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Van Vleck modes describe all possible displacements of octahedrally

coordinated ligands about a core atom. They are a useful analytical tool for

analysing the distortion of octahedra, particularly for first-order Jahn–Teller

distortions, but determination of the Van Vleck modes of an octahedron is

complicated by the presence of angular distortion of the octahedron. This

problem is most commonly resolved by calculating the bond distortion modes

(Q2, Q3) along the bond axes of the octahedron, disregarding the angular

distortion and losing information on the octahedral shear modes (Q4, Q5 and

Q6) in the process. In this paper, the validity of assuming bond lengths to be

orthogonal in order to calculate the Van Vleck modes is discussed, and a method

is described for calculating Van Vleck modes without disregarding the angular

distortion. A Python package for doing this, VanVleckCalculator, is introduced

and some examples of its use are given. Finally, it is shown that octahedral shear

and angular distortion are often, but not always, correlated, and a parameter � is

proposed as the shear fraction. It is demonstrated that � can be used to predict

whether the values will be correlated when varying a tuning parameter such as

temperature or pressure.

1. Introduction

The Van Vleck distortion modes (Van Vleck, 1939) describe

all possible displacements of octahedrally coordinated ligands

about a core atom. They are particularly useful in the context

of the Jahn–Teller (JT) effect (Jahn & Teller, 1937), which in

general occurs when a high-symmetry coordination is de-

stabilized with respect to a deviation to lower symmetry as a

consequence of electronic degeneracy. The JT effect distorts

the crystal structure via the JT distortion. While the JT

distortion is not unique to octahedra in bulk crystalline

materials, it was in octahedra that it was first observed

experimentally (Bleaney & Bowers, 1952), and it was in

materials with JT-distorted octahedra that colossal magneto-

resistance (Millis et al., 1996) and high-temperature super-

conductivity (Fil et al., 1992; Keller et al., 2008) were

discovered.

A transition metal cation in an octahedral configuration will

have its d orbitals split into three t2g orbitals at lower energy

and two eg orbitals at higher energy. [Here we use the notation

that lower-case symmetry descriptors (such as eg or t2g) refer to

orbitals with this symmetry and upper-case descriptors (such

as Eg or T2g) refer to the symmetry more generally.] It will

have a number n of electrons in these d orbitals (hereafter

described as dn). For certain values of n and, where applicable,

certain low- or high-spin characters,1 there will exist multiple

ISSN 1600-5767

Published under a CC BY 4.0 licence

1 In the low-spin case, t2g orbitals fill fully before eg orbitals gain electrons; in
the high-spin case, once the t2g orbitals are singly occupied, the next two
electrons will populate the eg orbitals.
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orbitals that could be occupied by an electron or an electron

hole with equal energy. This degeneracy is destabilizing,

resulting in the most stable configuration of atomic sites being

one in which the ligands distort from their high-symmetry

positions in order to rearrange the orbitals into a non-

degenerate system with minimized energy. This is shown for a

low-spin d7 transition metal cation (such as Ni3+ or Co2+) in

Fig. 1, though such distortions may occur for any value of n in

dn where there is a degenerate occupancy. The stabilization

energy due to the JT effect is larger for eg degeneracy than t2g

degeneracy, and so the effect will remain prominent up to

higher temperatures, and is hence more widely studied, in JT-

active materials with eg degeneracy (Castillo-Martı́nez et al.,

2011).

In the literature, various techniques for parameterizing the

JT distortion are used. An often-used example (Kimber, 2012;

Lawler et al., 2021; Nagle-Cocco et al., 2022; Genreith-

Schriever et al., 2023) is the bond-length distortion index,

defined by Baur (1974) as

D ¼
1

n

Xn

i¼1

jli � lavj

lav

; ð1Þ

where n is the number of ligands (6 for an octahedron), li is the

distance between the core ion and the ith coordinated ion, and

lav is the average of all the distances between the core ion and

coordinated ions.

A similar parameter (Shirako et al., 2012; Sarkar et al., 2018;

Nagle-Cocco et al., 2022) is the effective coordination number

ECoN, which for an octahedron deviates from 6 only when

there is bond-length distortion. ECoN is defined by Hoppe

(1979) as

ECoN ¼
Xn

i¼1

exp 1�
li

l0av

� �6
" #

; ð2Þ

where l0av is a modified average distance defined as

l0av ¼

Pn
i¼1 li exp 1� li=lminð Þ

6
� �

Pn
i¼1 exp 1� li=lminð Þ

6
� � : ð3Þ

Here, lmin is the smallest core–ligand bond length in the

octahedron.

Finally, a third parameter used to quantify the JT distortion

(Schofield et al., 1997; Kyono et al., 2015; Mikheykin et al.,

2015) is the quadratic elongation h�i, defined by Robinson et

al. (1971) as

h�i ¼
1

n

Xn

i¼1

li

l0

� �2

; ð4Þ

where l0 is the centre-to-vertex distance of a regular poly-

hedron of the same volume.

More recently, an alternative approach to modelling poly-

hedral distortion has been described (Cumby & Attfield,

2017), involving fitting an ellipsoid to the positions of the

ligands around a coordination polyhedron, calculating the

three principal axes of the ellipsoid R1, R2 and R3, where R1 �

R2 � R3, and using the variance of these three radii as a metric

for the distortion. This has been applied to the first-order JT

distortion by Pughe et al. (2023).

These parameterizations each have merits. However, they

are not sensitive to the symmetry of the octahedral distortion.

The Van Vleck modes are conceptually different from each of

these for quantifying the JT distortion because they can be

used to quantify distortion with the precise symmetry of the

transition metal eg orbitals. This is important because JT

distortions typically follow a particular symmetry. When the

distortion is due to degeneracy in the eg orbitals it will be of Eg

symmetry; when it is due to degeneracy in the t2g-degenerate

orbitals it may be either Eg or T2g symmetry (Child & Roach,

1965; Bacci et al., 1975; Holland et al., 2002; Halcrow, 2009;

Teyssier et al., 2016; Schmitt et al., 2020; Streltsov et al., 2022),

although there is relatively little unambiguous experimental

evidence for a JT-induced shear compared with more typical

Eg distortion.

In this paper, we present a Python (Van Rossum & Drake,

2009) package, VanVleckCalculator, for calculating the Van

Vleck distortion modes. We show that the approach to

calculating the modes which is commonly used in the literature

is a reasonable approximation for octahedra with negligible

angular distortion, but results in the loss of information in

other cases. We propose a new metric, the shear fraction �, for

understanding the correlation between octahedral shear and

angular distortion. Finally, we re-analyse some previously

published data in terms of the Van Vleck modes to show that

these can be an effective way of understanding octahedral

behaviour.

2. Theory

Within an octahedron, we can split the six ligand ions into

three pairs, where the two ions within the pair are opposite

one another. In the absence of angular distortion (i.e.

assuming all ligand–core–ligand angles are an integer multiple
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Figure 1
The orbital rearrangement due to a tetragonal elongation for an
octahedrally coordinated low-spin d7 transition metal ion, which typically
occurs as a result of the first-order JT effect.



of 90�), there would exist a basis where each of the three axes

exist directly along the x, y and z axes, and where the origin in

space is defined as the centre of the octahedron.

Each pair within an octahedron can therefore be assigned to

an axis and labelled as the a, b or c pair, respectively. Within a

pair, ions can be labelled as� or + depending on whether they

occur at a negative or positive displacement from the origin,

along the axis, respectively. This notation is demonstrated in

Fig. 2, where each pair of ions is represented by a different

colour.

For each of the six ligands, we define a set of coordinates x��,

y�� and z��, where � is a, b or c denoting the pair in which the

ligand is, and � is � or + denoting the ion within the pair.

The ideal positions of the six ligands are (R, 0, 0), (�R, 0, 0),

(0, R, 0), (0,�R, 0), (0, 0, R) and (0, 0,�R), where R is defined

as the distance between the centre of the octahedron and the

ligand in an ideal octahedron (in practice, this is taken as the

average of the core–ligand bond distances). This results in 18

independent variables. Using these, we further define a set of

Van Vleck coordinates (capitalized to distinguish from true

coordinates) which give the displacement of the ion within an

axis away from its ideal position. For instance, for the ion with

� = a and � =�, Xa
� = xa

� þ R, Ya
� = ya

� and Za
� = za

�. See Fig. 2

for clarification of the ion notation.

Using these coordinates, the first six Van Vleck modes (Qj,

j = 1–6) are defined as follows (Van Vleck, 1939):

Q1 ¼ Xa
þ � Xa

� þ Yb
þ � Yb

� þ Zc
þ � Zc

�; ð5Þ

Q2 ¼
1
2 Xa

þ � Xa
� � Yb

þ þ Yb
�

� �
; ð6Þ

Q3 ¼
1ffiffi
3
p 1

2 Xa
þ � Xa

� þ Yb
þ � Yb

�

� �
� Zc

þ þ Zc
�

� �
; ð7Þ

Q4 ¼
1
2 Xb

þ � Xb
� þ Ya

þ � Ya
�

� �
; ð8Þ

Q5 ¼
1
2 Za

þ � Za
� þ Xc

þ � Xc
�

� �
; ð9Þ

Q6 ¼
1
2 Yc

þ � Yc
� þ Zb

þ � Zb
�

� �
: ð10Þ

We only discuss these first six Van Vleck modes, which are

shown in Fig. 2. Q1 to Q3 describe bond-length distortions,

whereas Q4 to Q6 describe octahedral shear distortions. Q1 is a

simple expansion/contraction mode which does not affect

symmetry and will not be discussed further.

Q2 and Q3 are a planar rhombic distortion and a tetragonal

distortion, respectively; they are considered degenerate due to

the Hamiltonian, which is discussed for instance by Kanamori

(1960). These two modes form a basis for distortions

describing different octahedral configurations with the

symmetry of the transition metal eg orbitals (Goodenough,

1998; Khomskii & Streltsov, 2021). These modes are of most

relevance for first-order JT distortions occurring due to

degenerate eg orbitals. A phase space of possible octahedral

configurations can be constructed using these two parameters

(Kanamori, 1960), as shown in Fig. 3. Here the magnitude of

the distortion �0 can be calculated as

�0 ¼ Q2
2 þQ2

3

� �1=2
ð11Þ

and the angle � of this distortion, being of purely Q3 character,

can be calculated by

� ¼ arctan
Q2

Q3

� �
: ð12Þ

(Note that this angle does not represent a physical angle

within the octahedron.)
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Figure 2
The six Van Vleck modes exhibited for an octahedron, with sites labelled
using the notation in the Theory section. For the octahedra exhibiting Q1,
Q2 and Q3 distortions, there is no angular distortion; for the octahedra
exhibiting Q4, Q5 and Q6 distortions, there is no bond-length distortion.
For the octahedral shear (Q4, Q5 and Q6) modes, axes are drawn to show
where the bond directions would be if undistorted. An octahedron can
exhibit several, or all, of these distortions simultaneously.

Figure 3
The Q2–Q3 phase space for elongated octahedra, with a representation of
the values �0 and �. Based on a figure from an article by Goodwin (2017).



All possible combinations of the Q2 and Q3 modes corre-

spond to a particular angle � and hence a particular config-

uration as shown in Fig. 3. The structural effect of a rotation of

� within a range of 120� can be quite significant, as shown in

Fig. 3; such changes can manifest as a JT-elongated

(compressed) octahedron with four short (long) and two long

(short) bonds [such as NiO6 in NaNiO2 (Nagle-Cocco et al.,

2022)] or two short, two medium and two long bonds [such as

LaMnO3 (Rodriguez-Carvajal et al., 1998)].

A characteristic of JT distortion is that, in the absence of

external distortive forces, the symmetry of the structure

matches the symmetry of the orbitals involved. Typically, any

d-orbital JT distortion will have some planar rhombic (Q2) or

tetragonal (Q3) character. However, sometimes when the

degeneracy occurs in the t2g orbital, there may instead be a

trigonal component to the symmetry of the distortion, which

manifests as an angular distortion instead (Child & Roach,

1965; Bacci et al., 1975; Holland et al., 2002; Halcrow, 2009;

Teyssier et al., 2016; Schmitt et al., 2020; Streltsov et al., 2022).

For the more commonly studied case of a degeneracy in the eg

orbitals, the effect of a rotation of � similarly changes the

symmetry of the d orbitals. Fig. 1 shows the splitting of the d

orbitals in an octahedrally coordinated d7 transition metal due

to an elongation-type first-order JT distortion, where the

tetragonal elongation occurs along the z axis. Note that the

unpaired eg electron occupies the dz2 orbital. In the opposite

case of a compression-type first-order JT distortion along the z

axis, the lower-energy, and hence singly occupied, orbital

would be the dx2�y2 ; this would correspond to a rotation in � of

180�. More generally, as a function of �, there exist a set of

special angles separated by a 60� rotation corresponding to a

particular eg orbital being singly occupied by a d electron.

These are tabulated in Table 1. An octahedron for which �
does not correspond to one of these special angles exhibits

orbital mixing (Rodriguez-Carvajal et al., 1998; Zhou &

Goodenough, 2008b).

The Q4 to Q6 modes describe shear of the octahedra, i.e. the

effect whereby paired ligands on opposite sides of a central

ion are displaced in opposite directions and have trigonal T2g

character. The shear modes may be used to quantify the JT

distortion in octahedra where the degeneracy occurs within t2g

orbitals (Child & Roach, 1965; Teyssier et al., 2016). The

magnitude of the calculated shear is typically correlated with

angular distortion, which is commonly quantified using the �2
	

metric called the bond-angle variance (BAV) (Robinson et al.,

1971), defined here as

�2
	 ¼

1

m� 1

Xm

i¼1

ð	i � 	0Þ
2: ð13Þ

m is the number of bond angles (i.e. 12 for an octahedron), 	i is

the ith bond angle and 	0 is the ideal bond angle for a regular

polyhedron (i.e. 90� for an octahedron). However, for direct

comparison with the shear modes, it is more appropriate to use

the standard deviation �	.
For an octahedron with non-zero T2g(Q4, Q5, Q6) modes,

increasing their magnitude will increase the angular distortion,

but an octahedron may have angular distortion without

exhibiting octahedral shear. To analyse the extent to which

angular distortion in an octahedron is due to shear, we

propose a shear fraction parameter �, demonstrated in Fig. 4

and defined below.

First, we must define a set of shear and ‘anti-shear’ angular

indices, which are modifications of equations (8) to (10) in

terms of angles rather than displacements. The indices are

represented with � and a subscript corresponding to the plane

in which rotation occurs: the ab plane corresponds to the Q4

mode, the ac plane to the Q5 mode and the bc plane to the Q6

mode. The absence or presence of a prime symbol 0 designates

whether the index represents shear or anti-shear, respectively.

Finally, the 
 angle is the rotation of the ligand from its ideal

Van Vleck coordinate in a clockwise direction, within the

plane in which the corresponding Van Vleck shear (Q4 to Q6)

would occur. These are defined thus (see the supporting

information, Fig. S7):

�ab ¼
1
2 


b
þ � 


b
� þ 


a
þ � 


a
�

� �
; ð14Þ

�0ab ¼
1
2 


b
þ þ 


b
� � 


a
þ � 


a
�

� �
; ð15Þ

�ac ¼
1
2 


a
þ � 


a
� þ 


c
þ � 


c
�

� �
; ð16Þ

�0ac ¼
1
2 


a
þ þ 


a
� � 


c
þ � 


c
�

� �
; ð17Þ

�bc ¼
1
2 


c
þ � 


c
� þ 


b
þ � 


b
�

� �
; ð18Þ

�0bc ¼
1
2 


c
þ þ 


c
� � 


b
þ � 


b
�

� �
: ð19Þ

We then quantify the shear and anti-shear distortions using

the following equations:

�2
shear ¼ �2

ab þ�2
ac þ�2

bc; ð20Þ

�2
anti-shear ¼ �02ab þ�02ac þ�02bc: ð21Þ

From here, we define the shear fraction � as

� ¼
�2

shear

�2
shear þ�2

anti-shear

: ð22Þ

This � parameter will be important in interpreting the relation

between the angular distortion �	 and the Van Vleck shear

modes Q4 to Q6.

research papers

J. Appl. Cryst. (2024). 57, 20–33 Nagle-Cocco and Dutton � Van Vleck analysis of angularly distorted octahedra 23

Table 1
The special angles in the Q2–Q3 phase space (Fig. 3) as a function of � =
arctan(Q2 / Q3), with the associated singly occupied eg orbital, for d4 and
low-spin d7 octahedral complexes.

Note that for angles which are not special angles there will be mixing of the
orbital states of the nearest two special angles.

� (�) �(�)

0 dz2

60 dy2�z2

120 dy2

180 dx2�y2

240 dx2

300 dz2�x2



3. Implementation

In this section, the algorithm used to calculate the Van Vleck

distortion modes is discussed. It is written using Python 3 (Van

Rossum & Drake, 2009) as a package called VanVleckCalcu-

lator, with the full code available on GitHub (Nagle-Cocco,

2023) and also presented with annotations in the supporting

information. Data handling and some calculations make use of

NumPy (Harris et al., 2020) and crystal structures are handled

using PyMatGen (Ong et al., 2013).

A flow chart showing the octahedral rotation algorithm can

be found in Fig. S1.

Besides calculating the Van Vleck modes and the angular

shear modes described in this paper, VanVleckCalculator can

also calculate various other parameters as described in the

supporting information.

3.1. Selecting an origin

Selection of the origin is a key step in calculating Van Vleck

modes. The most common approach, for an MX6 octahedron,

is to take the M ion as the origin. This is a reasonable

approach, given that M ions are typically positioned at, or very

close to, the centre of an octahedron. This is particularly

appropriate for unit cells derived from Rietveld refinement

(Rietveld, 1969) of Bragg diffraction data, where the M ion is

likely to occur on a high-symmetry Wyckoff site. A third,

similar, option would be to choose the average position of the

six ligands as the origin in space. An example of when this may

be a desirable choice would be for systems exhibiting a

pseudo-JT effect (also called the second-order JT effect),

where the central cation is offset from the centre of the

octahedron.

In some instances, a crystal structure may be simulated

using a supercell. Examples include ‘big-box’ pair distribution

function (PDF) analysis (Tucker et al., 2007) and molecular

dynamics (MD) (Bocharov et al., 2020) simulations. Such a

supercell typically retains the periodicity which is an axiom of

a typical crystallographic unit cell but will exhibit local

variations. For instance, a unit cell obtained by analysis of

Bragg diffraction data is typically regarded as an ‘average’

structure, insensitive to local phenomena such as thermally

driven atomic motion or disordered atomic displacements

such as a non-cooperative JT distortion. In a crystallographic

unit cell, thermal motion of atoms is typically represented by

variable atomic displacement parameters (ADPs) (Peterse &

Palm, 1966). In contrast, a supercell should reflect local

phenomena, for instance exhibiting local JT distortions in a

system with a non-cooperative JT distortion, and representing

thermal effects not with ADPs but rather by distributing

equivalent atoms in adjacent repeating units in slightly

different positions. In this regard, a supercell can be consid-

ered a ‘snapshot’ of a crystal system at a point in time. It may

therefore not be appropriate to set the core ion as the centre

of the octahedron in a supercell, as the positioning of both

core and ligand ions is in part due to thermal effects and so the

‘centre’ of the octahedron will be displaced as a result of

random motion. The alternative option would simply be to use

the crystallographic site of the central ion and fix this as

independent of the precise motion of the central ion locally.

In VanVleckCalculator, the user has the option to take as

the centre of the octahedron either the central ion, the average

position of the six ligands or a specified set of coordinates.

3.2. Calculating Van Vleck modes along bond directions

The calculation of the Van Vleck modes, as described in the

Theory section, requires that the basis in space be the octa-

hedral axes (i.e. the three orthogonal axes entering the octa-

hedron via one vertex, passing through the central ion and

exiting via the opposite vertex). For a given crystal structure,

this may require that an octahedron be rotated about each of

the three axes making up the basis until the octahedral axes

perfectly align with the basis. This becomes more complicated

when the octahedron exhibits angular distortion (i.e. exhibits

ligand–core–ligand angles that are not integer multiples of

90�). In this case, it is impossible to define octahedral axes

according to the strict criteria previously defined.

In the literature, this problem is generally evaded by simply

calculating the Van Vleck modes on the basis of bond direc-

tions rather than Cartesian coordinates; see, for example,

previous work on the perovskite LaMnO3 (Goodenough et al.,

1961; Rodriguez-Carvajal et al., 1998; Capone et al., 2000;

Chatterji et al., 2003; Zhou & Goodenough, 2008b; Zhou et al.,

2011; Snamina & Oleś, 2016; Fedorova et al., 2018; Lindner et

al., 2022), other perovskites (Alonso et al., 2000; Wang et al.,

2002a; Tachibana et al., 2007; Zhou & Goodenough, 2008a;

Castillo-Martı́nez et al., 2011; Franchini et al., 2011; Chiang et

al., 2011; Dong et al., 2012; Fedorova et al., 2015; Ji et al., 2019;

Xu et al., 2020; Ren et al., 2021) or non-perovskite materials

(Moron et al., 1993; Cussen et al., 2001; Wang et al., 2002b) (we

note that some reports use a different variation which still uses
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Figure 4
Three possible octahedral shear/anti-shear distortions, with the asso-
ciated value of the shear fraction � as defined in equation (22). In the case
where � = 0, the only distortion is anti-shear within a single plane. In the
case where � = 0.5, there are two planes in which there is distortion, a
shear and an anti-shear distortion equal in magnitude. In the case where
� = 1, there is a plane with a purely shear distortion.



Kanamori’s approximation; papers cited here include those

which use the approximation, even if the precise definitions

differ). In this case, Q2 and Q3 are defined according to the

following equations which were first expressed by Kanamori

(1960), where l, m and s are the short, medium and long bond

lengths, respectively [the equations presented here differ from

Kanamori’s as they have been multiplied by a factor of
ffiffiffi
2
p
=2

so that they are mathematically equivalent to equations (6)

and (7)]:

Q2 ¼ l � s; ð23Þ

Q3 ¼
ð2m� l � sÞffiffiffi

3
p : ð24Þ

This relies on the implicit assumption that the bond lengths

are orthogonal. This is clearly a reasonable approximation in

many cases, particularly when the angular distortion is very

small. For instance, in LaMnO3, the corner-sharing octahedral

connectivity enables mismatched polyhedra to tessellate via

octahedral tilting [Fig. 5(e) in Section 4.1] rather than intra-

octahedral angular distortion. However, for systems with

greater angular distortion, for instance those with edge- or

face-sharing interactions, it is not so clear that this approx-

imation is valid.

3.3. Calculating Van Vleck modes within Cartesian coordi-
nates

In VanVleckCalculator we have written an algorithm for

rotating an octahedron about three Cartesian axes with a

defined origin within the octahedron, such that the ligands are

as close as possible to the axes (within the constraint that there

is angular distortion). This allows for calculation of Van Vleck

modes in a way that does not artificially constrain the octa-

hedral shear modes (Q4, Q5 and Q6) to be zero.

First, three orthogonal axes are taken as the x, y and z axes.2

By default, these are the [1, 0, 0], [0, 1, 0] and [0, 0, 1] axes,

respectively, but alternative sets of orthogonal vectors can be

given by the user. For instance, for regular octahedra rotated

45� about the x axis, the user would be recommended to give

as axes [1, 0, 0], ½0;
ffiffiffi
2
p
;�

ffiffiffi
2
p
� and ½0;

ffiffiffi
2
p
;
ffiffiffi
2
p
�. This vector is

given as a Python list with shape (3, 3). For consistency, the

cross product of the first two axes should always be parallel

with the third given vector; if anti-parallel, the algorithm will

automatically multiply all elements in the third vector by �1.

The three pairs of the octahedron (as defined in the Theory

section) are each assigned to one of these three axes. This

assignment is performed according to the magnitude of the

projection of a vector between the two atoms in a pair along a

given axis, with the z axis assigned first, then the y axis from

amongst the two pairs not assigned to the z axis, and finally the

x axis is automatically assigned to the remaining pair. Within

each pair, the ligands are then ordered such that the ligand

with the negative distance is the first along the assigned vector

and the ligand with the positive distance occurs second.

Second, the octahedron is rotated repeatedly about the x, y

and z directions of the basis until the orthogonal axes supplied

in the previous step match the basis precisely. This is

performed in a ‘while’ loop structure, with the rotation angles

about the three axes summed in quadrature and compared

with a defined tolerance (by default, 3 � 10�4 rad in Van-

VleckCalculator); if the total rotation exceeds the tolerance,

the step is repeated.3 This step is usually unnecessary and can

be skipped by leaving the default set of orthogonal axes, which

are [1, 0, 0], [0, 1, 0] and [0, 0, 1] (meaning no rotation will

occur).

Third, an automatic rotation algorithm will further mini-

mize the effect of angular distortion. For each of the three

axes, the four ligands not intended to align with that axis are

selected. The angle to rotate these four ligands about the

origin such that each is aligned with its intended axis within

the plane perpendicular to the axis of rotation is calculated.

The octahedron is then rotated about this axis by the average

of these four angles. This occurs iteratively until, for a given

iteration, the sum (in quadrature) of the three rotation angles

is less than the already-mentioned defined tolerance.
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Table 2
A comparison between calculated �, �0, Q2, Q3, Q4, Q5, Q6 and � values
for NaNiO2 and LaMnO3 at room temperature, calculated using
orthogonal axes as described in this report (‘Cartesian’ method) and
alternatively by ignoring angular distortion and calculating Van Vleck
modes along bond lengths [‘Kanamori’ method, so named because the
equations were originated by Kanamori (1960)].

The centre of the octahedron is taken as the central ion position. Values were
calculated using crystal structures reported in the ICSD. To demonstrate the
difference in angular distortion, the bond-angle variance BAV [defined in
equation (13)] is also tabulated. The BAV is rounded to the third significant
figure; Q modes and related parameters are rounded to the fourth decimal
place.

NaNiO2 LaMnO3

Kanamori Cartesian Kanamori Cartesian

ICSD code 415072 50334
Reference Sofin & Jansen (2005) Rodriguez-Carvajal et al. (1998)
Octahedron NiO6 MnO6

JT-active Yes Yes
Connectivity Edge Corner
BAV (�2) 35.2 0.45

Q2 (Å) 0.0000 0.0000 0.2745 0.2745
Q3 (Å) 0.2834 0.2833 �0.0860 �0.0860
Q4 (Å) 0 0.2078 0 0.0130
Q5 (Å) 0 0.2001 0 0.0114
Q6 (Å) 0 0.2001 0 0.0361
� (�) 0.0000† 0.0000 107.3929 107.4034
�0 (Å) 0.2834 0.2833 0.2877 0.2876
�shear (Å) N/A 0.3534 N/A 0.0389
�anti-shear (Å) N/A 0 N/A 0
� N/A 1.0 N/A 1.0

† Note that � = 0� is equivalent to 120 or 240� .

2 For a set of three orthogonal vectors chosen as the axes, the choice to assign
each to x, y or z will not affect the value of �0, but will affect the value of � =
arctan(Q2 / Q3) by an integer multiple of 120�, plus a reflection about the
nearest special angle (see Table 1) if there is Q2–Q3 mixing.

3 This is because rotation operations do not commute and so a single rotation
about each axis is unlikely to result in the defined axes being superimposed
over the basis vectors.



At this point, the octahedron is optimally aligned with the

basis (given the limitation that there may be angular distor-

tion) and the Van Vleck modes can be calculated.

3.4. Ignoring or including angular distortion: a comparison

To evaluate the utility of calculating the Van Vleck modes

without disregarding the angular distortion, we perform a

comparison between the two approaches. We have calculated

the Van Vleck distortion modes and associated parameters for

octahedra in NaNiO2 and LaMnO3 with both a method that

ignores angular distortion and calculates modes along bond

directions [consistent with the Q2 and Q3 equations defined by

Kanamori (1960)] and a method that uses Cartesian coordi-

nates in order to take angular distortion into account. Table 2

shows this for these two materials. Firstly, for the Van Vleck

modes calculated without ignoring angular distortion, we can

see that the octahedral shear modes (Q4, Q5, Q6) are larger for

the material with higher angular distortion (as quantified using

bond-angle variance). While the effect of ignoring angular

distortion is significant for the Q4, Q5 and Q6 modes, it makes

negligible difference for the calculation of Q2 and Q3 modes

and the associated �0 and � parameters. It is therefore likely to

be a reasonable approximation to take, particularly for

calculation of � as is common in the literature, even for

octahedra which exhibit higher angular distortion. However,

there is a definite loss of information in assuming that the

shear modes Q4 to Q6 are zero. The impact of this is assessed

in the case studies.

4. Case studies

4.1. Temperature dependence of octahedral shear in LaAlO3

Perovskite and perovskite-like crystal structures are

amongst the most important and most widely studied crys-

talline material classes in materials science today. Perovskite

crystal structures have ABX3 chemical formulae, with A and B

being ions at the centres of dodecagons and octahedra,

respectively, and the X anions constituting the vertices of

these polyhedra. The BX6 octahedra interact via corner-

sharing interactions. There are also perovskite-like crystal
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Figure 5
The results of our analysis of LaAlO3 as a function of temperature. (a) The octahedral tilting angle as reported by Hayward et al. (2005) and extracted
using DataThief III (Tummers, 2006). (b) The radii of the minimum bounding ellipsoid fitted to the O anions of the AlO6 octahedra using PIEFACE
(Cumby & Attfield, 2017). (c) The octahedral shear parameter Q5 of the AlO6 octahedra, where Q5 =�Q4 =�Q6, calculated using VanVleckCalculator,
compared with the bond-angle standard deviation �	 (orange). (d) The shear fraction �, defined in equation (22). (e) The transition between low-
symmetry (tilting) and high-symmetry (tilt-free) perovskite structures, adapted with permission from Angel et al. (2005), copyright (2005) American
Physical Society. ( f ) The perovskite crystal structure of LaAlO3 at 4.2 K, drawn using the structure reported by Hayward et al. (2005).



structures such as the double perovskites, A2BB0X6 (King &

Woodward, 2010; Koskelo et al., 2023), for which many of the

same principles apply.

The ideal perovskite system would be cubic, with space

group Pm3m, but many related structures with lower

symmetry are known. This typically occurs in three situations

(Woodward, 1997):

(i) when there is a mismatch between the ionic radii of the

octahedrally coordinated B cation and the dodecagonally

coordinated A cation, resulting in tilting of the octahedra [see

Fig. 5(e)];

(ii) when there is displacement of the central cation from

the centre of the octahedron, typically due to the pseudo-JT

effect;

(iii) when the ligands of the octahedron are distorted by

electronic phenomena such as the first-order JT effect.

In this case study, we focus on the first case, where a size

mismatch results in octahedral tilting. Octahedra are often

modelled as rigid bodies, but in practice they are not rigid in

all systems and the octahedral tilting will often induce strain

resulting in angular distortion. This is typically far smaller than

that seen in edge-sharing materials such as NaNiO2, but it is

large enough that it cannot be disregarded when attempting a

full understanding of the structure of the material. As was

noted by Darlington (1996), this angular distortion commonly

manifests as shear.

LaAlO3 is a perovskite-like ABX3 material which is cubic

(space group Pm3m) above around �830 K but exhibits a

rhombohedral distortion below this temperature (with space

group R3c) due to octahedral tilting (Hayward et al., 2005)

[Figs. 5(e) and 5( f)]. There is no bond-length distortion in

either temperature regime; a calculation of the bond-length

distortion index would yield a value of zero at all tempera-

tures. In the low-temperature regime, the magnitude of the

distortion continuously decreases with increasing tempera-

ture, reaching zero at the transition temperature. Most

commonly in the literature, the tilting angle between the

octahedral axis and the c axis (0� in the cubic phase) is used to

quantify this distortion; for LaAlO3 this is shown in Fig. 5(a).

The strain induced by this distortion results in intra-octahedral

angular distortion. Hayward et al. (2005) modelled this in

terms of strain tensors, finding a linear temperature depen-

dence below the transition temperature. This differs from the

temperature dependence of the tilting angle (which resembles

an exponential decline), implying the two are related but

distinct phenomena. Cumby & Attfield (2017) instead

modelled the octahedral distortion for this same data set using

the radii of a minimum-bounding ellipsoid and also found an

approximately linear temperature dependence of the long and

short radii as they approach convergence [see Fig. 5(b)].

Here, we calculate the Van Vleck shear modes. Due to the

symmetry of the octahedral tilting, there is only one inde-

pendent shear mode and Q5 = �Q4 = �Q6. We compare this

with the bond-angle standard deviation given in equation (13)

[Fig. 5(c)]. We see that, despite being distinct parameters, they

have identical temperature dependences. We attribute this to

the shear fraction � being precisely 1 for all temperatures

where there is angular distortion, meaning that shear is

completely correlated with angular distortion.

4.2. Big-box analysis of PDF data on LaMnO3

The JT distortion in LaMnO3, a perovskite-like ABX3

material which has the crystal structure shown in Fig. 6(a),

occurs as a consequence of degeneracy in the eg orbitals on the

high-spin d4 Mn3+ ion. At ambient temperatures it is a prime

example of a cooperative JT distortion, exhibiting long-range

orbital order where the elongation of the JT axis alternates

between the a and b directions for neighbouring MnO6 octa-

hedra, never occurring along the c direction (Khomskii &

Streltsov, 2021) [Fig. 6(b)]. With heating to �750 K, the JT

distortion can no longer be observed in the average structure

obtained from Bragg diffraction (Rodriguez-Carvajal et al.,

1998). However, the JT distortion persists locally, as has been

shown by PDF (Qiu et al., 2005) and EXAFS (Garcı́a et al.,

2005; Souza et al., 2005) measurements. This transition is one

of the most widely studied orbital order–disorder transitions

for first-order JT distortion. The high-temperature orbital

regime has been described theoretically in terms of a three-

state Potts model (Ahmed & Gehring, 2006, 2009), a view

supported by big-box analysis of combined neutron and X-ray

PDF data (Thygesen et al., 2017), as performed using

RMCProfile (Tucker et al., 2007).

In this case study, we take a 10 � 10 � 8 supercell of

LaMnO3, obtained using RMCProfile against total scattering

data obtained at room temperature and previously published

in the aforementioned work (Thygesen et al., 2017). The

results are shown in Fig. 6. We repeat the analysis of this

supercell from the perspective of the Eg(Q2, Q3) Van Vleck

distortion modes, using two different approaches: (i) applying

the algorithm for automatically determining a set of ortho-

gonal axes to each octahedron individually, and (ii) following

the Van Vleck equations (23) and (24) proposed by Kanamori

(1960) where angular distortion is disregarded. In each of

these cases the crystallographic site of the supercell is taken as

the origin and so thermally driven variations in the Mn posi-

tion will not affect the result.

As can be seen in Figs. 6(c) and 6(d), there are two clusters

of octahedra within the polar plot, occurring at � ’ 	107�.

This corresponds to occupation of the dy2 orbitals (+) and of

the dx2 orbitals (�). In both cases, the superposition of

perpendicular Q3 compression and elongation modes results

in an octahedron with mixed Q2–Q3 character. This finding is

consistent with previous work which placed MnO6 octahedra

from LaMnO3 onto the framework of an Eg(Q2, Q3) polar plot

(Zhou & Goodenough, 2008a; Zhou et al., 2011).

Fig. 6(e) shows the MnO6 octahedron in the average

structure of LaMnO3 at room temperature, with the three

different bond lengths plotted in Fig. 6( f) along with a

histogram of all the bond lengths in the supercell. This shows

how the combination of the Q2 and Q3 distortion modes

manifests in the octahedral distortion.

The Q2 contribution to the distortion, as seen from the three

different Mn—O bond lengths in LaMnO3, is also present in
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JT-distorted ACuF3 (A = Na, K, Rb) (Lufaso & Woodward,

2004; Marshall et al., 2013; Khomskii & Streltsov, 2021) and

even in some JT-undistorted perovskites (Zhou & Good-

enough, 2008a), indicating it is related to the structure. It is not

intrinsic to JT-distorted manganates, as it is absent in high-spin

d4 Mn3+ with edge-sharing octahedral interactions and col-

linear orbital ordering such as �-NaMnO2 and LiMnO2

[checked using ICSD (Inorganic Crystal Structure Database,

FIZ-Karlsruhe, Germany; https://icsd.fiz-karlsruhe.de/index.

xhtml) references 15769 (Jansen & Hoppe, 1973) and 82993

(Armstrong & Bruce, 1996) respectively]. The Q2 component

to the octahedral distortion is therefore probably intrinsic to

the crystal structure (Zhou & Goodenough, 2006, 2008a),

which occurs as a result of octahedral tilting reducing the

symmetry from cubic Pm3m to Pnma. In LaMnO3, the

combination of the Q2 component to the distortion and the

orbital ordering [Fig. 6(b)] are a possible distortion of the

Pnma space group. In this way, the orbital ordering may be

coupled to the octahedral tilting, a link previously made by

Lufaso & Woodward (2004).

Finally, we also calculate the Q4 to Q6 octahedral shear

modes for all octahedra in the supercell, presented as a

histogram in Fig. S2. We present the average and standard

deviation, calculated assuming orthogonal axes and with the

automated octahedral rotation: Q4 = �0.02 	 0.13 Å, Q5 =

0.02 	 0.10 Å and Q6 = �0.00 	 0.11 Å. In each case, the

magnitude of the distortion is zero within the standard

deviation, and the value from the average structure presented

in Table 2 also falls within the range of error. This low level of

shear generally supports the validity of calculating the

Eg(Q2, Q3) Van Vleck modes along bond directions rather

than a Cartesian coordinate system for a system like LaMnO3.

It is interesting that the standard deviation is higher for Q4,

which quantifies the shear within the plane in which there is

orbital ordering.

4.3. Effect of pressure on the JT distortion in NaNiO2

In recent years, there have been several studies looking at

the effect of applied pressure on the JT distortion in crystal-

line materials (Åsbrink et al., 1999; Loa et al., 2001; Choi et al.,

2006; Zhou et al., 2008, 2011; Aguado et al., 2012; Mota et al.,

2014; Caslin et al., 2016; Zhao et al., 2016; Collings et al., 2018;

Bhadram et al., 2021; Lawler et al., 2021; Scatena et al., 2021;

Ovsyannikov et al., 2021; Nagle-Cocco et al., 2022). Most of

these have shown that, as a general rule, pressure reduces the
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Figure 6
(a) The perovskite-like structure of LaMnO3 as obtained from ICSD structure 50334. (b) The orbital ordering at room temperature in LaMnO3.
Reprinted with permission from Khomskii & Streltsov (2021), copyright (2021) American Chemical Society. (c) and (d) Polar plots with each point
representing the calculated � and �0 values for each MnO6 octahedron in a 10 � 10 � 8 supercell of LaMnO3 at room temperature, as obtained from
reverse Monte Carlo analysis of neutron PDF data collected by Thygesen et al. (2017). In panel (c), orthogonal axes were used (i.e. angular distortion was
included in the calculation, using the method described in this manuscript), whereas in panel (d) the Mn—O bond directions were taken as the axes,
regardless of orthogonality. (e) The Mn3+ octahedron which exhibits a mixed Q2–Q3-type distortion due to the first-order JT effect, manifesting as three
different bond lengths, labelled in ascending order of length as s (orange), m (grey) and l (green). ( f ) A histogram of the smallest to largest Mn—O bond
lengths within each octahedron in the 10 � 10 � 8 supercell, with the blue vertical lines indicating the bond lengths in the average structure.



magnitude of the JT distortion as a consequence of the

elongated bond being more compressible than the shorter

bonds.

Zhou et al. (2011) used Van Vleck modes to quantify the

effect of pressure on the JT distortion in the corner-sharing

perovskite-like compounds LaMnO3 and KCuF3. While the

application of pressure reduces the magnitude of the distor-

tion, as quantified using �0 [equation (11)], they argue that it

does not change the orbital mixing � [equation (12)]. KCuF3

has similar orbital ordering to LaMnO3, except the degeneracy

is due to the d9 hole rather than an electron. The variable-

pressure crystal structures for KCuF3 are available from the

ICSD (catalogue codes 182849–182857) and are utilized here.

We previously studied the effect of pressure on the JT

distortion in NaNiO2 (Nagle-Cocco et al., 2022) by performing

Rietveld refinement of neutron diffraction data from the

PEARL instrument (Bull et al., 2016) at the ISIS Neutron and

Muon Source (Oxfordshire, UK). However, we did not utilize

the Van Vleck distortion modes, instead quantifying the JT

distortion using the bond-length distortion index (Baur, 1974)

and the effective coordination number (Hoppe, 1979). In that

study, we found no deviation from the ambient-pressure space

group C2/m (Dick et al., 1997; Sofin & Jansen, 2005), shown in

Fig. 7(a), for all pressure points at room temperature up to

�4.5 GPa. This space group permits only four short (long) and

two long (short) bonds or six equal bond lengths, depending

on the angle �, and so throughout the measured pressure

range there is no Q2 character to the JT distortion, consistent

with the principle that hydrostatic pressure does not change

orbital mixing (Zhou et al., 2011).

Here, we perform a fresh analysis of the variable-pressure

octahedral behaviour as a function of pressure at room

temperature in NaNiO2 in terms of the Eg(Q2, Q3) Van Vleck

distortion modes. For a reference we sought a material that

does not exhibit a first-order JT distortion but does exhibit

bond-length distortion; for this purpose, we selected Fe2O3,

the pressure dependence of which was previously studied by

Finger & Hazen (1980) and which exhibits bond-length

distortion due to its face- and edge-sharing octahedral

connectivity. Fe2O3 contains high-spin d5 Fe3+ cations within

octahedra which interact via both face- and edge-sharing

interactions. Note that Fe2O3 probably exhibits some very

subtle pseudo-JT distortion (related to, but distinct from, the

first JT effect discussed here) on account of the Fe3+ ions

(Cumby & Attfield, 2017; Bersuker & Polinger, 2020), but this

does not impact the discussion in any meaningful way.

In Fig. 7(c) we compare (for NaNiO2) �0 with three other

parameters (bond-length distortion index, quadratic elonga-

tion and effective coordination number) which are often used

to parameterize the magnitude of the JT distortion. The trend

for each is near identical, although the magnitudes differ

greatly, indicating that each is a reasonable parameter for

quantifying the magnitude of the JT distortion. This can be

compared with Fig. 7(d), which shows the same parameters for

the JT-undistorted FeO6 octahedra in Fe2O3; it can be seen

that �0 remains approximately at zero throughout the

measured pressure range, despite a high level of bond-length

distortion as represented by the bond-length distortion index,

effective coordination number and quadratic elongation (a

similar plot for KCuF3 can be seen in Fig. S3). This means that,
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Figure 7
The crystal structures of (a) JT-active C2/m NaNiO2 and (b) inactive R3c Fe2O3. (c) and (d) Comparisons of various metrics for quantifying the degree of
JT distortion as a function of pressure, for NiO6 octahedra in NaNiO2 and FeO6 octahedra in Fe2O3, respectively. The parameters subject to comparison
are the magnitude �0, the bond-length distortion index, the effective coordination number and quadratic elongation. Dashed lines indicate a linear fit to
the data, whereas solid lines connect data points.



while these parameters are valid for quantifying the magni-

tude of the JT distortion, they are also sensitive to other kinds

of distortion. �0 is calculated using Q2 and Q3 which have Eg

symmetry, so �0 will only be non-zero for a distortion with Eg

symmetry. Thus, it is arguably the ideal choice for para-

meterizing the magnitude of this type of JT distortion.

However, while �0 is more reliable than the other parameters

shown in Figs. 7(c) and 7(d) for demonstrating the presence of

JT distortion, it is not always strictly zero for a JT-inactive

octahedron as it will have a non-zero value if the octahedron is

distorted with an eg symmetry. For example, the NaO6 octa-

hedron in C2/m NaNiO2 has the same symmetry as the NiO6

octahedron and so exhibits a value of �0 between 0.065 and

0.05 within the studied pressure range (Fig. S4), and JT-

inactive FeO6 octahedra in RFeO3 perovskites have non-zero

�0 due to the Eg symmetry of the distorted octahedra, as

shown by Zhou & Goodenough (2008a).

Fig. 8 shows a polar plot for the behaviour of NaNiO2 and

KCuF3 in the range 0–5 GPa (the measured range for

NaNiO2). It can be seen that within this pressure range, the

magnitude of the JT distortion decreases far more for KCuF3

than for NaNiO2; this reflects the fact that KCuF3 is more

compressible, with a bulk modulus of 57 (1) GPa (Zhou et al.,

2011) in contrast to 121 (2) GPa for NaNiO2 (Nagle-Cocco et

al., 2022), as obtained by a fit to the third-order Birch–

Murnaghan equation of state (Birch, 1947). Within this pres-

sure range we see that � does not change with pressure for

either material and that this property is true regardless of

whether � is or is not a special angle (as in Table 1), consistent

with the interpretation of Zhou et al. (2011).

Finally, in the previous study (Nagle-Cocco et al., 2022) we

showed, using specific O—Ni—O bond angles, that pressure

reduces the angular distortion for NaNiO2. Here, we show that

pressure also reduces the related shear distortion in NaNiO2.

This is demonstrated in Fig. 9 where we plot the octahedral

shear Q4, Q5 and Q6 modes for NaNiO2 and Fe2O3 against the

bond-angle standard deviation �	, defined in equation (13).

Unlike the AlO6 octahedra in LaAlO3 (Fig. 5), for NiO6

octahedra in NaNiO2 there is no perfect correlation between

the shear modes and angular distortion despite � ’ 1, because

there is more than one independent shear mode, but we can

see that shear distortion and angular distortion are still highly

research papers

30 Nagle-Cocco and Dutton � Van Vleck analysis of angularly distorted octahedra J. Appl. Cryst. (2024). 57, 20–33

Figure 8
An Eg(Q2, Q3) radial plot comparing the pressure dependence of the
MO6 (M = Ni, Cu) octahedra for KCuF3 and NaNiO2 between 0 and
5 GPa, where �0 is normalized to the value at the lowest measured
pressure and the dashed lines represent the average � for each material
within this pressure range.

Figure 9
The pressure dependence of the shear and angular distortion in (a) JT-distorted NiO6 octahedra in NaNiO2 and (b) JT-undistorted FeO6 octahedra in
Fe2O3. Shear distortion is represented with the Q4, Q5 and Q6 modes for the octahedra, and angular distortion is represented by bond-angle variance.
Dashed lines indicate a fitted straight line to the data, whereas solid lines are plotted from point to point. � is the angular shear fraction defined in
equation (22). Note that for the NiO6 octahedra, Q5 = Q6, whereas for FeO6 octahedra, Q4 = Q6 =�Q5. For Fe2O3, the average position of the O ligands
was taken as the centre of the octahedron.



correlated. However, for Fe2O3 the shear fraction � 
 1 and

there is no correlation between the shear distortion modes and

angular distortion. This difference in behaviour probably

arises because the main driver of the change is a continuous

decrease in the JT distortion in NaNiO2, while in Fe2O3 the

positions of the oxygen anions are determined by the reduced

degrees of freedom arising from trying to satisfy multiple face-

and edge-sharing interactions. This result could only be

achieved by calculating the Van Vleck modes in a Cartesian

coordinate system as outlined in this paper, as opposed to

calculating the distortion modes along bond directions, indi-

cating the relevance of calculating the Van Vleck modes in this

way and of the shear fraction � we propose in this work.

5. Conclusion

We have presented VanVleckCalculator, a code package

written in Python 3 for the calculation of octahedral Van

Vleck distortion modes. These modes are particularly impor-

tant for understanding the behaviour of the JT distortion, and

we have shown that the parameter �0 (which is based on the

Van Vleck Q2 and Q3 modes) is a more reliable way of

quantifying the JT distortion than other oft-used parameters

such as the bond-length distortion index.

We have shown the importance of using a Cartesian set of

coordinates for this calculation, instead of calculating the

modes along bond directions as is often done in the literature.

This is because calculating the Van Vleck distortion modes

along bond directions relies on the assumption that there is no

angular distortion or octahedral shear, which is often a false

assumption and artificially constrains the Q4, Q5 and Q6 modes

to be zero. We have shown that there is value in calculating

these latter modes, for instance in understanding the effect of

octahedral tilting on octahedra in perovskite-like materials.

These shear modes will also be useful for parameterizing the

JT effect when the degeneracy occurs in the t2g orbitals and

results in a trigonal distortion, because their symmetry

matches the distortion.

We have also shown that octahedral shear correlates with

angular distortion for materials under the influence of tuning

parameters such as pressure or temperature where there is a

continuously varying distortion, such as octahedral tilting (as

in LaAlO3) or first-order JT distortion (as in NaNiO2).

However, there is no correlation when the distortion is caused

by competing interactions due to face- or edge-sharing octa-

hedra (as in Fe2O3). We propose a new parameter, the shear

fraction � [defined in equation (22)], which can be used to

predict whether there will be correlation between octahedral

shear modes and angular distortion.

6. Related literature

For further literature related to the supporting information,

see Halasyamani (2004), Koçer et al. (2019) and Swanson &

Peterson (1980).
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