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Artificial intelligence (AI) is more present than ever, both in our society in general and in

science. At the center of this development has been the concept of deep learning, the use

of artificial neural networks (ANNs) that are many layers deep and can often reproduce

human-like behavior much better than other machine-learning techniques.

This development has been going on for a long time, and it is ambiguous to identify a

specific starting date for it. Possible candidates might be the first ANNs in 1943

(McCulloch & Pitts, 1943), the popularization of backpropagation to train many layers in

a network at once in 1985 (Rumelhart et al., 1986) and the application to identify human

handwriting in 1989 (Le Cun et al., 1989).

Today the growth of this field is seemingly exponential, with major breakthroughs

being reported almost every year. Some of the most notable examples are

(1) beating a professional player at the game of go (Silver et al., 2016),

(2) residual neural networks (ResNets) for image recognition (He et al., 2016),

(3) AlphaFold protein structure prediction (Jumper et al., 2021),

(4) ChatGPT and other large language models (LLMs) (https://gluebenchmark.com/

leaderboard).

During the same time frame, deep learning has also seeped into our society in many

less prominent cases such as

(1) automatic image processing of photographs from our cell-phone cameras,

(2) recommendations for music or movies on streaming services,

(3) optimization of server hall power efficiency.

It is certainly no understatement that AI has become a foundation for society as we

know it today. And so far, the technology has mainly been developed by big tech companies.

With this knowledge, many scientists have started to investigate what these new tools

could mean for their field of research. While some areas of science were fairly slow to

adopt these methods, we are now seeing a rapid spread of AI applications in many

different fields, and the contributions in this collection of articles from Journal of

Applied Crystallography (https://journals.iucr.org/special_issues/2024/ANNs) manifest

that observation for X-ray photon science and crystallography.

Most applications of AI are, however, not of the transformative kind, comparable to

the effect that AlphaFold had on the field of structure prediction. Instead, we have

examples such as preprocessing that gives smaller improvements to data quality, or

automation of a mundane task that would otherwise have to be done by a researcher.

Classification. One of the first applications of machine learning was to classify data.

Famous examples include recognizing handwritten digits and letters or identifying human

faces. In photon science this is also a common use case, and recently we have, for

example, seen it being used for femtosecond X-ray imaging patterns (FXI) (Assalauova

et al., 2022), X-ray photon correlation spectroscopy (Timmermann et al., 2022) and serial

femtosecond crystallography (Rahmani et al., 2023). This is often a convenient way to

speed up a researcher’s work by automating an otherwise labor-intensive task, by clas-

sifying a small set of patterns by hand and then training a machine-learning algorithm to

classify a bigger dataset in a similar fashion.

Another example is from neutron diffraction (Hao et al., 2023) where a neural network

approach was used not only to filter out relevant data but also to label regions of interest

in each diffraction pattern.
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A common critique towards neural network approaches is

their black-box nature—that we usually have very limited

understanding of the analysis that a trained network actually

performs. A particularly interesting development is, therefore,

the attempts to understand the internal workings of our

networks. One such example is reported by Nawaz et al.

(2023).

Data analysis. A more recent development is that neural

networks take a more active role in data analysis in addition to

classification. We see cases in the entire pipeline of data

processing. A successful example is data preprocessing where,

for example, missing regions of data can be recreated using

deep neural networks. This has been shown both for small/

wide-angle X-ray scattering (SAXS/WAXS) (Chavez et al.,

2022) and FXI (Bellisario et al., 2022) experiments.

It is still fairly rare for neural networks to perform the bulk

of the analysis. One such case is, however, a study of band gap

structures in metal–organic frameworks where an ANN

trained on a large set of simulated data was applied to

experimental data with remarkable success (Gómez-Peralta et

al., 2022). In another example by Lim et al. (2023), subsurface

temperatures are estimated during laser melting comparing

experimental data with ANN-based simulations.

Parameter estimation. A more common application is the

use of neural networks to provide parameters to an analysis

that is otherwise using conventional methods or to reduce the

search space for an existing algorithm. Chitturi et al. (2021) use

neural networks to estimate lattice parameters for X-ray

powder diffraction data, which can reduce the search space for

this time-consuming algorithm by more than a factor of 100. A

similar example comes from X-ray reflectivity, where a neural

network was used to estimate model parameters in a fraction

of the time required for traditional methods (Mareček et al.,

2022). Recently, a web-service called CrystalMELA was also

released, which can estimate the crystal system using several

machine-learning methods (Corriero et al., 2023)

In addition to direct applications, AI is mentioned by a vast

number of articles, and it is clear that there is a curiosity and

optimism about AI techniques within the field. The imple-

mentation of AI techniques is, however, most likely in its

infancy. Most examples included here are the work of small

talented teams of researchers using relatively modest hard-

ware. The effects are already tangible, by speeding up

research, identifying hidden patterns and freeing up time for

researchers by automating tasks. Given the success so far,

more effort and more computational power could potentially

have the same transformative effect in our field as AlphaFold

has had on protein structure prediction.
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