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Characterization of a material structure with pair distribution function (PDF)

analysis typically involves refining a structure model against an experimental

data set, but finding or constructing a suitable atomic model for PDF modelling

can be an extremely labour-intensive task, requiring carefully browsing through

large numbers of possible models. Presented here is POMFinder, a machine

learning (ML) classifier that rapidly screens a database of structures, here

polyoxometallate (POM) clusters, to identify candidate structures for PDF data

modelling. The approach is shown to identify suitable POMs from experimental

data, including in situ data collected with fast acquisition times. This automated

approach has significant potential for identifying suitable models for structure

refinement to extract quantitative structural parameters in materials chemistry

research. POMFinder is open source and user friendly, making it accessible to

those without prior ML knowledge. It is also demonstrated that POMFinder

offers a promising modelling framework for combined modelling of multiple

scattering techniques.

1. Introduction

The continued development of increasingly bright synchro-

tron and neutron facilities means that scattering and spec-

troscopy data can now be measured at impressive speeds

(Wang et al., 2018; Dong et al., 2021; Pacchioni, 2019).

Hundreds of gigabytes or even terabytes of data are now

commonly collected in each experiment, each data set

containing thousands or millions of individual measurements.

With this amount of data, it is an enormous challenge to work

through each data set manually, and the development of

automated methods for data analysis is thus becoming more

and more necessary (Dong et al., 2021; Chen et al., 2021;

Choudhary et al., 2022).

For many X-ray- and neutron-based scattering techniques

such as small-angle scattering, powder diffraction and total

scattering with pair distribution function (PDF) analysis, data

analysis is often done through least-squares optimization

(Pedersen, 1997; Rietveld, 1969; Chepkemboi et al., 2022).

Here, structure models found in e.g. structure databases are

used to simulate data, which are then refined against experi-

mental data. This allows the extraction of quantitative struc-

tural parameters. This approach can, in principle, be

automated by e.g. testing entire databases of structures against

experimental data sets (Banerjee et al., 2020; Yang et al., 2020;

Aimi & Fujimoto, 2020; Christiansen et al., 2020b). However,

least-squares fitting algorithms are computationally expensive,

which makes them unsuited for automatically identifying and
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refining structures from experiments with many data sets

(Wang et al., 2018). Consequently, identifying structural

models is currently a bottleneck for modelling large quantities

of scattering data.

In this study, we present a tree-based machine learning

(ML) classifier that identifies a chemical structure from a PDF

in less than one second, enabling high-throughput database

screening. The PDF here refers to the reduced pair distribu-

tion function G(r), which represents a histogram of real-space

interatomic distances and can be used to identify atomic

arrangements in materials. G(r) is obtained by Fourier trans-

forming the total scattering structure function S(Q), which is

the set of corrected and normalized total scattering data

(Egami & Billinge, 2012),

GðrÞ ¼ ð2=�Þ

ZQmax

Qmin

Q½SðQÞ � 1� sinðQrÞ dQ: ð1Þ

Here, Q is the magnitude of the scattering vector [Q = (4�/�)�

sin(�/2), where � is the scattering angle and � is the wavelength

of the incident radiation], while r is the interatomic distance.

The Q range used for modern total scattering experiments

ranges from Qmin = 0.1–1 Å� 1 to Qmax = 15–30 Å� 1.

In recent years PDF analysis has been shown to be a

powerful technique for characterization of disordered mate-

rials (Christiansen et al., 2020b; Yang et al., 2013; Billinge &

Kanatzidis, 2004; Keen & Goodwin, 2015), amorphous mate-

rials (Christiansen et al., 2020a; Juelsholt et al., 2021; Bennett

& Cheetham, 2014), clusters in solution (Anker et al., 2021;

Jensen et al., 2016; Szczerba et al., 2021) and nanomaterials

(Billinge & levin, 2007; Cooper et al., 2020) where conven-

tional crystallographic approaches are challenged (Billinge &

Kanatzidis, 2004; Keen & Goodwin, 2015).

PDFs are usually analysed by fitting a reasonable starting

model to the experimental PDF using dedicated software such

as PDFgui (Farrow et al., 2007), DiffPy-CMI (Juhás et al.,

2015), DISCUS (Proffen & Neder, 1997, 1999) or TOPAS

(Coelho, 2018). In some cases, for example for well char-

acterized crystalline materials, identifying a starting model for

structural refinements is easily done. In other cases, finding or

constructing a good initial atomic model for modelling the

PDF can be an extremely labour-intensive task, requiring

carefully browsing through large numbers of possible starting

models. However, we and others have shown that ML methods

such as neural networks and tree-based ML have much

potential to improve the speed of PDF analysis (Anker et al.,

2020, 2022, 2023; Liu et al., 2019; Kjær et al., 2023; Kløve et al.,

2023; Skjaervø et al., 2023; Magnard et al., 2022). ML has, for

example, been used to identify crystallographic space groups

from PDFs (Liu et al., 2019), to extract structural motifs

(Anker et al., 2022; Skjaervø et al., 2023; Magnard et al., 2022)

and to determine the structure of small metallic nanoparticles

(Anker et al., 2020; Kjær et al., 2023).

We here use a tree-based ML classifier to identify the

structure of polyoxometallate (POM) clusters in solution on

the basis of a PDF. POM clusters are a family of large poly-

anion clusters mostly constructed of [MO6] octahedra, where

M is often Mo, W, V or Nb (Gumerova & Rompel, 2018, 2020;

Miras et al., 2012; Long et al., 2010). POMs have been exten-

sively studied due to both their rich chemistry and their many

applications, e.g. in molecular magnets, as catalysts for water

splitting, as conductors or in medicine (Gumerova & Rompel,

2018, 2020; Miras et al., 2012; Long et al., 2010). Furthermore,

it has been shown that the formation of metal oxide crystals

can be dependent on the structure of the POM cluster, which

has a huge impact on the formation mechanism (Christiansen

et al., 2020b; Juelsholt et al., 2019). While POMs have so far

been mainly studied in the crystalline form, PDF analysis

allows POM structure studies in solution, which paves the way

for a new understanding of their chemistry.

The ML model, which we refer to as POMFinder, has been

trained on simulated PDFs from 443 POM clusters, cut out of

crystal structures containing POMs obtained from the Crys-

tallography Open Database (COD; Gražulis et al., 2018) and

the Inorganic Crystal Structure Database (ICSD; Allen et al.,

1987). POMFinder allows identification of POM structures

from PDFs and has an accuracy of 94.0% on simulated data

within the first prediction. It also shows good performance on

experimental PDF data. We use SHapley Additive exPlana-

tions (SHAP; Lundberg & Lee, 2017; Lundberg et al., 2020)

analysis to understand the predictions of POMFinder. With

SHAP analysis, we can calculate the contribution of each input

feature in the ML model to its predictions. Using SHAP

analysis on simulated PDFs from X-rays (xPDF), neutrons

(nPDF) and electrons (ePDF), we show that POMFinder

learns trends corresponding to the scattering power of the

different elements in the POMs and uses this information in its

predictions. Finally, we show that the method can be extended

to use data jointly from multiple scattering techniques instead

of analysing the data separately, comparable to the ‘complex

modelling’ approach (Billinge & Levin, 2007). We use simu-

lated xPDF, small-angle X-ray scattering (SAXS) data, nPDF

and ePDF, as well as combinations of the above data sets. A

common problem of complex modelling is to weight the data

sets (Anker et al., 2021; Juhás et al., 2015; Krayzman et al.,

2008), but this is not necessary when using ML to identify the

structural model.

2. Construction of the POM database and training of

the POMFinder model

We aim to create an ML model that can quickly and efficiently

match an atomic POM structure to experimental data. We

have chosen to focus on X-ray PDF data as the structural

characterization technique and on POMs as the structures of

interest. In principle, however, the data set can be any infor-

mation that can be modelled using an atomistic model and

represented in a tabular data format. The goal is not to have an

algorithm that can output the perfect model to all experi-

mental data every time with no user input. Instead, the

successful ML model can filter out all bad models and give the

user a handful of models which can be used for further

analysis.
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A pseudo-code of how to create the POM database and

train POMFinder can be seen in Fig. 1. The structural database

of POM clusters is built from crystallographic information files

(CIFs) obtained from both the COD and ICSD using chemical

restraints appropriate for POM clusters, as discussed below.

Afterwards, a number (N) of PDFs are simulated for each

POM structure with varying simulation parameters (Qmin,

Qmax, an instrumental damping parameter Qdamp and an

isotropic atomic displacement parameter ADP). The Q range

used in the PDF [equation (1)] affects the r resolution of the

PDF, and the limited Q range (Qmin–Qmax) creates termina-

tion ripples in the PDF (Egami & Billinge, 2012). Therefore,

automated PDF data analysis must be applicable across

various Q ranges. The parameters are varied using Latin

hypercube sampling (Bouhlel et al., 2019), and a gradient-

boosting decision tree (GBDT) model (Chen & Guestrin,

2016; https://xgboost.readthedocs.io/en/stable/index.html#) is

trained to classify which POM structure best matches the input

data. In the following sections we will elaborate on this

process.

2.1. Building a database of polyoxometallate clusters

The COD and ICSD databases contain hundreds of thou-

sands of CIFs. When building our database, we first screened

for CIFs with the same metal–oxygen ratios as described in a

comprehensive review of POM clusters in solution by

Gumerova & Rompel (2020). This restrained the database to

56 different metal–oxygen ratios, yielding 1281 CIFs. Clusters

were then cut out of the CIFs by creating a 2 � 2 � 2 unit cell

of the crystal and extracting all clusters of atoms not bonded

to other atoms in the structure. Some clusters span more than

a single unit cell, so to capture the complete POM cluster, a

2 � 2 � 2 unit cell was needed. Next, all isolated clusters that

did not fulfil the chemical restraints (the 56 different metal–

oxygen ratios) were removed. Fig. 2 illustrates an example of a

cluster that was cut out of a crystal built from Keggin poly-

oxoanions, K2NaH2[BW12O40]·12H2O (Han et al., 2012).

This procedure yielded 969 potential polyoxometallate

clusters. The simulated PDFs’ Pearson correlation coefficients

(PCCs) were used to remove similar structures from the

database (Kjær et al., 2022). The PDFs were compared itera-

tively by simulating a PDF of the first and second clusters with

the parameters given in Section A in the supporting infor-

mation and comparing their absolute PCCs. The PCC is a

measure from � 1 to 1 of how linearly correlated two contin-

uous data sets are, where � 1 represents inverse data sets and 1

represents identical data sets. If the absolute PCC was higher

than 0.99, the second cluster was not included in the database.

The third cluster was then compared with the first and second

clusters by the same procedure and so on. The value of 0.99

was defined by manually inspecting the structures, their

corresponding PDFs and the PCCs. Examples of three struc-

tures, their corresponding simulated PDFs and the PCCs can

be seen in Section A in the supporting information. This

process was performed with all 969 structures, yielding 443

unique structures. We note here that it is not guaranteed that

the clusters are perfectly cut out of the crystal structure, which

makes it important for the user to inspect the results of

POMFinder and establish whether they make chemical sense.

2.2. Simulation of PDFs from the POM structures and

training process of POMFinder

For each structure, a number (N) of PDFs were simulated

with a broad range of instrumental parameters sampled using

Latin hypercube sampling (Bouhlel et al., 2019.) The simula-

tions were done using DiffPy-CMI (Juhás et al., 2015). The

parameters are Qmin, Qmax, Qdamp and the ADPs. Section B in

the supporting information gives the range of simulation

parameters for the PDF data. The PDFs are normalized to

have G(r)max = 1, and all intensities up to r = 1 Å are set to 0

since the POM clusters are unlikely to have atomic distances

that contribute to the signal in this range of the PDF. While

this normalization is vital for aligning the training set with

experimental PDFs, we use the PDFs in their unmodified form
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Figure 1
Pseudo-code describing how to create POM clusters from a CIF database
and how to train POMFinder. A POM database is built from the ICSD
and COD by cutting out clusters from all crystal structures with chemical
compositions similar to POM clusters in solution (step 1) (Gumerova &
Rompel, 2020). A number of PDFs are simulated for each POM cluster
using various parameters (step 2). These PDFs are then used to train a
GBDT model for classifying the corresponding structure from a PDF
(step 3).

Figure 2
A POM cluster cut out from a crystal structure. (a) The crystal structure
of K2NaH2[BW12O40]·12H2O (Han et al., 2012) and (b) the corresponding
POM cluster. W is shown in brown, O in red, Na in yellow, B in blue and K
in grey. H is omitted for clarity.
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for fitting procedures and for all visual representations within

this paper.

An example of an experimental PDF before and after

normalization is shown in Section B in the supporting infor-

mation.

The simulated data sets and their corresponding instru-

mental parameters (Qmin, Qmax, Qdamp and ADPs) are input in

a GBDT model. The GBDT algorithm used is XGBoost with

default parameters, except for the learning rate, which was set

to 0.3, and the early stop criterion of five rounds without

improvement (Chen & Guestrin, 2016; https://xgboost.

readthedocs.io/en/stable/index.html#). The problem is a 443

class classification problem with an input of 443�N simulated

PDFs. For each structure, two of the 100 simulated PDFs are

randomly chosen and set aside during the training of the

model and later used as validation and test sets. The validation

set is used to validate when the GBDT model has converged.

The loss curve (multiclass log loss; https://scikit-learn.org/

stable/modules/generated/sklearn.metrics.log_loss.html) is plot-

ted in Section C in the supporting information, which shows

that the model can predict the training data with 100%

accuracy, while the validation data are predicted with a small

loss. The concluding accuracy of the model can be determined

on the test set, which are data on which the model has not

been trained or validated, i.e. comparable to how POMFinder

can be used for experimental data. When POMFinder is

trained on 100 PDFs for each structure, the accuracy on the

test set is 94.0% according to test set predictions.

3. Use of POMFinder

POMFinder is a simple tool to use since everything is fully

automated. As seen in Fig. 3, one simply provides a data set as

input to POMFinder, and it will return a list of likely struc-

tures as output. The input here is a PDF but it can, in principle,

be any data that can be modelled using an atomistic model and

represented in a tabular data format. As POMFinder is

designed for predicting single-phase POMs from their corre-

sponding PDFs, it will be challenged if confronted with PDFs

obtained from multi-phase cluster systems or from crystalline

structures. The output will be given in the XYZ format

providing the elements and coordinates of all the atoms in the

structure.

4. Results and discussion

4.1. Identification of POM structures from experimental

PDFs

We start by demonstrating the power of POMFinder on an

experimental PDF from a 0.05 M aqueous solution of

ammonium metatungstate hydrate, (NH4)6[H2W12O40]·xH2O,

which is known to yield [H2W12O40]6� ions with the �-Keggin

structure (Juelsholt et al., 2019). The data were collected on
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Figure 3
Pseudo-code describing how to use POMFinder. The data set is simply
given as input to POMFinder, which outputs an ordered list of suitable
POM clusters from which a few can be fitted to the data set.

Figure 4
POMFinder’s top five predictions on experimental high-quality X-ray PDF data. Comparisons of the PDF obtained from the 0.05 M ammonium
metatungstate solution and the fitted PDF of (a) a W11O35 Keggin-based fragment from the dimeric K5.5Na7Nd[SiW11O39 (H2O)]2(CH3COO)2(H2O)10

complex (Saini et al., 2014), (b) a W12O36 fragment from the K5H(CoW12O40) (H2O)15 crystal (Glass et al., 2014), (c) a W12O40 fragment from an ionic
crystal structure of [Al13O4(OH)24(H2O)12](H2W12O40)(OH)(H2O)23.12 (Son et al., 2003), (d) a W12O36 fragment from the porous inorganic structure of
the formula K2NaH2(BW12O40)(H2O)12 (Han et al., 2012) and (e) a W12Rb4BO43 fragment from another ionic crystal, Rb4[Cr3O(OOCH)6(H2O)3-
(BW12O40)](H2O)16 (Uchida et al., 2006). W is shown in brown, O in red and Rb in pink. Refinement parameters are reported in Section D in the
supporting information.
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the DanMAX beamline (MAX IV, Lund, Sweden) using a

wavelength of � = 0.3542 Å, achieving a Qmax of 20 Å� 1. The

acquisition time for the total scattering data set was 15 min.

Keggin structures [Fig. 2(b)] have the chemical composition

[XM12O40]n� , where X is a tetrahedrally coordinated cationic

central atom in the middle of the cluster or one to three H+

ions, M is the metal atom of the cluster, and n is the negative

charge of the cluster. Keggin clusters are divided into five

rotational isomers with increasing degrees of edge sharing,

namely �, �, �, � and " (Gumerova & Rompel, 2020; Jeannin,

1998; Sartzi et al., 2015), although the � isomer is not present in

our POM database.

When the experimental PDF is given as input to

POMFinder, the output is an ordered list of how probable it is

that the PDF originates from each of the 443 POM structures

in the POM database. The first five entries of the list are given

in Section D in the supporting information, along with the

probabilities assigned by POMFinder. The list clearly shows a

dominance of structures with W11–12O35–43 composition which

correspond to Keggin fragments. The five structures with the

highest probability assigned by POMFinder are shown in

Fig. 4, along with the fits to the experimental PDF. The first

four candidate structures fit the PDF reasonably well. The best

candidate, Fig. 4(b), with an Rwp value of 29.6%, is an

�-Keggin structure. All the other structures are also �-Keggin

structures or fragments.

4.2. Using POMFinder on fast acquisition data sets with a

lower Qmax

Having established that POMFinder can identify a POM

structure from a high-quality experimental PDF, we are

interested in examining the use of POMFinder for data

acquired with a fast time resolution, as is the case for in situ

data. X-ray total scattering with PDF analysis is a powerful

technique to study the formation of e.g. oxides, and it has

previously been shown that POM structures can play an

important role in their formation (Skjaervø et al., 2023; Juel-

sholt et al., 2019; Bøjesen et al., 2016; Saha et al., 2014).

Therefore, we tested POMFinder on fast-acquisition experi-

mental PDFs with 2 s time resolution from the 0.05 M solution

of ammonium metatungstate. The data quality for this data set

only allows a Qmax of 16 Å� 1. The data are the same as

reported by Juelsholt et al. (2019) on the formation of tungsten

oxide. The experimental PDF of the ammonium metatungstate

solution (Fig. 5) shows a small structure with PDF peaks up to

about 7 Å. When inputting the PDF to POMFinder, we again

obtain an ordered list of possible structures, with the best five

listed in Section D in the supporting information. Fig. 5 shows

the fit of the five best predictions on the experimental PDF.

The best fitting POM fragments, Figs. 5(a) and 5(d), are

lacunary �-Keggin structures with three out of four triads. The

second structure, Fig. 5(b), also reasonably fits the experi-

mental PDF with an �-Keggin structure. In contrast, the

structures in both Figs. 5(c) and 5(e) are too large to describe

the experimental PDF well. Nevertheless, using POMFinder

we can identify main motifs and thus determine a good model

from fast-acquisition PDFs.

As discussed by Juelsholt et al. (2019), another cluster

appears when heating the 0.05 M solution of ammonium

metatungstate in oleylamine to 200�C. The experimental PDF

after ca 4 min of heating is shown in Fig. 6. When inputting the

PDF to POMFinder, we again obtain an ordered list of
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Figure 5
POMFinder’s top five predictions on experimental fast-acquisition X-ray PDF data. Comparisons of the PDF from a 0.05 M solution of ammonium
metatungstate in oleylamine with (a) a W9SiO34 fragment from a Keggin-based Na2[C(NH2)3]2[[(CH3)2Sn(H2O)]3(A-�-SiW9O34)]·10H2O crystal
(Piedra-Garza et al., 2009), (b) a W12O36 fragment from the crystal structure of a porous framework based on Keggin polyoxoanions, K2NaH2

[BW12O40]·12H2O (Han et al., 2012), (c) a W20O64 fragment from a pseudo-Keggin-based crystal with chemical composition H2� xBi2W20O70(HWO3)
(Patrut et al., 2010), (d) an SbW9O30 fragment from a K11[Sb3(SiW9O34)2]·31H2O crystal structure (Assran et al., 2012) and (e) a V15O42 fragment from
the bicapped Keggin structure (TMA)3H6VV

15042·2.5H20 (TMA = tetramethylammonium) (Hou et al., 1993). W is shown in brown, Sb in grey, O in red,
Si in blue and V in pink. Refinement parameters are reported in Section D in the supporting information.
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possible structures, with the best five listed in Section D in the

supporting information. Figs. 6(a)–6(e) show the first five

structures suggested by POMFinder and their fits to the PDF.

The second prediction, Fig. 6(b), is the only POM fragment

that reasonably fits the experimental PDF. This is a para-

tungstate POM, which agrees with the conclusion reached by

Juelsholt et al. (2019). POMFinder is thus very well suited for

analysis of in situ data where small structural changes in the

cluster structure are observed. We attempted to analyse the

entire in situ data set from Juelsholt et al. (2019), comprising

1022 PDFs. This analysis was completed in 66.5 s using a

standard laptop equipped with an Intel Core i7-8665U CPU at

1.9/2.11 GHz. POMFinder performs well for the stages in the

in situ data set where only one cluster is present. However,

many of the PDFs in the time-resolved data set contain signals

from multiple cluster species. Here, POMFinder is challenged,

as these types of data go beyond the training set used. At this

point, POMFinder thus cannot be used for identifying suitable

POM clusters for PDFs obtained from multiple coexisting

POMs. This challenge could possibly be overcome by

combining the use of POMFinder with e.g. principal compo-

nent analysis or negative matrix factorization, which poten-

tially could separate the signals from each POM in the PDF.

4.3. Rationalizing POMFinder’s predictions using SHAP

values

The above results have established that POMFinder can

identify the POM structure present in solutions from experi-

mental PDFs, yet it is not clear on what POMFinder bases its

predictions. To obtain this understanding, we use SHAP

analysis. SHAP is a feature importance measure which yields

information about how the ML model exploits the individual

features in the input data to make its predictions. Here, the

features are Qmin, Qmax, Qdamp and G(r) values for r values

between 0.0 and 10.0 Å with a step size of 0.1 Å. A SHAP

value is calculated for each feature for each PDF in the

training set. The amplitude of the calculated SHAP value for a

given feature provides information about how important the

feature is, while the sign of the SHAP value tells whether the

feature is confirming or disqualifying the specific structure as a

match to the data set. Figs. 7(a) and 7(c) show a SHAP analysis

of the two fast-acquisition PDFs discussed above, predicting

the �-Keggin and the paratungstate cluster, respectively. The

top of the figure shows the SHAP values of the most important

features, i.e. those that give the highest amplitude of SHAP

values. The value of the features, in this case the G(r) intensity,

is indicated by colour: high PDF intensities [G(r) values] in the

PDFs in the training set are represented in red, while low G(r)

values are coloured blue. For the �-Keggin cluster, the SHAP

analysis shows that the two most important features are the

G(r) values at r = 6.0 Å and r = 3.6 Å. When inspecting the

PDF and POM structures, these r values correspond to two

W—W distances, as indicated in the structure drawing in

Fig. 7(b). This means that POMFinder bases its predictions

strongly on PDF peaks arising from W—W distances. W has a

higher X-ray scattering power compared with O (W has 74

electrons, whereas O has eight), and W—W peaks are thus

much more prominent in X-ray PDFs compared with W—O or

O—O peaks (Prince, 2004). For paratungstate, we observe the

same trend [Figs. 7(c) and 7(d)]. We conclude that POMFinder

predominantly bases its predictions on the intensities of the
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Figure 6
POMFinder’s top five predictions on experimental fast-acquisition X-ray PDF data. Comparisons of the PDF from a 0.05 M solution of ammonium
metatungstate in oleylamine heated to 200�C for 4 min and the calculated PDF of (a) a W48O152 fragment from the polyanion K26.5Li9.5-
[H4As8W48O184]·90H2O (Mbomekallé et al., 2014), (b) a W12O42 fragment from the acidic sodium polytungstate Na5[H7W12O42]·20H2O (Redrup &
Weller, 2009), (c) a W11K3O38 fragment from the crystal structure K6H4W11O38·H2O (Lehmann & Fuchs, 1988), (d) a W2O7 fragment from the crystal
structure of Bi2W2O9 (Champarnaud-Mesjard et al., 1999) and (e) an Re2O8 fragment from the crystal structure Bi28Re2O49 (Crumpton et al., 2005). W is
shown in brown, K in grey, O in red, Si in blue and Re in green. Refinement parameters are reported in Section D in the supporting information.
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PDF peaks describing the first and third metal–metal shells for

these two structures.

Instead of using SHAP to explain how POMFinder makes

its predictions on individual PDFs, it is possible to get a global

explanation by calculating an average of all the absolute

SHAP values from the 443 POM structures in the POM

structure database (shown in Section E in the supporting

information). This analysis shows that the average absolute

SHAP value for the Qmin, Qmax and Qdamp values is insignif-

icant, meaning that POMFinder is not sensitive to the

provided user input of Qmin, Qmax and Qdamp in the ranges

used for training POMFinder. The average absolute SHAP

value for G(r) values in the r = 0–1 Å range is 0 since they are

fixed to G(r < 1 Å) = 0. However, the rest of the G(r) values

all have some contribution to the prediction of POMFinder. In

particular, the G(r) values corresponding to PDF peaks for

M—O distances (�2.0 Å) and the first and third metal–metal

distances (�3.3 and �6.2 Å, respectively) are important for

POMFinder’s predictions.

To confirm that the predictions from POMFinder relate to

the scattering power of the elements, we conducted the same

SHAP analysis on simulated nPDF and ePDF data. From the

same POM database, we first simulated 100 nPDFs and ePDFs

from each POM structure in our database with different Qmin,

Qmax, Qdamp and atomic displacement parameters, trained a

GBDT model using a 98:1 :1 training :validation : test set split,

and then applied SHAP analysis to investigate the results.

Fig. 8 shows the SHAP values for each feature in POMFinder

when trained on the simulated xPDF, nPDF and ePDF data

compared with their relative simulated PDFs.

When POMFinder is trained on nPDFs, the SHAP value is

high for features corresponding to O—O peaks and W—O

peaks. The neutron scattering lengths of W and O are 4.9 and

5.8 fm, respectively (Prince, 2004). This means that

POMFinder bases its predictions on the O—O and W—O

peaks when trained on nPDFs, rather than on the W—W

peaks as seen for xPDFs as discussed above. This is probably

due to the comparable neutron scattering lengths of W and O

in contrast to the scattering contrast between W and O in

xPDF and ePDF experiments. As expected, POMFinder

primarily bases its predictions on the W—W distances when

trained on ePDFs (electron scattering factors: W 12.5 Å, O

2.0 Å; Prince, 2004), but it gives higher weights to the O atoms

than for xPDF. We thus see a clear trend between the scat-

tering power of the element and the reasoning of POMFinder.

A similar global analysis of all structures in our POM database

research papers

40 Andy S. Anker et al. � POMFinder: identifying POM structures from PDF data J. Appl. Cryst. (2024). 57, 34–43

Figure 7
SHAP analysis of POMFinder on experimental PDFs. (a) and (c) For every PDF in the test set, SHAP values are calculated for all PDF intensities [G(r)
values], indicated with red for peaks and blue for low intensities. The r values of the PDF intensity are shown as labels. In panel (a), only the impact of
predicting the �-Keggin cluster is shown, while (c) shows the impact of predicting the paratungstate cluster. (b) and (d) Histograms of absolute SHAP
values for each PDF intensity plotted versus the r values on top of the PDFs of (b) the �-Keggin cluster and (d) the paratungstate cluster. W is shown in
brown and O in red.
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is shown in Section E in the supporting information, which

provides comparable results. We therefore hypothesize that

POMFinder learns about the scattering contrast of different

elements when predicting which POM fragment a PDF

matches.

Fig. 9 shows the performance of POMFinder on the test set

when POMFinder is trained using splits of 2 :1 :1, 3 :1 :1, 5 :1 :1,

8 :1 :1 and 98:1 :1 PDFs per POM structure. Unsurprisingly,

the performance (defined as the accuracy of the model on the

test set) of POMFinder increases when trained on more data.

Generally, POMFinder performs comparably when trained on

xPDF, nPDF and ePDF data, as seen in Fig. 9.

4.4. Combination with data from other techniques

It has previously been shown that combined modelling of

data from multiple scattering techniques can provide more

robust results than separately modelling data from the indi-

vidual scattering techniques (Anker et al., 2021; Juhás et al.,

2015; Farrow et al., 2014; Farrow & Billinge, 2009; Tucker et al.,

2007; Krayzman et al., 2008). However, it is a cumbersome

process to do combined modelling of data from multiple

scattering techniques using a least-squares approach, and it

can be challenging to weight the contribution from each data

set (Anker et al., 2021; Juhás et al., 2015; Krayzman et al., 2008;

Terban & Billinge, 2022). We hypothesize that this problem

can be overcome with ML methods, and here we take the first

steps to extend POMFinder to combined data sets. Specifi-

cally, we train POMFinder on a combination of xPDF/SAXS

and a combination of xPDF/SAXS/nPDF data. We do not

weight the data sets. The SAXS simulations provide infor-

mation on the size and shape of the POM clusters and are thus

highly complementary to the PDF data discussed above.

Details of the SAXS simulations are given in Section B in the

supporting information.

The results on performance are given in Fig. 9, where we

observe that when combining information from PDF and

SAXS experiments, the performance increases, especially

when using small training sets where POMFinder is challenged

when using data from only one technique. This example

demonstrates that POMFinder can easily be extended to

identify a structure from combined data sets and that

combining information from various data sets provides a

higher performance on a test set.

5. Conclusions

We have demonstrated how our tree-based ML classifier,

POMFinder, can screen a POM structure database to identify
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Figure 9
The performance of the model trained with various simulated data sets and different numbers of data sets per structure. Section F in the supporting
information lists the mean and standard deviation based on five iterations where the model was trained on different simulated PDFs and predictions
were made on the same test set.

Figure 8
Analysis of the influence of the scattering probe on POMFinder’s predictions. (Top) The X-ray, (middle) the neutron and (bottom) the electron PDFs are
plotted on top of a measure (SHAP values) of how important each data point in the PDF is for POMFinder to make its prediction on (a) the �-Keggin
cluster and (b) the paratungstate cluster.
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structural candidates for the modelling of PDF data. Instead

of using the traditional approach in scattering data analysis,

where PDFs from all POM clusters in the database are fitted

to the data through a least-squares refinement, we have shown

that POMFinder can be used first to narrow down the field of

candidate structures very quickly to five POM clusters, which

can then be analysed further.

The POM database was made by cutting out clusters from

the COD and ICSD databases following appropriate chemical

restraints for POM structures. A GBDT model, XGBoost, was

trained on simulated X-ray PDF data to classify the POM

clusters with an accuracy of 94.0% on simulated PDFs.

POMFinder also performs well on experimental data,

including in situ data collected with a fast acquisition time.

This ultrafast method allows e.g. visualizing the structural

model in three dimensions while collecting data.

Using SHAP analysis, we have shown that POMFinder

bases its predictions on trends comparable to the scattering

contrast of the elements in the clusters.

Finally, we have shown that, in contrast to conventional

complex modelling refinement methods, ML offers a

promising and more flexible modelling framework for struc-

ture identification from combined data sets as it is not

necessary to weight the data contributions (Anker et al., 2021;

Juhás et al., 2015; Krayzman et al., 2008).

POMFinder is open source, and the method can be directly

applied by users without prior ML knowledge to characterize

POM clusters.

POMFinder can be extended to include more types of

chemical systems by extending the structural database used to

generate the training data. In this project, we have focused on

screening a database of POM fragments. However, the ulti-

mate goal is to include any cluster fragment from the data-

bases of known crystal structures, such as COD and ICSD

which have more than 600 000 entries between them. The

approach used for POMFinder can also be extended to

analyse data from other scattering and spectroscopy techni-

ques. We thus see POMFinder as a proof of concept, showing

how a database of known structures can quickly be screened

for analysis of e.g. scattering data using simple explainable ML

methods.

6. Data availability

The database of POM clusters and the code used to train

POMFinder is available at https://zenodo.org/records/

10055030. POMFinder is available on GitHub at https://

github.com/AndySAnker/POMFinder/. A web app to use

POMFinder is available at https://huggingface.co/spaces/

AndySAnker/POMFinder.
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Proffen, T. & Billinge, S. J. L. (2007). J. Phys. Condens. Matter, 19,
335219.

Glass, E. N., Fielden, J., Kaledin, A. L., Musaev, D. G., Lian, T. & Hill,
C. L. (2014). Chem. Eur. J. 20, 4297–4307.
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J. Am. Chem. Soc. 143, 16332–16336.

Terban, M. W. & Billinge, S. J. L. (2022). Chem. Rev. 122, 1208–1272.

Tucker, M. G., Keen, D. A., Dove, M. T., Goodwin, A. L. & Hui, Q.
(2007). J. Phys. Condens. Matter, 19, 335218.

Uchida, S., Kawamoto, R. & Mizuno, N. (2006). Inorg. Chem. 45,
5136–5144.

Wang, C., Steiner, U. & Sepe, A. (2018). Small, 14, e1802291.

Yang, L., Juhás, P., Terban, M. W., Tucker, M. G. & Billinge, S. J. L.
(2020). Acta Cryst. A76, 395–409.

Yang, X., Masadeh, A. S., McBride, J. R., Božin, E. S., Rosenthal, S. J.
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