracy is observed. We also found that this tolerance is

mostly insensitive to the crystal thicknesses.

10. Conclusions

Adapting the mathematical framework described in a

previous paper (Sasso et al., 2022), we have modelled a split-

crystal skew-symmetric interferometer and investigated its

sensitivity to crystal thicknesses, misalignments and machining

tolerances. Taking the source coherence and three-dimen-

sional operation into account was necessary to quantify, from

first principles, the effect of the pitch misalignment on the

pattern and visibility of the interference fringes. We found that

a partially coherent source is equivalent to a coherent one

having a radius equal to the coherence length. This result

simplified the numerical implementation of the model.

We did not consider gravity, the Coriolis force, or residual

acceleration due to seismic and environmental noise. They will

be the subject of future work.

Owing to the extreme sensitivity of the interference phase,

operating such an interferometer requires an order of

magnitude improvement in the metrology and control

capabilities of the mutual yaw angle of the split crystals.

APPENDIX A

Representations of the single-particle state

The position- and reciprocal-space representations of the

single-particle state |’n(z)i are the superpositions

hxj’nðzÞi ¼ ’nðx; zÞ ¼
1

2�

Z1

� 1

e’nðp; zÞ exp ðip � xÞ dp

and

hpj’nðzÞi ¼ e’nðp; zÞ ¼
1

2�

Z1

� 1

’nðx; zÞ exp ð� ip � xÞ dx:

The orthogonality and completeness of the hxjpi = exp ðip � xÞ=

ð2�Þ and hpjxi = exp ð� ip � xÞ=ð2�Þ bases are expressed by the

integral representations of the delta distribution

hpjp0i ¼ �ðp0 � pÞ ¼
1

4�2

Z1

� 1

exp ½iðp0 � pÞ � x� dx

and

hxjx0i ¼ �ðx � x0Þ ¼
1

4�2

Z1

� 1

exp ½ip � ðx � x0Þ� dp:

APPENDIX B

Free-space propagation

Propagating the Gaussian wave packet,

’nðx; z ¼ 0Þ / exp �
jx0j2

l2
0

� �

;

where l0 is the initial (z = 0) radius measured in the xy plane

(assumed the same along the x and y axes), we obtain

’nðx; zÞ / exp �
jx0j2

l2
z

þ
iKzjx

0j2

2rz

� �

;

where x ¼ ½x� z tanð�BÞ; y�. The radius lz(z) and wavefront

curvature 1/rz(z) depend on propagation according to

research papers

56 Sasso, Mana and Massa � A skew-symmetric split-crystal interferometer J. Appl. Cryst. (2024). 57, 44–59



l2
z ¼ l2

0 þ z2 tan2ð#sÞ; ð31aÞ

rz ¼ zþ
l2
0

z tan2ð#sÞ
¼

K2
zl2

0l2
z

4z
; ð31bÞ

where

#s ¼ arctan
2

Kzl0

� �

ð31cÞ

is the divergence.

The free-space propagation of the density matrix is given by

J ðzÞ = FðzÞJ ðz ¼ 0ÞFyðzÞ (Feynman, 2018; Cohen-Tannoudji

et al., 2019). To give an example, let us consider the q factor of
ejinðp1; p2Þ =ejðp1; p2; z ¼ 0Þ [equation (9d)]. Hence,

ejðq1; q2;zÞ ¼ exp ½iq2
1z=ð2KzÞ�ejðq1; q2;z¼0Þ exp ½� iq2

2z=ð2KzÞ�:

After transforming it back to position space, we obtain

jðy1; y2; zÞ / exp �
y2

1 þ y2
2

w2
z

�
ðy1 � y2Þ

2

2‘2
z

þ
iKzðy

2
1 � y2

2Þ

2rz

� �

;

where

w2
z ¼ w2

0 þ z2 tan2ð#sÞ ¼
w0‘z

‘0

� �2

; ð32aÞ

‘2
z ¼ ‘

2
0 þ z2 tan2ð#cÞ ¼

‘0wz

w0

� �2

; ð32bÞ

rz ¼ zþ
‘2

0

z tan2ð#sÞ
¼

K2
z‘

2
0w2

z

4z
ð32cÞ

are the radius, spatial coherence and radius of curvature at a

distance z, respectively.

The incoherent beam spreads like a wave packet having an

initial radius equal to the correlation length ‘0: its divergence

is (31c), where ‘0 substitutes for l0, and its spread is dictated by

the coherence length ‘0, not by the beam size w0.

The coherence length increases like the radius of a Gaussian

beam having

#c ¼ arctan
2

Kzw0

� �

ð32dÞ

divergence. Therefore, propagation increases coherence,

though negligibly in our case. This is the content of the van

Cittert–Zernike theorem.

APPENDIX C

Propagation of the density matrix

The elements eJ ðijÞnn ðp; p
0Þ of the propagated density matrix are

given by the integral (19). Using the initial mixed state (9c)

and writing the results of the integration as

eJ ðijÞnn ðp; p
0Þ ¼ exp �

iðjpj2 � jp0j2Þ zD

2Kz

� �

ejðijÞn ðp; p
0Þ; ð33aÞ

we obtain (see Section 6 in the supporting information)

ejð11Þ
o ðp1; p2Þ ¼Tðp1; tSÞRðp1; tM1ÞRðp1 þ �Kz � �q1; tAÞ

� T�ðp2; tSÞR
�ðp2; tM1ÞR

�ðp2 þ �Kz � �q2; tAÞ

�ejinðp1; q1 � h�; p2; q2 � h�Þ; ð33bÞ

ejð22Þ
o ðp1; p2Þ ¼Rðp1; tSÞRðp1 þ �Kz � �q1; tM2Þ

� Tðp1 þ �Kz � �q1; tAÞR
�ðp2; tSÞ

� R�ðp2 þ �Kz � �q2; tM2Þ

� T�ðp2 þ �Kz � �q2; tAÞ

�ejinðp1; q1 � h�; p2; q2 � h�Þ

� exp½iðp� �x � q� �yÞ�; ð33cÞ

ejð12Þ
o ðp1; p2Þ ¼Tðp1; tSÞRðp1; tM1ÞRðp1 þ �Kz � �q1; tAÞ

� R�ðp2; tSÞR
�ðp2 þ �Kz � �q2; tM2Þ

� T�ðp2 þ �Kz � �q2; tAÞ

�ejinðp1; q1 � h�; p2; q2 � h�Þ

� exp iðq2�y � p2�x � hs�Þ
� �

; ð33dÞ

ejð21Þ
o ðp1; p2Þ ¼ej

ð12Þ�
o ðp2; p1Þ; ð33eÞ

ej
ð11Þ
h ðp1; p2Þ ¼Tðp1; tSÞRðp1; tM1ÞTð� p1 � �Kz þ �q1; tAÞ

�T�ðp2; tSÞR
�ðp2; tM1ÞT

�ð� p2 � �Kz þ �q2; tAÞ

�ejinðp1; q1; p2; q2Þ; ð33f Þ

ej
ð22Þ
h ðp1; p2Þ ¼Rðp1; tSÞRðp1 þ �Kz � �q1; tM2Þ

� Rðp1 þ �Kz � �q1; tAÞ

� R�ðp2; tSÞR
�ðp2 þ �Kz � �q2; tM2Þ

� R�ðp2 þ �Kz � �q2; tAÞ

�ejinðp1; q1; p2; q2Þ exp iðp� �x � q� �yÞ
� �

; ð33gÞ

ej
ð12Þ
h ðp1; p2Þ ¼Tðp1; tSÞRðp1; tM1ÞTð� p1 � �Kz þ �q1; tAÞ

� R�ðp2; tSÞR
�ðp2 þ �Kz � �q2; tM2Þ

� R�ðp2 þ �Kz � �q2; tAÞ

�ejinðp1; q1; p2; q2Þ exp iðq2�y � p2�x � hs�Þ
� �

;

ð33hÞ

ej
ð21Þ
h ðp1; p2Þ ¼ej

ð12Þ�
h ðp2; p1Þ; ð33iÞ

where p� = p1 � p2 and q� = q1 � q2.

By setting eJ ðijÞn ðpÞ = eJ ðijÞnn ðp; pÞ andejinðp; qÞ =ejinðp; q; p; qÞ

and observing that p� = q� = 0, the reciprocal-space densities

and quantum superpostions of the particles leaving the inter-

ferometer in the n = o, h state after crossing the inter-

ferometer along the i, j = 1, 2 arm or both [equation (18b)] are

(see the corresponding section in the supporting information)
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eJ ð11Þ
o ðpÞ ¼ Tðp; tSÞRðp; tM1ÞRðpþ �Kz � �q; tAÞ

�
�

�
�2

�ejinðp; q � h�Þ; ð34aÞ

eJ ð22Þ
o ðpÞ ¼ Rðp; tSÞRðpþ �Kz � �q; tM2ÞTðpþ �Kz � �q; tAÞ

�
�

�
�2

�ejinðp; q � h�Þ; ð34bÞ

eJ ð12Þ
o ðpÞ ¼Tðp; tSÞRðp; tM1ÞRðpþ �Kz � �q; tAÞ

� R�ðp; tSÞR
�ðpþ �Kz � �q; tM2Þ

� T�ðpþ �Kz � �q; tAÞ

�ejinðp; q � h�Þ exp iðq�y � p�x � hs�Þ
� �

; ð34cÞ

J ð21Þ
o ðpÞ ¼

eJ ð12Þ�
o ðpÞ; ð34dÞ

eJ
ð11Þ
h ðpÞ ¼ Tðp; tSÞRðp; tM1ÞTð� p � �Kz þ �q; tAÞ

�
�

�
�2

�ejinðp; qÞ; ð34eÞ

eJ
ð22Þ
h ðpÞ ¼ Rðp; tSÞRðpþ �Kz � �q; tM2ÞRðpþ �Kz � �q; tAÞ

�
�

�
�2

�ejinðp; qÞ; ð34f Þ

eJ
ð12Þ
h ðpÞ ¼Tðp; tSÞRðp; tM1ÞTð� p � �Kz þ �q; tAÞ

� R�ðp; tSÞR
�ðpþ �Kz � �q; tM2Þ

� R�ðpþ �Kz � �q; tAÞ

�ejinðp; qÞ exp iðq�y � p�x � hs�Þ
� �

; ð34gÞ

J
ð21Þ
h ðpÞ ¼

eJ
ð12Þ�
h ðpÞ; ð34hÞ

where, for a Gaussian Schell model of the source,

ejinðp; qÞ / exp �
ðp2 þ q2Þ‘2

0

2

� �

: ð35Þ

By comparing equations (11a)–(11d) and (34a)–(34h) we

note that, apart from a scale factor, the reciprocal-space

densities and quantum superpositions of the particles leaving

an interferometer illuminated by the mixed state (9a)–(9d) are

the same as those of the particles initially in a fully coherent

Gaussian state having a radius equal to the coherence length

‘0. The same is true for the total particle counts, as evident by

comparing equations (15a)–(15e) and (20a)–(20e).

APPENDIX D

Shearing interferometry

As shown by (29), the visibility of the (integrated) interference

fringes depends only on the coherence length ‘0. It is inde-

pendent of the radius of the interfering beams and detector

distance. The reason is that the pitch misalignment of the split

crystals separates the interfering beams in the vertical plane

but leaves them parallel. To validate this fact, we investigate

the interference of two parallel Gaussian wave packets,

’1ðy; zÞ / exp �
y2

l2
z

þ
iKzy2

2rz

� �

;

’2ðy; zÞ / exp �
ðy � �yÞ

2

l2
z

þ
iKzðy � �yÞ

2

2rz

� �

;

spaced by �y. The integrations over y of j’1ðy; zÞj2, j’2ðy; zÞj2

and ’1ðy; zÞ ’�2ðy; zÞ yield the mean count rates

J1 ¼ J2 ¼ lz

ffiffiffiffiffiffiffiffi
�=2

p

and quantum superposition

� ¼ lz

ffiffiffiffiffiffiffiffi
�=2

p
exp �

K2
zl4

z þ 4r2
z

8l2
zr2

z

� �

:

Using (31a)–(31c) to express lz, rz and tanð#sÞ (see Appendix

D in the supporting information), we obtain the visibility of

the integrated interference pattern,

� ¼
2j�j

J1 þ J2

¼ exp �
�2y

2l0

� �

;

which is independent of the detector distance z.

In contrast, if interference occurs between the beams,

’1ðy; zÞ / exp �
y2

l2
z

þ
iKzy2

2rz

� �

;

’2ðy; zÞ / exp �
y2

l2
z

þ
iKzy2

2rz

þ iKz�0y

� �

;

which are mutually tilted by an angle �0 and intersect at y = 0,

the integration over y of ’1ðy; zÞ ’�2ðy; zÞ yields (see Appendix

D in the supporting information) their interference and visi-

bility as

� ¼ lz

ffiffiffiffiffiffiffiffi
�=2

p
exp �

ðKzlz�0Þ
2

8

� �

and

� ¼ exp �
ðKzlz�0Þ

2

8

� �

;

which depend on the beam size lz and thus on the detector

distance z.

APPENDIX E

List of the main symbols

r ¼ ðx; zÞ: position vector.

ẑ: normal to the crystal surface (optical axis).

x ¼ ðx; yÞ: r component orthogonal to ẑ:

h ¼ 2�x̂=d: reciprocal vector (Fig. 1).

d: diffracting plane spacing (Fig. 1).

Ko, Kh = Ko + h: kinematic wavevectors [equation (1a)].

�B: Bragg angle (Fig. 1).

2K sinð�BÞ ¼ h: Bragg law.

research papers

58 Sasso, Mana and Massa � A skew-symmetric split-crystal interferometer J. Appl. Cryst. (2024). 57, 44–59

http://doi.org/10.1107/S1600576723010245
http://doi.org/10.1107/S1600576723010245


Kz ¼ K cosð�BÞ: z component of Ko, h [equation (2)].

� ¼ cosð�BÞ: direction cosine.

p ¼ ðp; qÞ: variable conjugate to x [equation (3b)].

p: resonance error [equation (3b)].

‘0: coherence length [equation (9b)].

�0, h: for X-rays, the Fourier components of the periodic

electric susceptibility.

�0, h = � K2�0, h: for neutrons, the Fourier components of the

periodic Fermi pseudo-potential.

n0 = 1 + Re(�0)/2: refractive index.

�0 = Im(�0)K: absorption coefficient.

� = �h/|�h|: �h phasor [equations (4a)–(4c)].

�e = 2��/(K|�h|): pendellösung length [equations (4a)–(4c)].

� ¼ �e tanð�BÞp=�: dimensionless resonance error [equa-

tions (4a)–(4c)].

� = �z/�e: dimensionless propagation distance [equations

(4a)–(4c)].

tS, tM1, tM2, tA: crystal thicknesses.

�z: defocus [equation (14b)].

zA, zD: analyser and detector distances from the source.

�y: separation of the interfering rays [equation (12a)].

�x: separation of the interfering rays [equation (14a)].

�: rotation angle about ŷ (yaw) [equation (5b)].

�: rotation angle about ẑ (pitch) [equation (5b)].

 : rotation angle about x̂ (roll) [equation (5b)].

|’ini, |’outi: pure-state initial and final wavevectors [equations

(8a), (8b), (10)].

J in;J out: mixed-state initial and final density matrices

[equations (9a)–(9d), (17)].

F(z), U0(z), X: transfer matrices (free-space, crystal, inter-

ferometer, respectively) [equations (3c), (4a)–(4c), (7a)–(7c)].

[� u, +u]: support of the manufacturing errors.

n = o, h: state components (label).

i = 1, 2: interferometer arm (label).
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