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Rietveld refinements are widely used for many purposes in the physical sciences.

Conducting a Rietveld refinement typically requires expert input because

correct results may require that parameters be added to the fit in the proper

order. This order will depend on the nature of the data and the initial parameter

values. A mechanism for computing the next parameter to add to the refinement

is shown. The fitting function is evaluated with the current parameter value set

and each parameter incremented and decremented by a small offset. This

provides the partial derivatives with respect to each parameter, along with

information to discriminate meaningful values from numerical computational

errors. The implementation of this mechanism in the open-source GSAS-II

program is discussed. This new method is discussed as an important step towards

the development of automated Rietveld refinement technology.

1. Introduction

Rietveld analysis is the process where crystallographic models

are directly fitted to powder diffraction data (Rietveld, 1969).

Rietveld analysis has been a cornerstone of materials char-

acterization for decades and is seeing increasing use for many

research and process applications, including structure deter-

mination; characterization of materials properties such as

texture and crystallite sizes; and quantification of the

component amounts in multiphase samples in fields including

chemistry, physics, geosciences, pharmaceuticals and engi-

neering. On the basis of citations of the software, a minimum

of several thousand Rietveld refinements are reported in the

literature every year.

One of the more challenging aspects of Rietveld analysis is

determining the order in which add parameters to the

refinement. In addition to fitting crystallographic parameters,

the refinement must also fit the background, lattice and peak

shape parameters, and sometimes intensity correction terms,

such as for texture, absorption or extinction (Toby, 2019). A

crystallographer experienced with Rietveld refinement can

look at the plot of the observed powder pattern, the computed

pattern from the current model and their differences and from

that graphic can tell at a glance which parameter(s) should be

included next. However, transferring this knowledge to a

novice is quite a challenge (Young, 1993). If an optimal

‘recipe’ is not followed, parameters may refine to unrealistic

values. At this point it becomes unlikely that including addi-

tional parameters into the fit will allow the model to recover

and find the true minimum. With older programs, refinements

might even ‘blow up,’ where fitted values might exceed the

computer implementation ranges for numbers and the soft-

ware would fail. More modern minimization strategies, such

as use of conjugate-gradient optimizers (Coelho, 2005),
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Levenberg–Marquardt and singular value decomposition

Hessian modification decrease optimizer sensitivity to corre-

lated parameters, but in the end, an accurate Hessian is still

needed to determine the standard uncertainties for the fitted

parameters. Other approaches, such as genetic algorithms,

global optimization and Monte Carlo minimization have also

been applied to powder diffraction, but more commonly for

structure solution (David et al., 2006; Padgett et al., 2007;

Pagola & Stephens, 2010; Mattei et al., 2020; Habermehl et al.,

2022).

The difficulty inherent in parameter order selection was

summarized nicely by Ozaki et al. (2020) who stated

‘It is commonly known that refining all parameters at once often

leads to physically unreasonable results . . . it is not guaran-

teed . . . [to] lead researchers to the optimal crystal structure . . .
Considering the wide use of Rietveld refinement . . . that only

proficient experts can exploit Rietveld refinement properly,

should be improved.’

In that work, these authors developed a ‘blackbox optimizer’

to drive the GSAS-II Rietveld code (Ozaki et al., 2020; Toby &

Von Dreele, 2013, 2023; O’Donnell et al., 2018). They surveyed

a number of machine learning optimization approaches, but

selected a Bayesian methodology, in part due to its efficiency.

However, it still requires that the refinement be performed at

least several hundred times, rather than once, so it remains

computationally expensive. Likewise, the AutoFP expert

system allows for automation of FullProf (Cui et al., 2015;

Rodrı́guez-Carvajal, 1993). More recently, Szymanski et al.

(2023) described a robotically enabled self-driving inorganic

synthesis laboratory that includes an ‘automated approach to

multiphase Rietveld refinement’ based on GSAS-II. Many of

the refinement plots provided in that work appear as if they

would benefit from further refinement progress, indicating

that further work on automating refinements is still needed

(Peplow, 2023).

Presented here is a direct and compact computational

approach that can identify the next parameter(s) to be added

to the refinement. This method has been implemented as an

option within GSAS-II. This method is conceptually simple,

should be easy to implement in other codes and uses relatively

minimal computer time. It is envisioned as a step towards the

development of fully automated Rietveld refinement tools.

2. The worst-fit parameter concept

The key for determining the order in which add parameters to

a refinement is a plot with the observed powder pattern, the

computed pattern from the current model and their differ-

ences; this is sometimes called a Rietveld plot. The Rietveld

plot shown in Fig. 1(a) demonstrates that, while the structure

does provide a general match to the observed intensities, the

model is incorrect in that it does not closely match the

observed intensities. This visualization provides a simple way

to access the quality of a fit in a single graphic, albeit one that

should be viewed at multiple magnification scales. One of the

great strengths of powder diffraction crystallography is that

this plot provides a clear view of the fit quality, particularly

since refinement metrics alone cannot be used as a guide to

quality (Toby, 2006).

However, note that all minimization processes utilize some

weighting of data. It has been shown that the optimal fit is

obtained when observations are weighted by their experi-

mental uncertainties (Prince, 2004). When these uncertainties

are unknown or other weighting is used, the precision of the

result is degraded, but the accuracy is not, unless the weighting

were to accentuate some form of systematic error. The tradi-

tional Rietveld plot can be made more valuable if the differ-

ence values are plotted as the weighted differences, i.e.

displaying the differences between the observed and

computed points divided by the standard uncertainty for each

point, as taken from the weight [Fig. 1(b)], rather than plotting

the differences directly. Showing the fit relative to weighting

has three advantages. First, it provides information on how the

data are being weighted. Further, as intensities in the pattern

increase, typically so do their uncertainties. The unweighted

differences tend to accentuate deviations that occur in intense

parts of the pattern, even though these differences may be
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Figure 1
‘Rietveld plot’ showing the lack of agreement between observed powder
diffraction data and those computed from a less than ideal crystal
structure model. (a) Observed pattern shown with blue plus signs with the
computed pattern superimposed as a green line. The lower cyan curve
shows the difference between the observed and computed patterns. The
red line shows the fitted background and the blue vertical lines show the
reflection positions. (b) Similar plot, but the cyan curve shown with a
separate vertical axis provides the difference between the observed and
computed values divided by the standard uncertainty. A clearer view of
the impact of these differences on the overall fit is seen in (b).



statistically insignificant. Also, while the direct differences are

on the scale of the diffraction intensities, which is an inher-

ently arbitrary axis, when optimally weighted, differences have

a statistical expectation value of unity, and thus the weighted

differences are on a statistically well-defined absolute scale.

When an experienced crystallographer views a Rietveld

plot, they look to see what is causing the greatest disagree-

ment (McCusker et al., 1999). If the observed peaks are shifted

relative to the calculated peaks, the lattice parameters (or

related instrumental corrections) are at fault. However, if all

the intensities in either pattern are significantly larger than

those in the other, for example, then the scale factor is not

likely to be optimal. Alternatively, if the intensity agreement

shows systematic deviations that vary as a function of Q, then

the atomic displacement parameters (ADPs; typically Uiso

values) are problematic. A few examples of this are shown in

Fig. 2. If the deviations are for some reflections but not all, as

is seen in Fig. 1, this is a likely indication of a problem that the

atom positions of the model do not match the experiment;

refinement of atomic displacement parameters may address

this. In the case of the example in Fig. 1, there are as-yet

unidentified inadequacies in the crystallographic model, so

parameter optimization will not address this.

What the crystallographer attempts to determine visually

from a Rietveld plot is the nature of the discrepancies between

the observed data and the intensity values computed from the

model. From that, one estimates which parameters are causing

the greatest deviations between the data and the model. These

parameters will be deemed the ‘worst fit.’ There may be a large

number of parameters that are far from their optimum values,

but the worst-fit parameters will have the largest impact on the

overall agreement. Owing to parameter correlation, it may be

impossible to optimize any other parameters before the

differences due to these worst-fit parameters are addressed.

Certainly, when the lattice parameters are not optimal, it

makes no sense to attempt to optimize peak shape or struc-

tural parameters, and even background parameters may not

refine well. Once the worst-fit parameter(s) have been fitted,

some of the remaining unfit parameters will then become the

worst fit and should be addressed next. While discerning the

worst-fit parameters from visual features in a Rietveld plot is

very likely a skill that a neural network could be taught, a

relatively straightforward computational method will now be

presented to determine the worst-fit parameters directly.

3. Computing the worst-fit parameter

In minimization problems, a factor described as �2 is mini-

mized. For Rietveld fitting, �2 ¼
P

wj½yj � ycalcðjÞ�
2, where yj

is the diffraction intensity for point j, ycalc(j) is the calculated

intensity for point j and wj is the weight for point j, where

optimally wj ¼ 1=ð�2
j Þ and �j is the standard uncertainty for yj.

Note that if yj is an intensity in scaled counts, yj = Ij /n, then

�j ¼ ðIjÞ
1=2=n, where n is the scaling factor (unity for unscaled

counts). For detection methods that do not count quanta, then

optimal weighting requires that �j be estimated for the

detector. With 2D detection, �j can be estimated from the

intensity spread in nominally equivalent pixels. Note that �2

here should not be confused with the quality metric, the

reduced �2 = 1=ðn� vÞ
P
½yi � ycalcðiÞ�

2=�2
i , where n and v are

the number of observed data points and the number of refined

parameters, respectively. In single-crystal refinements, the

term GOF or goodness of fit is used, where the square of the

GOF is equivalent to the reduced �2. The reduced �2 metric

will be unity with an ideal model because the statistical

expectation value for yj � ycalcðjÞ is the definition of �j.

How a function responds as a parameter is changed is, by

definition, the partial derivative of that function with respect

to the parameter. The sign of that partial derivative indicates if

increasing or decreasing the parameter improves the fit. If we

evaluate @�2=@pj

�� �� at the values for all parameters in our

current model, pj, the one where the magnitude of the deri-

vative is largest should be the one that will have the largest
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Figure 2
Visual comparison showing different misfits due to incorrect parameter
values. Figure components follow the description for Fig. 1(b). (a) A
lattice parameter is shifted, causing differences that are highlighed in the
difference plot for some peaks. (b) The Uiso values are too large, causing
the reflection intensities to fall off more quickly than expected. (c) The
peak widths are misfitted; this is also visually apparent from the
difference curve with features that differ from (a).



impact on minimizing �2, but, as will be discussed, other

considerations will be needed due to the discrete numerical

computation to be done here. Note that the sign of the offset

to be applied to a parameter is not relevant for our purpose,

which is only to determine which parameters will have the

largest effect on �2 if the parameter is varied. The Rietveld

minimizer (traditionally a variant on least squares) will

determine both the magnitude and the sign of the shift to be

applied to each parameter as additional parameters are

included in the refinement.

To consider how this works in practice, note that the scale

factor for a dataset will multiply every point in the computed

diffraction pattern. One can expect the partial derivative of �2

with respect to the scale factor to be quite large, except when

the scale factor has been exactly minimized. Likewise, back-

ground values are subtracted from every point in the pattern

and will also very significantly affect �2. When away from the

best-fit value, either the scale factor or the background values

will almost certainly be the ‘worst-fit parameters’ since the

former has a large impact on the agreement for every peak in

the pattern and the latter will affect every point. This is why, if

one writes a naive prescribed parameter order ‘recipe’ for

Rietveld, the scale factor or background are almost always the

first parameters to be minimized. Once those have been fitted,

one can advance to other parameters. Note that this assumes

that the unit-cell parameters are fairly close to correct values,

so that there is appreciable overlap between the observed and

computed peaks. If there is no significant overlap between the

observed and computed peaks, neither the initial scale factor

nor the cell constants are likely to refine to better values. On

the other hand, if the cell parameters provide some peak

overlap but are far from optimal, optimization of the unit cell

is needed before the scale factor can be properly minimized.

With the scale factor and background fitted, the next

parameter to be fitted will depend on how the observed and

calculated patterns differ. This may be where the unit-cell

parameters need to be added. If the cell parameters do agree

well with the observed data, but the peak widths do not, it may

be necessary to treat the microstrain or crystallite size before

additional refinement progress can be made.

Returning to the calculus, if a function is fully minimized,

the first derivative for all parameters is zero and the second

derivative is positive, @�2=@pj ¼ 0; @2�2=@pj
2 > 0. Note that

these statements are only true if the model is continuous and

the derivatives are evaluated analytically, meaning that

computation accuracy is essentially infinite. However, for

crystallographic fitting, we evaluate �2 with numerical

computations and with discretely observed data points. This

means that we have finite precision in these computations. As

an example for how this affects computations, consider the

partial derivative for the scale factor. If a least-squares mini-

mization cycle has been applied, then it will be at the ‘correct’

minimum, at least for all other parameter values held at their

current values. This parameter is linear, so least squares is not

an approximation; it usually converges quickly. However,

these computations are still not exact. When we describe a

parameter as having converged, we mean that the parameter is

still showing shifts in optimization cycles, but the shifts are less

than the standard uncertainty of that parameter. In fact, any

two values for a parameter that are separated by less than two

times the standard uncertainty of that parameter are consid-

ered indistinguishable. Taking the result from the minimiza-

tion and computing @�2=@pj

�� �� for the scale factor is likely to

give a large value even when this parameter has been properly

minimized because, as noted previously, the �2 function is

extremely sensitive to the scale factor. Even when the para-

meter has converged to the point where shifts are at insig-

nificant levels, very small differences due to roundoff error in

the numerical computation can still allow for a very large

derivative. So, alas, evaluating these derivatives for the current

parameter set will not allow identification of the worst-fit

parameters.

Informed by the second derivative, which examines how

@�2=@pj changes as pj changes, we can discern the worst-fit

parameters from those that have a large first derivative due to

computational inaccuracies, despite being well minimized. If

for parameter pj we evaluate the partial derivative at locations

pj � � and pj + �, where � is a small perturbation to pj, on the

order of or less than the standard uncertainty on that para-

meter, we can test if the minimum is between pj� � and pj + �.
If the minimum value for the parameter is well removed from

the current value, pj, then we would expect @�2=@pj to be about

the same when evaluated at the three values pj � �, pj and pj +

�. On the other hand, if the current value pj is already close to

the minimum, then we would expect @�2=@pj to have opposite
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Figure 3
Graphical representation of how changes for two different parameters
affect the fit. The vertical direction shows the relative change in �2 as the
parameter value is changed. The true minimum is indicated with a vertical
dashed line in red; the first derivative computation is the slope of the lines
shown as red arrows. These are obtained numerically from differences in
the fitting function, �2, evaluated at two locations. In the case of one
parameter, shown in blue, point p2 is close to the minimum, but the fit is
very sensitive to this parameter and thus the derivative can be quite large
even though no significant improvement is expected from further
minimization. The second parameter, in green, point p1, is far from its
minimum. Note that the deriviates for the first parameter have the
opposite sign while those for the second parameter have the same sign.



sign when evaluated at pj � � and pj + �, indicating that the

second derivative is zero somewhere in that range. If this is

true, we would not expect to see a significant improvement in

the fit by optimizing that parameter. We would also expect to

see these opposite signs if near a maximum for �2 with respect

to pj, but since we must start a fit with parameter values that

are close to the correct model, we would not expect to

encounter a local maximum in �2. Fig. 3 illustrates this deri-

vative computation process graphically. Thus, by computing

the partial derivative at two locations, and requiring that

@�2=@pj

�� �� be large near the current value of pj and that @�2=@pj

have same sign when evaluated at pj � � and pj + �, we can

discern the parameter(s) that are the worst fit.

This computation has been implemented in the GSAS-II

software suite, with details provided in Appendix A, as it is

hoped that the discussion in that section and the accessibility

of the source code will facilitate incorporation of this

capability into other Rietveld codes. When invoked, the

derivatives are computed for all appropriate parameters in the

model, and those parameters where both derivatives have the

same sign are reported to the user in a table, ordered so that

the largest-magnitude derivative (the worst-fit parameter) is

reported first. The time needed for this process will depend

greatly on the number of computed reflections, the diffraction

points in the pattern(s) and the number of parameters in the

model, but a computation time on the order of seconds to

minutes is likely.

4. Discussion and conclusions

This work has presented a tool that offers novice crystal-

lographers a mechanism to determine the order in which

parameters should be added into a Rietveld analysis. This

capability is easily added to a Rietveld code and herein we

outline how this can be done. Access to the Rietveld engine

source code may not even be needed. A script could be written

to modify the input parameters supplied to a compiled Riet-

veld code. The required partial derivatives could then be

accumulated from the resulting �2 values.

Nonetheless, despite this advance, powder diffraction crys-

tallographers will still need to understand the meaning of the

parameters and how they interact with respect to changing the

agreement between the data and the computed pattern. The

method presented here will identify the parameters in the

model that will offer the largest change in �2, but not all of

these parameters are appropriate to vary. For example, with

the model presented in Fig. 2(c), where the peak shapes are

not well fitted, a much larger derivative is seen for an instru-

mental broadening term than for sample broadening, but the

latter is a more appropriate term to include in the model.

What has been presented here, or, for that matter, the work

of Ozaki et al. (2020), addresses the serious problem of the

order to introduce parameters into a model seen in many

contemporary crystallographic refinement codes. This

problem may be less acute for Rietveld implementations with

more robust minimization strategies (Coelho, 2018), but it has

not been established whether the order that the parameters

are introduced remains important. Addressing this problem

still leaves several other significant tasks that at present still

require the attention of an experienced crystallographer: this

is determining how a model should be parameterized, such as

what intensity correction terms are appropriate for the

measurement. A lack of useful observables (Sivia, 2000) may

prompt introduction of constraints, such as grouping the ADP

values for similar atoms or use of geometrical constraints, such

as a rigid body, or similarly use of compositional or geometric

restraints. These constraints and restraints change how the

overall fit responds to changes in the parameters. Likewise, the

crystallographer must also decide when to expand the model

description, for example, to treat anisotropic peak broadening,

or when the data are insufficient to support full para-

meterization; for example, limited data range may prevent

simultaneously fitting crystallite size broadening and micro-

strain. In those cases, on the basis of information on the

sample origins, a choice must be made as to which parameter

provides a more sensible model. The quality of a fit must also

be determined from the validity of the results, so an expert

system that truly automates refinement must not only deter-

mine parameterization but also judge the physical and

chemical plausibility of the refined parameters. Thus, there is

considerable work that remains before Rietveld analysis can

be made automatic, but it is now possible to envision auto-

mating parameter introduction, even if the analyst must

specify considerable information based on the measurement

type(s) and the family of materials. Likewise, it becomes

possible to imagine software that performs automatic testing

of subgroup and supergroup structures or even helps wade

through the wealth of models for background, peak shape and

intensity correction factors that add so much complexity to

Rietveld analysis. Nonetheless, even if Rietveld analysis were

to be automated, an even more difficult problem is raised by

the example in Fig. 1, where the model clearly shows signifi-

cant agreement with the data but, even with all parameters

optimized, still inadequately fits the data. Parameter optimi-

zation will not address this. Additional models must be

developed and explored. This at present very much depends

on the imagination and experience of the crystallographer.

APPENDIX A
Implementation in GSAS-II

In this section, specific GSAS-II routines are discussed.

Further documentation on those routines, as well as a listing of

their source code, can be found in the code developer docu-

mentation, available as web pages or for download as portable

(PDF or Epub) documents (Toby & Von Dreele, 2023). Note

that, while GSAS-II computes analytic derivatives for most

varied parameters as part of the refinement process, the code

for that is embedded into assembly of the Hessian matrix,

which makes it difficult to access in other contexts. Since the

derivative computation needed here is performed at two

points for each parameter and since the analytic derivative

computation takes a similar amount of time to compute as

does evaluation of �2, computation of numerical derivatives
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does not take appreciably more time than analytic derivatives

would. Analytic derivatives would likely be somewhat more

precise than numerical derivatives, but since these derivatives

are only used to identify parameters that have significant

leverage over �2, this precision is not needed.

The computation of the ‘worst-fit’ parameters is performed

in the GSAS-II graphical user interface from an entry in the

‘Calculate’ menu labelled ‘Parameter Impact’. This invokes

the method OnDerivCalc() in class GSASIIdataGUI.

GSASII, which in turn invokes the refinement routine,

GSASIIstrMain.Refine(), but with a special argument

that indicates that partial derivatives should be computed

without completing a refinement. This Refine() routine

initially constructs a Python dict data structure with all the

parameter values, as well as assembling the powder data and

other information needed for computation of �2 in the routine

GSASIIstrMath.errRefine(). Note that the parameter

dict is keyed by a variable name that uniquely identifies the

role the parameter has in the model computation and the

value corresponding to the dict entry is the numerical value of

the parameter. There are some entries in this data structure

that cannot be varied sensibly. For example, any parameter in

that dictionary that does not have a floating point value is

ignored. In the case of lattice parameters, the unit-cell

symmetry is used to determine which of the reciprocal cell

tensor entries should be included.

The process for computing partial derivatives for all appro-

priate parameters is done in routine GSASIIstrMain.

AllPrmDerivs(), where the value of �2 is evaluated with

the current parameter set and saved, to be used later in the

evaluation of the partial derivative for each parameter. We

will label this here as �2(0). Next, there is a loop over

appropriate parameters (noting that some entries in the dict

are not appropriate to be changed). The parameter being

considered will be labelled pj. An offset to be applied to that

parameter, �j, is determined by the role that parameter has in

the model. Note that, if the value for �j is too small, the

derivative computation will be dominated by roundoff errors

and will be inaccurate. If �j is too large, it will not sample the

derivative in the vicinity of the current value for that para-

meter. For most parameters used in GSAS-II, �j is set to 10�6

or the value of the parameter�0.0001, whichever is larger. For

fractional coordinates, �j is set to 10�6, whereas for ADPs 10�5

is used. A few parameters related to sample positioning

usually have values greater than one and for these �j is set to

0.1. There may be a need to further improve these assump-

tions as more experience is gained.

For each appropriate parameter, �2 is evaluated using

GSASIIstrMath.errRefine() with the selected para-

meter set to values of pj � � and pj + �. The �2 values are

labelled here as �2(pj � �j) and �2(pj + �j), respectively.

Note that these computations are completely independent

and could thus be distributed to different CPUs if speed

via parallelization is desired. From the three �2 values,

three approximate partial derivative values are computed:

@�2=@pj ¼ ½�
2ðpj þ �jÞ � �

2 pj � �jÞ�=2�
�

; and the signs for the

partial derivatives above and below the current parameter

values are determined from ½�2ðpj þ �jÞ � �
2ð0Þ� and

½�2ð0Þ � �2ðpj � �jÞ�. These values are assembled into a dict

that is returned by AllPrmDerivs() and after sorting are

displayed in a table.

This capability has also been introduced into the

GSAS-II scripting mechanism (O’Donnell et al., 2018). In this

case, the method ComputeWorstFit() is provided for the

GSAS-II project class (G2Project). This method calls

GSASIIstrMain.Refine() and returns a list of para-

meters, sorted by their derivative values, as well as a tuple with

the values ½�2ðpj þ �jÞ � �
2ð0Þ�=�j, ½�

2ð0Þ � �2ðpj � �jÞ�=�j and

½�2 pj þ �jÞ � �
2ðpj � �jÞ

� �
=2�j.
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