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An implementation of Slater-type spherical scattering factors for X-ray and

electron diffraction for elements in the range Z = 1–103 is presented within the

software Olex2. Both high- and low-angle Fourier behaviour of atomic electron

density and electrostatic potential can thus be addressed, in contrast to the

limited flexibility of the four Gaussian plus constant descriptions which are

currently the most widely used method for calculating atomic scattering factors

during refinement. The implementation presented here accommodates the

increasing complexity of the electronic structure of heavier elements by using

complete atomic wavefunctions without any interpolation between precalcu-

lated tables or intermediate fitting functions. Atomic wavefunctions for singly

charged ions are implemented and made accessible, and these show drastic

changes in electron diffraction scattering factors compared with the neutral

atom. A comparison between the two different spherical models of neutral

atoms is presented as an example for four different kinds of X-ray and two

electron diffraction structures, and comparisons of refinement results using the

existing diffraction data are discussed. A systematic but slight improvement in R

values and residual densities can be observed when using the new scattering

factors, and this is discussed relative to effects on the atomic displacement

parameters and atomic positions, which are prominent near the heavier

elements in a structure.

1. Introduction

Advances in non-spherical refinement techniques to describe

the electron density of a model in crystallographic least-

squares refinement have allowed detailed analysis of various

types of structures (Kleemiss et al., 2021), even when the data

quality is not sufficient for classical charge-density fitting, e.g.

by multipole refinement (Coppens et al., 1979; Hansen &

Coppens, 1978). There is no reasonable argument for using

spherical atomic electron densities other than speed and low

computational cost. Sometimes, a lack of infrastructure for

handling non-spherical models makes it desirable to revert to

using spherical atomic form factors in the refinement. Such a

treatment can be done for isolated parts of a crystallographic

model, for example for disordered regions or solvents, to save

time and computational resources within the framework of

combined models, as recently introduced within Olex2 (Jha et

al., 2023) or in multipole models upon selection of solely

monopole populations for individual atoms. The description of

atoms in standard refinement engines used for building

spherical atom models is, following the recommendations of

International Tables for Crystallography (Maslen et al., 2006),

a sum of Gaussian functions fitted to precalculated scattering

factors as given by Cromer & Mann (1968) and Cromer &
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Waber (1965), themselves calculated for example by Cromer

& Mann (1967) on the basis of Hartree–Fock wavefunctions

calculated by Mann (1967, 1968). The Gaussian functions are

often extended by adding a constant. These can be found in,

and are used automatically by, software such as olex2.refine

(Dolomanov et al., 2009) or SHELXL (Sheldrick, 2015)

While these functions prove to be very useful for fast

determinations of atomic connectivity, there are downsides,

and a need for re-evaluation has recently been shown in the

literature (Thorkildsen, 2023; Olukayode et al., 2023a,b), This

requirement has led to a variety of developments in recent

years, ranging from high-quality X-ray scattering factors from

freshly calculated wavefunctions to relativistically corrected

electron diffraction scattering factors (Thorkildsen, 2023;

Olukayode et al., 2023a,b; Yonekura et al., 2018; Lentzen,

2019). The main reason for the routine use of Gaussian-type

functions in crystallography is the same as in quantum

mechanical computations: the required calculations are more

straightforward to perform and require less computational

power, making them attractive even though a trade-off in

accuracy must be made (Magalhães, 2014). However, no

number of contracted Gaussian functions will give the correct

behaviour at small distances from the atomic position known

from quantum mechanics: a cusp of the radial function at the

nucleus. Fig. 1 shows this difference between the electron

densities of a hydrogen atom. For a more detailed discussion

of the issue, we refer the reader to Magalhães (2014).

The three-dimensional Fourier transform of a Gaussian

function is itself a Gaussian; the constant of the classical

atomic scattering factors becomes a delta distribution. The

Fourier transform of an electron density calculated from

Slater-type orbital functions with higher exponents of the

radius r is a rational function with polynomials of increasing

degree in the numerator and denominator as the exponent of

the distance of the radial electron-density function increases

[see equation (1) and the supporting information]. In parti-

cular, the long-range behaviour of Slater functions makes a

difference in the calculated intensities of low-order reflections

during crystallographic refinement due to the reciprocal

relationship between the distance from the atomic position

and the length of the scattering vector. The cusp at the other

end of the nuclear position introduces a difference in calcu-

lated intensities for higher-order reflections, especially

compared with the constant term of the Gaussian fit. The

effect of the cusp can be seen in the deviation between rela-

tivistic Slater-type wavefunctions and a fit of a series of

Gaussian functions being used to calculate scattering factors,

as done, for example, by Macchi & Coppens (2001), where the

difference in scattering factors of non-relativistic wavefunc-

tions systematically increases with sin(�)/�.

Routinely available high-quality data from laboratory

experiments on modern diffractometers show growing

discrepancies between models and data, i.e. refinement

statistics such as R values and structured residual densities

that cannot be disregarded as noise. In particular, elements

with Z > 35 exhibit large residual electron-density values after

refinement using both spherical and non-spherical electron-

density models. Examples exhibiting the structured appear-

ance of these residual electron-density distributions, even

after non-spherical refinements, were presented in recent

studies for Hg, Os or Au (Malaspina et al., 2019; Kleemiss et

al., 2021; Pawlędzio et al., 2021, 2022). The increasing

threshold for residual electron-density values of structures

containing heavier elements before a warning is triggered

during data validation procedures by the IUCr CheckCIF

procedure (https://checkcif.iucr.org/) tries to address these

growing discrepancies during structure validation. For

example, the tests DIFMX01 and DIFMN02 scale with the

highest atomic number in the model. This assumption seems

plausible since a higher absolute value of densities leads to

higher absolute values of the random noise. However, the

systematic concentric distribution of the residual electron

density around the heaviest scatterer is remarkably similar to

the distribution of the electron-density differences between

Gaussian- and Slater-based models. Refinements with smaller

residuals around heavy elements require a model using more

accurate scattering factors that capture both high- and low-

angle Fourier behaviour, presented here. The precision is

improved compared with the limited flexibility of the four

Gaussian plus constant descriptions (4G+c), currently the

most widely used method for calculating atomic scattering

factors (Figs. 2 and 3, Os example; Maslen et al., 2006). The

implementation presented in this work accommodates the

increasing complexity of the electronic structure of heavier

elements by using complete atomic wavefunctions without any

interpolation between precalculated tables or intermediate

fitting functions.

There are several different sets of scattering factors from

Slater functions available, e.g. based on the atomic functions of
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Figure 1
A plot of the electron density using different descriptions at a distance r
in atomic units from a hydrogen atom. The solid blue line represents the
electron density according to the Gaussian functions of Maslen et al.
(2006), the orange dotted line represents the electron density when
employing a single Slater-type function with an exponent of 1.15 in
agreement with the scattering factor of Stewart et al. (1965) and the green
dashed line shows the electron density of a hydrogen atom in the
unbound state using a Slater-type function.
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Clementi & Roetti (1974), McLean & McLean (1981), Macchi

& Coppens (2001) or most recently Olukayode et al. (2023a,b).

The wavefunctions underlying these scattering factors differ

regarding the relativistic corrections and the size of the basis

sets used in the calculations. The mentioned scattering factors

are available in different software, either in specially written

code for the calculation, as in the case of Olukayode and co-

workers, or in multipole refinement software like XD2016

(Volkov et al., 2016) or MoPro (Guillot et al., 2001). However,

there is no interface for Slater-type scattering factors in soft-

ware such as Olex2 or cctbx, which are well established in

modelling with spherical scattering factors (Dolomanov et al.,

2009; Bourhis et al., 2015; Grosse-Kunstleve et al., 2002).

2. Calculation of scattering factors from Slater-type

atomic wavefunctions

Coefficients of tabulated Slater-type orbital wavefunctions

from Thakkar, Koga and co-workers are conveniently avail-

able over the periodic table for Z = 1–103 and provide accu-

rate descriptions of the atomic electron density (Koga et al.,

1999, 2000). The availability of the ionic wavefunctions of

singly charged cations and anions from the same work is

shown in Table S1. These Hartree–Fock Slater-type wave-

functions were generated using a building scheme based on

two criteria: angular momentum l and the number of occupied

orbitals with that angular momentum nocc;l . For this atom

specific pair 2nocc;l þ l þ 4 radial Slater-type functions are

used, with a few exceptions as mentioned in the original

publications for elements to Z = 54; elements Z = 55–103 use

2nocc;l þ l þ 1 corresponding functions (Koga et al., 1999,

2000). The choice of minimization function in their work was

based on constraints to represent the nuclear cusp, long-range

behaviour and virial ratio (Koga et al., 1999). The electron

density of an atom at a distance r can be calculated using the

wavefunction coefficients from the reported wavefunctions

according to

� rð Þ ¼
X

i

oi

4�

Xjmax

j¼1

Nj;icj;ir
nj;i � 1 exp � zj;ir

� �
" #2

; ð1Þ

where i runs over all the orbitals (1s, 2s, 3s, . . . , 7s, 2p, 3p, . . . ,

7p, 3d, . . . , 6d, 4f, 5f), j denotes the number of coefficients of a

Slater-type primitive for this contracted orbital with jmax

coefficients and oi denotes the occupation of said orbital, Nj,i is

the normalization constant, cj,i is the tabulated atomic orbital

coefficient, nj,i is the order of the radial function, and zj,i is the

exponent. The calculation of an atomic scattering factor can

easily be obtained by applying a three-dimensional Fourier

transform of this function. The resulting expression can be

solved analytically (see the supporting information for

details), as in the case of the multipole formalism for the

monopole contribution to scattering (Avery & Watson, 1977;

Maslen et al., 2006):

f kð Þ ¼
X

i
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k
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0
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r
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dr: ð2Þ

Here, �l ¼ 1 for l = 0 and �l ¼ 2 for l � 1, where l is a second

iterator over the exponents of a contracted orbital and k is the

length of the scattering vector. The integral can be evaluated

analytically by a recursion of the appearing sin and cos inte-

grals using partial integration:

Z1

0
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k

z2 þ k2
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With these relations, it is straightforward to calculate the

spherical scattering factor from the tabulated wavefunction

without compromising using a series of fitted Gaussian func-

tions or interpolations from tabulated values. Care must be

taken when using the exponents of the tabulated wavefunc-

tions to convert them to the units used for the lengths of the

scattering vector k, since many wavefunctions are reported in

units of bohr while scattering vectors are usually given in units

of ångströms. The resulting expressions match the functions

reported for application in the multipole model in Table

6.1.1.9 of International Tables (Maslen et al., 2006).

In addition, the availability of analytical scattering factors

for all elements and many of their ions allows for the calcu-

lation of scattering factors at the same level of theory for use

in electron diffraction (ED) experiments. A comparison

between the scattering factors calculated by Peng (1999) and
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those obtained by the Mott–Bethe transformation (Bethe,

1930; Mott, 1930) of the newly presented Thakkar-based

scattering factors, following the procedure described in

equation (11) of Peng (1999), is presented here and compar-

isons of refinement results of existing diffraction data are

discussed. The relationship between the X-ray and electron

scattering factors is reported to be

f e ¼
m0e2

8��0h2

Z � f X-rayðkÞ

k2
; ð4Þ

where fe is the electron diffraction scattering factor, fX-ray is

the scattering factor obtained by equation (2) and Z is the

atomic number for which the scattering factor is calculated;

m0, e, �0 and h refer to the natural constant of the electron

mass, the electron charge, the permittivity of a vacuum and the

Planck constant, respectively.

3. Implementation of Thakkar scattering factors in

NoSpherA2 and interface to Olex2

The new scattering factors were implemented in the

NoSpherA2 software (Kleemiss et al., 2021; Kleemiss, 2019),

which allows calculation and writing of atomic scattering

factors to a .tsc file. A .tsc file contains individual atomic

scattering factors of all atoms in a structure, referenced by

their label. Kleemiss et al. (2021) previously defined the file

format as a standard interface to olex2.refine for any type or

origin of scattering factor. Through this interface, the newly

proposed Thakkar scattering factor refinement can easily be

performed from the Olex2 graphical user interface (GUI)

when NoSpherA2 is enabled by selecting the ‘ThakkarIAM’

option as the source of a .tsc file. This direct integration

means that the use of a .tsc file allows immediate switching

between the classical Gaussian model and the ThakkarIAM

models by checking or unchecking the use of NoSpherA2 in

the Olex2 GUI after the .tsc file has been calculated once.

The calling of NoSpherA2 to generate this file is usually

handled by Olex2, but a manual operation of NoSpherA2 to

create scattering factors is also possible by calling NoSpherA2

with the command line arguments -cif <CIF-filename>

-xyz <XYZ-filename> -IAM -dmin <resolu-

tion> where a .cif file, an .xyz file and a resolution in

floating point format must be specified instead of the place-

holders. This program writes a .tsc file in the working

directory, with all atoms in the .cif files addressed by labels

and calculated scattering factors. Generating a .tsc file in

this way takes less than a second, so in favour of tailor-made

scattering factors for each scattering vector of the given

structure, there is no permanently deposited table in Olex2.

This approach allows for treating all atoms or individual parts

of a crystal structure model, the latter when using the ‘hybrid’

mode (Jha et al., 2023) within the GUI of Olex2. The hybrid

mode allows the calculation of scattering factors for each part

of a model by assigning parts with the PART command, as in

SHELXL syntax, each of which is calculated independently,

and then the resulting scattering factor files are automatically

merged into a combined .tsc file. A combination of Hirsh-

feld atom refinement (HAR)-based results using NoSpherA2

for a well defined molecule in the unit cell, in conjunction with

the Thakkar scattering factors for a heavily disordered solvent

molecule, is thus possible given the existing capability of

merging .tsc files using NoSpherA2.

Access to the scattering factors of ions is given by

appending ‘-Cations A B C’ and ‘-Anions A B C’ to the

program call, where A B C can be a space-separated list, of

any length, of atomic labels for which the corresponding ionic

scattering factor is to be used. The neutral atomic wavefunc-

tion is used instead if this element has no ionic scattering factor.

NoSpherA2 calls can be extended with the keyword ‘-ED’

to enable the calculation of electron diffraction scattering

factors. When used within Olex2, the detection of electron

diffraction data is automatically passed to the NoSpherA2

calls, if applicable.

The value of the exponent of the radial wavefunction

reported for hydrogen was manually changed during imple-

mentation. This adjustment was made to match better with the

hydrogen atom scattering factor proposed by Stewart et al.

(1965) by using an exponential parameter of 1.15 bohr instead

of the analytical solution of 1.0 bohr. The resulting electron

density matches that of hydrogen when bound to a second

atom. This adjustment is consistent with the atom scattering

factor of hydrogen used in SHELXL or olex2.refine, for

example (Sheldrick, 2015; Bourhis et al., 2015).

4. Software and refinements

All refinements throughout this work were performed with

Olex2 (Dolomanov et al., 2009) using the refinement engine

olex2.refine (Bourhis et al., 2015). Where models with Slater-

type densities were implemented, the user-supplied scattering

factor interface within NoSpherA2 was employed (Kleemiss et

al., 2021; Kleemiss, 2019). All maps and residual electron-

density analyses were performed using tools within Olex2,

including generating electron-density maps. The scattering

factor plots were generated using NoSpherA2 output files and

MatPlotLib (Hunter, 2007).

To evaluate the performance of the new scattering factors

obtained using Thakkar wavefunctions and the difference

from the classical Gaussian fits, the results of refinements from

four different structures analysed by X-ray diffraction are

presented below, with increasing complexity of the structures:

a small-molecule organic compound C8H11F2N3O, labelled 1

(Pattison et al., 2009), a salt of an inorganic cation with an

organic counterion and solvent water C4H4O6Ca·4H2O,

labelled 2 (only present in Olex2), an early d-block element

metal–organic complex C16H16CoF6N4O4S2, labelled 3

(Congreve et al., 2003), and an osmium hexahydride bis-tri-

phenylphosphane complex C24H44OsP2, labelled 4 (Kleemiss

et al., 2021). Data sets 1–3 are taken from the Olex2 installa-

tion, as they are supplied with the software as examples. Data

set 4 is the same as that used by Kleemiss et al. (2021). The

chemical structural formulae of the refined compounds are

shown in Scheme S1 in the supporting information.
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All refinements for the 4G+c models were repeated from

the deposited data sets using olex2.refine to ensure that any

effects observed in this comparison were not due to differ-

ences in refinement software or truncated file precision when

interfacing with fixed-format output programs. All hydrogen

atoms were refined freely, removing any AFIX constraints

from the refinements.

To test the implementation of the scattering factors derived

for use with electron diffraction data, available data sets from

the literature were used: nicotinic_acid_2x-merged from van

Genderen et al. (2016), hereafter referred to as 5, and CuPc-

Cl16_ED_final from Gorelik et al. (2021), hereafter referred to

as 6. These two chemical structural formulae also are given in

Scheme S1.

For 5, the AFIX commands were changed to hydrogen

distances according to averaged neutron diffraction data

available in the literature, since it has already been shown that

these cannot be refined at X-ray distances and, when freely

refined, are located either at neutron distances or even further

(Allen & Bruno, 2010; Klar et al., 2023). The refinement of 5

using the scattering factors reported in the deposited files was

carried out using olex2.refine, resulting in unusually high

values of residual electrostatic potentials. Upon further

investigation, the Gaussian scattering factors used in the

deposited data were comparable neither in amplitude nor in

radial behaviour to the scattering factors obtained by Peng

(1999) or those derived in this work based on Thakkar

wavefunctions. Comparison with the scattering factors of

Maslen et al. (2016) revealed that X-ray scattering factors are

present in the .cif and embedded .ins files, although the

authors mention using Peng’s scattering factors in the article.

Besides the mismatched scattering factors, the instruction file

still contained coefficients for f 0 and f 00 that are not even

applicable to electron diffraction data. Therefore, a second

model was refined by replacing the original scattering factors

with those of Peng (1999), removing the anomalous dispersion

parameters, and the results using these refinements are

compared with those obtained using the putative X-ray scat-

tering factors and the new Mott–Bethe transformed Thakkar

scattering factors. All refinements of 5 were performed using

values of a = 0.2 and b = 0.0 for the SHELX-type weighting

scheme parameters during the refinement, as suggested by the

Olex2 routine, because optimizing the weighting scheme

parameters would result in a > 0.2.

The refinement of 6 was performed using four fixed values

of the SHELX-type weighting scheme coefficients a (a = 0.001,

0.1, 0.5, 1.0), while b was kept at 0. This approach was chosen

after initial observations that the coefficients varied drastically

between refinement iterations, and to emphasize the impor-

tance of the correct choice of weighting scheme coefficients in

the kinematic refinement of ED data. All refinements were

repeated with olex2.refine, using the Gaussian instructions

deposited with the original data, to obtain comparable results

regardless of the implementation of, for example, residual

electron density and weighting scheme analysis.

5. Results and discussion

5.1. X-ray diffraction

A comparison of scattering factors obtained using Thakkar

wavefunctions with those from the Gaussian fits (4G+c;
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Figure 2
Plots of X-ray scattering factors in electrons obtained by 4G+c (orange dashed lines; Maslen et al., 2006) and Thakkar wavefunctions (neutral: solid blue
lines, cation: green dotted lines, anion: red dashed–dotted lines) for elements (top left to bottom right) H, C, O, P, Ca and Os against sin(�)/� in Å � 1.

http://doi.org/10.1107/S1600576723010981


Maslen et al., 2006) is shown in Fig. 2 for six selected elements:

H, C, O, P, Ca and Os in a range up to sin(�)/� = 2 Å � 1.

Extended plots up to sin(�)/� = 4 Å � 1 are shown in Figs. S1

and S2. Additional plots of the respective singly charged anion

and cation have also been included for elements with available

wavefunctions. A complete list of available ions is given in

Table S1. The difference between the neutral atom scattering

factors for these elements is plotted in Fig. 3.

The overestimation of the scattering power of the 4G+c

model at high scattering vectors (Fig. 3 and Fig. S2) is well

known (Fox et al., 1989), especially for heavy elements, where

a different set of fitting functions based on a logarithmic scale

is proposed for this region of the scattering vector magnitude.

An extension using a fifth Gaussian function during the fit has

been proposed by Waasmaier & Kirfel (1995), which can

account much better for the behaviour at higher scattering

vector magnitudes (compare Figs. S3 and S4). However, the

differences at lower scattering vector magnitudes persist due

to the different radial long-range behaviour of the Gaussian

functions and the analytical Fourier transform of the Thakkar

wavefunctions. Therefore, the differences shown in Fig. 2 at

lower sin(�)/� values cannot be corrected by adding an extra

function to the Gaussian fit.

Our refinements of the X-ray diffraction data for structures

1–4 demonstrate comparable performance between the two

different spherical models in all refinements. The residual

statistics differ by a maximum of 0.3‰ (see Table 1). A notable

trend is the systematic improvement in R values and residual

densities in all cases when using Thakkar-based scattering

factors. As no additional parameters were introduced in the

refinement, a comparison between the refinements can be

made directly.
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Figure 3
Difference plots between Thakkar-based X-ray scattering factors and those obtained by 4G+c (Maslen et al., 2006) in electrons for neutral atoms of
elements (top left to bottom right) H, C, O, P, Ca and Os against sin(�)/� in Å � 1.

Table 1
Data properties and refinement statistics of X-ray data refinements using Thakkar scattering factors and 4G+c for structures 1 to 4.

Structure 1 2 3 4

hI/�i 17.8 18.2 27.1 40.3

dmin 0.7 0.62 0.77 0.58
No. of reflections (all, unique, unique I > 2�) 25 545, 5668, 4491 9682, 4066, 3768 11 963, 4897, 4121 199 465, 13 109, 11 278
No. of parameters 255 179 310 315
Space group Pna21 P212121 P1 P21/n

Refinement results: Thakkar (this work)
R1 (I > 2�) 0.0384 0.0317 0.0309 0.0211

wR2(all) 0.0959 0.0663 0.0820 0.0367
Maximum and minimum residuals (e Å� 3) 0.360, � 0.245 0.413, � 0.365 0.537, � 0.357 0.898, � 0.964

Refinement results: 4G+c
R1 (I > 2�) 0.0387 0.0320 0.0311 0.0211
wR2(all) 0.0967 0.0666 0.0826 0.0369

Maximum and minimum residuals (e Å� 3) 0.364, � 0.242 0.422, � 0.377 0.548, � 0.372 0.881, � 0.972

http://doi.org/10.1107/S1600576723010981
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A comparison between the model based on the Thakkar

scattering factors and the 4G+c scattering factors using the

average weighted root mean-square difference hwRMSDi of

the structural parameters and their subsets (see Table 2) shows

that the new scattering factors perform similarly for most light

elements (Z < 35). Only the model for 4 shows a significant

difference in the structural model after refinement: the atomic

displacement parameters (ADPs) are significantly smaller

[hwRMSD(Ueq)i is greater than 3] for the Os atom in the

model using Thakkar-based scattering factors. The criterion

for a significant difference is chosen when the hwRMSDi is

greater than 1.41, which would correspond to the difference

being more significant than the sum of both uncertainties,

assuming that the uncertainties of both values are of

comparable magnitude. Ueq of Os decreased from 0.01505 (2)

to 0.01494 (2) Å2 when switching from the 4G+c model to the

Slater-type densities. A complete list of atomic positions and

ADPs of all structures is given in a spreadsheet deposited as

supporting information. The change in the ADP of Os can be

interpreted as a direct consequence of the difference in scat-

tering power between the two models: the Thakkar-based

scattering factor has a lower contribution over the whole

scattering vector space (see Fig. 3). In the convoluted dynamic

electron density, this effect is compensated for by the decrease

in ADP, which gives a similar height to the electron-density

peak at the atomic position. This ‘narrowed’ ADP will also

cause other nearby atoms, such as the six bound H atoms, to

shift. The H atoms in 4 bonded to carbon have a hwRMSDi of

0.370 in terms of their distance to the carbon atom and 0.0593

in terms of their value of Uiso in the two models, while the H

atoms bound to Os have corresponding hwRMSDi values of

0.1905 and 0.3828, respectively, systematically showing smaller

Uiso [0.051 (6) versus 0.054 (7) Å2] and longer distances for

the model using Thakkar scattering factors [1.52 (2) versus

1.51 (2) Å]. The systematic difference in scattering factors

observed in Fig. 3 can rationalize this small but systematic

trend. During a least-squares refinement, the high-order

reflections, for which the Thakkar scattering factors predict a

lower scattering power, will lead to a reduction in the value of

Uiso, which will increase the contribution of this atom for high-

order reflections. It might be expected that a different set of

Slater-type wavefunctions might have different effects on the

Uiso values depending on the near-atomic description of the

electron density, especially concerning relativistic effects and

the choice of basis sets, where a reduction in the extension of

the radial function by a lower value of the exponent will

increase the scattering factor for high-order reflections. A

correlation between the changes in the electron-density

description and the bond lengths of the hydrogen atoms is

plausible, especially when comparing the radially shaped

effects of residual electron density around the Os atom

already discussed by Kleemiss et al. (2021) and the difference

between the 4G+c model and the new Thakkar refinements

visualized in Figs. 4 and 5. These residuals might overshadow

the comparatively small scattering power of the hydrogen

atom during the least-squares refinement, and therefore refine

to values that position the hydrogen atom in one of the resi-

dual electron density maxima rather than its actual position.

To compare the models on the basis of the total distribution

of residual electron-density differences in the unit cell and not

just their minima and maxima, they were plotted on a grid and

analysed according to the procedure described by Meindl &

Henn (2008). The resulting plots are shown in Fig. 4. It is

important to note that the residual electron-density analysis in

Fig. 4 is performed on a more precise grid than the residual

electron-density calculation used for peak search after

refinements, which was used for the data reported in Table 1

(40 � 45 � 60 grid points are used after refinements for the

residual electron-density peak search, and 120� 144� 180 for

the fractal dimension analysis of e.g. 1).

Noticeable differences can be observed at the highest

absolute residual electron-density values, where a redistribu-

tion towards a more symmetrical distribution around the zero

value can be seen. However, the differences are primarily

subtle at the intermediate residual electron-density values

compared with the most extreme ones. The most significant

difference is found in 4, where egross [as defined by Meindl &

Henn (2008)] is reduced by 1.0 electron when using the Thak-

kar scattering factors compared with the 4G+c model.

Otherwise, the two models perform similarly for spherical

scattering factors, as expected from the similarity of the scat-

tering factor values for the commonly available resolution of

X-ray diffraction data shown in Fig. 2.

The concept of deformation densities can be applied to

highlight further the difference between the two models and

find where the most considerable difference in egross for 4 is

located within the unit cell. In this case, the deformation is not

between a non-spherical electron-density model and the

corresponding spherical one, but between the calculated

electron densities using Thakkar-based and 4G+c instruction-

based scattering factors. The top row of Fig. 5 shows the

difference in static electron density between the 4G+c and

Thakkar-based structure factors on identical models, i.e.

positions and ADPs. These densities are obtained with the fast

Fourier transform map function of cctbx (Grosse-Kunstleve et
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Table 2
Averaged wRMSD between models employing Thakkar and 4G+c scat-
tering factors, models a and b.

hwRMSDi (unitless) is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPa � PbÞ

2=½�ðPaÞ
2 þ �ðPbÞ

2�
p

running
over all parameters P, using fractional coordinates for position parameters; Uii

and Uij once without (i 6¼ j) and once with diagonal values of anisotropically

refined atoms; and Ueq of anisotropic atoms or Uiso of isotropic atoms of all
atoms (including hydrogen atoms) in the asymmetric unit. The second values
after the slash are for the heaviest scatterers present in the structure; if
multiples of the same element are found, arithmetic averaging has been
performed (4 F atoms in 1, Ca in 2, Co in 3 and Os in 4). Here, Ueq refers to the
mean value of Uii in the Cartesian setting, as indicated by _atom_site_

U_iso_or_equiv in .cif files.

hwRMSDi, all atoms / heaviest scatterer(s)

Structure 1 2 3 4

Position 0.0829 / 0.0357 0.0690 / 0.0234 0.0512 / 0.0268 0.1581 / 0.0556
Uii 0.1262 / 0.3216 0.0879 / 0.8739 0.1100 / 0.8761 0.4152 / 3.7051
Uij (i 6¼ j) 0.0411 / 0.0237 0.0222 / 0.0237 0.0384 / 0.1627 0.0710 / 0.3101
Uij 0.0836 / 0.1726 0.0551 / 0.4488 0.0742 / 0.5194 0.2431 / 2.0076
Ueq or Uiso 0.0833 / 0.3196 0.0757 / 0.8688 0.0572 / 0.7045 0.2322 / 3.8983
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al., 2002), using the complex-valued result FDiff = Fc, Thakkar �

Fc, 4G+c as structure factors. Fc, Thakkar and Fc, 4G+c are complex-

valued structure factors of the corresponding scattering

factors. Using complex values for the structure factors of both

models eliminates the necessity of assigning one model’s

phases to a difference in moduli as would be the case for a

residual density map. Regions where the Thakkar structure

factors would give a higher electron density in an Fcalc map are

shown in blue, while the regions with reduced electron density

are shown in red. A pattern similar to Fourier truncation

ripples can be seen around the atom positions, most clearly

around the heaviest element of each structure. This pattern

results directly from the different Fourier behaviour of the two

types of function used for the Fourier synthesis of the electron

density. They lead to a pattern similar to the Gibbs phenom-

enon (Gibbs, 1898, 1899) due to the discontinuity of the

constant term in the Gaussian model, in contrast to the

Thakkar model which has no term giving rise to a Gibbs

phenomenon. The magnitude of the scattering factors is

similar for both models. The electron density obtained from

the Thakkar scattering factors shows a systematic redistribu-

tion of the electron density, a behaviour that is well known

from residual electron-density maps around heavy scatterers.

The cusp versus delta distribution, and especially the slower

long-range decay of the Slater electron density, lead to

extreme difference values around the Ca and Os atoms

(� 0.313 e Å� 3 for Ca and � 4.008 e Å� 3 for Os), assuming

that identical atomic positions and displacement parameters

are used during the Fourier synthesis.

The bottom row of Fig. 5 shows the residual electron density

in the P—Os—P plane of 4 after refinement with the Thakkar

scattering factors on the left, and the difference between the

residual electron-density maps of the 4G+c model and the

Thakkar model on the right, both in their respective

converged model. The plot shows that, despite the differences

in Uiso discussed above, a systematic pattern of differences

remains. The differences in the scattering factors cannot be

compensated by changing the ADPs since the displacement

factor has a different radial behaviour from the scattering

factors. The remaining difference is significantly lower in value

than the residual electron density, but given the similar

distance of the hydrogen atoms to the features of the residual

difference maps, an effect on the refined values of the Os—H

distances can be expected.

A table of direct comparison statistics for the models is

available in the supporting information as Table S2.
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Figure 4
Fractal dimensional analysis (Meindl & Henn, 2008) of the residual densities of the models using 4G+c (orange circles; Maslen et al., 2006) and the newly
proposed Thakkar-wavefunction-based densities (blue crosses), and the difference between them (Thakkar � Maslen, green dashed line). (a) Structure 1
(egross = 44.6/44.4), (b) structure 2 (egross = 30.0/29.9), (c) structure 3 (egross = 37.9/37.7) and (d) structure 4 (egross = 176.6/175.6). egross is given in electrons
and for 4G+c/Thakkar, respectively.
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The differences in both the absolute values of the scattering

factors (Figs. 2 and 3) and the resulting model statistics (Tables

1 and 2) of these refinements appear to be small in comparison

with the well established 4G+c formalism and might raise the

question of whether the use of the Thakkar scattering factors

is advantageous. However, the more evenly spaced residual

electron-density maps (Figs. 4 and 5) and the more physically

reasonable assumption of an electron-density distribution

near the atomic position with a cusp provide a better

description of the modelled electron density. For example, the

average Os—H distance in the Thakkar refinements is

1.5206 � 0.0225 Å, and that using the 4G+c fit is 1.5133 �

0.0233 Å. On average, the Os—H distance was elongated by

7.3 mÅ using the Thakkar densities, which is indeed within the

range of the standard uncertainty of around 23 mÅ, but a

systematic trend in the refinements is observed.

5.2. Electron diffraction

The scattering factors calculated from the wavefunctions by

Koga et al. (1999, 2000) are analytically converted to electron

diffraction scattering factors using equation (4). No inter-

polation or fitting is required since the transformation of
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Figure 5
(Top row) Deformation electron density of (left) 2 in the O—Ca—O plane and (right) 4 in the P—Os—P plane in e Å� 3, where the complex-valued
Fc, Diff = Fc, Thakkar � Fc, 4G+c was used for the Fourier synthesis of an electron-density map using identical positions and ADPs. Maps were calculated for
the entire unit cell, and the contour planes and colour code are shown in e Å� 3. The minimum, maximum and r.m.s. values of the deformation electron-
density maps are: 2 � 0.313, 0.037 and 0.006 e Å� 3 and 4 � 4.008, 0.382 and 0.037 e Å� 3. (Bottom row, left) Residual electron density of 4 using Thakkar
scattering factors (minimum, maximum and r.m.s.: � 1.108, 1.125 and 0.175 e Å� 3) and (right) the difference between residual densities (minimum,
maximum and r.m.s.: � 0.072, 0.074 and 0.011 e Å� 3) using residual electron-density grids calculated for Thakkar and 4G+c after both refinements were
individually converged and then subtracted from each other afterwards, thus taking into account the differences in both Ueq and the scattering factors
between the two models.



equation (4) is exact and analytical. Where available, the

resulting scattering factors of the neutral atoms and the ions

are shown in Fig. 6, together with the scattering factors in the

4G formalism of Peng (1999). Their differences are plotted in

Fig. 7. Extended versions of these plots up to sin(�)/� =

4.0 Å� 1 are available in the supporting information (Figs. S5

and S6).

For the early elements of the periodic table up to P, there is

a tendency for the scattering factor to be larger at low sin(�)/�

values in Peng’s model. Hydrogen shows the most pronounced
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Figure 6
Plots of electron diffraction scattering factors (in ångströms) obtained by Peng (orange dotted lines; Peng, 1999) and Thakkar wavefunctions (this work;
neutral: solid blue lines, cation: green dotted lines, anion: red dashed–dotted lines) for elements (top left to bottom right) H, C, O, P, Ca and Os against
sin(�)/� in Å� 1.

Figure 7
Plots of the difference between Thakkar-based electron scattering factors (this work) and those obtained by Peng (1999), both in ångströms, for neutral
atoms of elements (top left to bottom right) H, C, O, P, Ca and Os against sin(�)/� in Å� 1.
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difference. However, this may be due to the choice of the

radial exponent, according to Stewart et al. (1965), which gives

a much narrower electron-density distribution. Following this

discussion, the other elements showing similar overestimation

by Peng (1999) at low sin(�)/� could be explained by the

different long-range behaviour of Gaussian and Slater-type

functions (Magalhães, 2014). Note the similarity of the scat-

tering power of neighbouring elements such as C, N (not

shown here) and O, and especially the inverse relation

between the value of the scattering factors at sin(�)/� = 0 and

the atomic number for these elements. X-ray crystallographers

working with ED data may be misled into assigning a heavier

atom when the opposite is true. F(000) is not directly

proportional to the number of electrons of an element, as in

the case of X-rays. However, drastic differences in scattering

power are also observed for heavier elements such as Ca and

Os, with relative differences up to 10% for the lowest sin(�)/�

values in the case of Os.

The calculation of scattering factors for ions based on the

available wavefunctions (see Table S1) yields very significant

differences for the low-resolution region since the atom’s

charge dominates the electrostatic potential at long distances.

At very low resolutions, the type of atom is almost insignif-

icant compared with the influence of charges (see Fig. 6).

These drastic low-resolution effects highlight the importance

of describing ED data regarding the (partial) charge of the

atoms in their respective environment. At the high-resolution

end of the calculated scattering factors, the differences

between neutral and ionic species are minor, primarily due to

the highly reduced scattering power of the atoms, even for

heavy scatterers like Os, compared with their behaviour for

X-rays. Peng shows that the scattering factors of ions can be

modelled on the basis of the neutral electron scattering factor

modified by a term due solely to the charge [equation (4) of

Peng (1999)]. This model introduces an ‘effective’ nucleus

charge in the Bethe transform. In Figs. S7 and S8 we show the

scattering factors obtained with this effective nuclear charge

and the differences obtained by this model calculation for C

and O. The differences show a systematic overestimation of

the coulombic term of the charged atom. This observation is

understandable, since cations and anions rearrange their

electronic structure upon ionization and do not have the same

electrostatic potential near the nucleus as a neutral atom with

a point charge added. Therefore, we do not recommend using

scattering factors obtained with this model.

The scattering factors were used to refine the experimental

electron diffraction data of structures 5 and 6 taken from the

literature, as mentioned in Section 4. The data properties and

the statistics of the refinement results are summarized in

Table 3 for all the models built in this work.

The refinement statistics of structure 5 with the two

different tables appear surprisingly comparable in R statistics,

but the residual electron-density scale in the case of the

suspected X-ray scattering factor instructions reveals an

apparent discrepancy in the model. This significant difference

might be expected given the assumption of the X-ray scat-

tering factors used. The analysis of the residual electrostatic

potential maps of selected refinements from Table 3, according

to the residual analysis of Meindl & Henn (2008), is shown in

Fig. 8 and Fig. S10.

The refinement of structure 6 using the different values of

the SHELXL weighting scheme parameter a shows how

sensitive the refinement is to an improperly chosen value of

the weighting scheme. In the SHELXL-type weighting scheme

equation, setting the parameter b to 0 results in

w ¼
1

� F2
oð Þ

2
þ aðF2

o þ 2F2
c Þ=3

� �2
: ð5Þ

From equation (5), a plausible explanation for the observed

effect on the refinements could be related to the magnitude of

the � F2
o

� �
in relation to their measured intensity F2

o, staying
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Table 3
Data properties and refinement statistics of ED data sets 5 and 6.

The original authors reported Gaussian models of 5 with scattering factors (van Genderen et al., 2016; Maslen et al., 2006), and instructions were provided
according to Peng (1999). Note how the low values of the weighting scheme parameter show the breakdown of the intended purpose in this case, as wR2 is much

lower than R1.

Structure 5 6

hI/�i 4.8 4.7
dmin 0.75 0.81

No. of reflections (all, unique, unique I > 2�) 1353, 552, 303 4986, 1332, 1114
No. of parameters 39 133
Space group P21/c C2/m
a (weighting) 0.2 0.001 0.1 0.5 1.0

Thakkar (this work)

R1 (I > 2�) 0.3153 0.2928 0.2862 0.2645 0.2621
wR2(all) 0.6539 0.1232 0.6478 0.6757 0.6846
Maximum and minimum residuals (e Å� 1) 0.935, � 1.014 2.228, � 1.771 1.626, � 2.153 1.226, � 1.898 1.245, � 1.631

Gaussian models
Scattering factors used Maslen et al. (2006) Peng (1999) Peng (1999)
R1 (I > 2�) 0.3416 0.3195 0.3966 0.3066 0.2653 0.2665

wR2(all) 0.6923 0.6579 0.1481 0.6734 0.6748 0.6882
Maximum and minimum residuals (e Å� 1) 3.004, � 3.211 0.913, � 1.062 6.357, � 2.574 1.987, � 1.981 1.681, � 1.696 1.547, � 1.723
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within the kinematic model. If there is an underestimation of

the value of � F2
o

� �
, the value of the resulting weight is

significantly increased if there is no other contribution in

determining weights, which is the case as the parameter a

approaches zero. If there is a significant difference between

the observed and calculated intensities, the term multiplied by

a becomes relatively tiny compared with a case with matching

values, effectively down-weighting the mismatched reflection.

In a data set with incorrectly estimated measurement uncer-

tainties, this can improve the refinement by giving more

weight to reflections that match. However, it is easy to see that

this could introduce a confirmation bias into the refinement.

Therefore, a careful determination of � F2
o

� �
is imperative to

ensure that the weighting scheme does not introduce a

confirmation bias by artificially reducing the weight of

disagreeing reflections. If � F2
o

� �
is poorly determined, the

refinements will give these reflections where the uncertainty is

underestimated an overestimated weight during the refine-

ment and thus spoil the result. If the values of � F2
o

� �
are

correctly estimated, the effect of the weighting scheme should

not be as dramatic as in this case. Therefore, 6 is assumed to

have some reflections with poorly defined � F2
o

� �
.

The refinement of 5 using the scattering factors of Peng was

improved by switching to Slater-type scattering factors

(compare Fig. 8, left). As in the X-ray examples, the residual

distribution becomes more symmetric, reducing the occur-

rence of negative values in this case and adding some more

positive regions. A statement about a measure similar to egross

is not applicable since the electrostatic potential inside the

unit cell is not strictly conserved as with electron density. In

the refinement of 6, a decrease in the residual electrostatic

potential map is observed at both ends of the range. A similar

improvement is also shown in the difference in R values in

Table 3. The observed systematic improvement in the refine-

ment statistics, in terms of both residual electrostatic potential

and R values shown in Table 3, as the parameter a of the

weighting scheme is increased over refinements of 6 is

consistent with the assumption that the values of � F2
o

� �
are

underestimated. The increased weighting of reflections that

are consistent with the structural model by the SHELX-type

weighting scheme improves the refinement results by down-

weighting disagreeing ones.

A refinement of 6 was also attempted using the scattering

factors of charged Cu+, Cl� and N+, but the refinement

became unstable since the residuals of some Fc and Fo values

became too large. In the model with neutral atom scattering

factors, reflections with Miller indices 020, 040 and 110 have

|Fc|
2 values of 724.44, 752.31 and 775.41, respectively. Using

the same geometry and ADPs, a model with charged atomic

scattering factors gives |Fc|
2 values of 969 242.0, 34 472.0 and

1 932 810.0, respectively. The extreme difference can be

explained by considering the steep divergence of the scat-

tering power at low sin(�)/� values for the charged atoms.

Since the values of the scattering factors increase drastically,

the current model leads to enormous values of the structure

factor differences entering the least-squares matrix, which in

this case becomes unstable and generates shifts in atomic

positions and ADPs, making the next refinement cycle break.

The application of extreme values (x > 10 000) of the

empirical extinction correction, as implemented in SHELXL

or olex2.refine, reduces this instability. It brings the extreme Fc

values for low resolution back to a similar scale to the Fo

values, but for the wrong physical reason, and it should,

therefore, be avoided. The empirical extinction formula in

these programs multiplies Fc by �3, which for the acceleration

voltage used in 6 would be a factor of about 1.5 � 10� 5 Å3.

Therefore, it brings the total factor down to more reasonable

values for x > 10 000. However, the extinction effect does not

account for the increase in the measured intensity of weak

reflections observed at the same time as the decrease in

intensity of the most intense reflections. The effect of dynamic

diffraction would have to be considered to redistribute the

extremes of the strongest low-resolution reflections, but an

application of this theory is beyond the scope of the current

work.

In order to build stable models using the charged atoms in

ED, it might be possible to use a damped refinement to adjust

the model slowly to the sudden change in the scattering power
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Figure 8
Fractal dimensional analysis of the residual electrostatic potential of the models using Gaussian instructions (orange circles) and the newly proposed
Mott–Bethe transformed Thakkar wavefunction electrostatic potentials (blue crosses), and the difference between them (green dashed lines), (left) for 5,
and (right) for 6 with weighting parameter a = 1.0 and Peng (1999) scattering factors.



of the introduced ions. Alternatively, a linear combination of

interpolated scattering factors between the ions might be

possible to introduce the charges gradually, rather than have

an abrupt change in the model.

6. Conclusions

The newly implemented Thakkar-wavefunction-based scat-

tering factors perform favourably when employed in refine-

ments of X-ray diffraction data compared with scattering

factors based on the 4G+c model. The more symmetric

distribution of the residual densities (compare Table 1 and

Fig. 4) suggests the suitability of the functionality for appli-

cation in all structures, especially since scattering factors are

available for all elements in the range Z = 1–103. The

systematic change in the ADPs when using Slater-type

densities, most pronounced in the heaviest elements, needs

further investigation but could indicate a systematic over-

estimation of the ADPs using Gaussian models. The data

quality of the presented refinements does not yet allow a

significant judgement of the effect. More exact intensity data

measurements will allow for a more significant judgement

when the difference becomes more prominent than the

refinement uncertainties. Here, highly redundant data with

low background signal from photon-counting detectors will

help reduce uncertainties in the refinement. This study did not

use such data, in order to show the feasibility and performance

of the new wavefunctions even with inferior or more routine

data quality.

A different point that needs to be addressed in this context

is the effect of the level of theory (including relativistic effects

and electron correlation) and basis sets used in the Slater-type

wavefunctions. The observed improvement upon using

Thakkar wavefunctions can be attributed to the relationship

between the constant of the Gaussian fits, which, upon Fourier

transformation, becomes a delta function located at the core,

and the more accurate cusp description in the Slater-type

wavefunctions. The delta function behaves very differently

from the analytical transform of the Slater-type wavefunctions.

While the difference in electron density between the Gaussian

and Slater models does not explain all the differences in the

experimental data, it still shows the systematic patterns

common to compounds containing heavy elements. The

remaining effects could partially be explained by a different

radial behaviour of a dispersion correction term used in

crystallographic models, a second constant within the frame-

work of structural model building, which is the subject of

ongoing investigations.

Given this observation, the use of Thakkar densities for the

Hirshfeld partitioning within NoSpherA2–HAR, where sphe-

rical pro-molecule densities are calculated using the Thakkar

densities (Kleemiss et al., 2021), is justified. Furthermore, it

raises the question of whether HAR could perform even

better if the quantum mechanical calculations were performed

using Slater-type basis sets. Given the popularity and success

of Gaussian functions in quantum mechanical software

packages, implementing a Slater-type package in NoSpherA2

is only a question of availability and open access to the soft-

ware. Possible software in this regard is ADF (Software for

Chemistry & Materials BV, Amsterdam, The Netherlands),

commercial software unavailable to the authors.

The availability of the newly presented scattering factors

within the framework of Olex2/NoSpherA2 allows the provi-

sion of analytically derived scattering factors for all purposes,

even in combination with non-spherical scattering factors, due

to the .tsc file. This file format also allows usage outside

Olex2. The availability of ions, where available in the atomic

wavefunctions of Koga et al. (1999, 2000) (compare Table S1),

greatly enhances the applicability to ionic structures, espe-

cially in electron diffraction. If a combination of these scat-

tering factors with dynamic diffraction theory can be applied,

the large values of Fc observed in these structures would,

within the framework of the Bloch-wave formalism, lead to a

strongly affected structure matrix, which would lead to an

enhancement of the dynamic effect and influence parameters

such as the refined thickness. Including charged scattering

factors would most likely allow for much better refinement

results, since most atoms in chemical species carry a charge

simply due to the difference in electronegativity, even in

highly covalent bonds. However, it should be noted that

integer charges of atoms are an artificial model, and a model

employing partial charges based on the valence situation, like

the case in HAR or transferable aspherical atom model

techniques, would be even more applicable. The question

about the partitioning scheme used during quantum-

mechanics-based refinements like HAR could be addressed

using high-quality ED data when dynamic effects and other

currently approximated effects are included in the model.

The reported improvements in residual electrostatic

potential within this work using the kinematic model of

electron diffraction are to be considered only a step in the

right direction. They should not be seen as a reason to avoid

using dynamic diffraction models. Only a combination of

correct scattering factors with appropriate diffraction theory

will yield applicable models for refining electron diffraction

data completely.

7. Related literature

For further literature related to the supporting information,

see Baddour (2010), Michels (2021) and Watson (1952).
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