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X-ray diffraction from dislocation half-loops consisting of a misfit segment with

two threading arms extending from it to the surface is calculated by the Monte

Carlo method. The diffraction profiles and reciprocal space maps are controlled

by the ratio of the total lengths of the misfit and the threading segments of the

half-loops. A continuous transformation from the diffraction characteristic of

misfit dislocations to that of threading dislocations with increasing thickness of

epitaxial film is studied. Diffraction from dislocations with edge- and screw-type

threading arms is considered and the contributions of the two types of dislo-

cations are compared.

1. Introduction

Misfit dislocations are the most common mode of strain

relaxation in epitaxial films (Fitzgerald, 1991; Hull & Bean,

1992; Jain et al., 1997; Bolkhovityanov et al., 2001). Since the

dislocation lines cannot terminate inside a crystal, a misfit

dislocation is accompanied by threading arms that extend to

the surface (or terminate at an incoherent boundary; we do

not consider this case here). The glide of the threading arm

under the action of epitaxial strain is the most prominent

mechanism of strain relaxation (Matthews & Blakeslee, 1974).

Threading dislocations passing through the active region of a

heteroepitaxial structure lead to degradation of its electronic

properties, whereas misfit dislocations, if located at the inter-

face of a buffer layer below the active region, may have no

negative effect. Therefore, a separate determination of misfit

and threading dislocations is of primary interest in the char-

acterization of heterostructures for electronic and optoelec-

tronic applications. The density of threading dislocations can

be very low if the dislocations glide over long distances, up to

the entire length of the sample. At the other extreme, epitaxial

gallium nitride is a well known example of a crystal with high

threading dislocation densities (Bennett, 2010).

Shifts in the positions of the X-ray diffraction (XRD) peaks

due to relaxation of the average strain by misfit dislocations

are commonly used to detect strain relaxation and the corre-

sponding misfit dislocation density (Heinke et al., 1994).

Dislocations also cause inhomogeneous strain, leading to

additional diffuse scattering at low dislocation densities and to

a broadening of the X-ray peaks at high dislocation densities.

The interpretation of the diffraction peak profiles is not as

straightforward as that of the mean strain due to dislocations,

since the positions of the dislocations may be correlated for

kinetic or energetic reasons. The elastic energy of a dislocation

array is reduced when misfit dislocations reduce fluctuations in

the mean distances between dislocations, from a random to a

more periodic arrangement. Threading dislocations reduce the
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elastic energy when dislocations with opposite Burgers vectors

are closer together to compensate for long-range strain.

The theory of XRD from misfit (Kaganer et al., 1997) and

threading (Kaganer et al., 2005) dislocations takes these

correlations into account and shows that the diffraction peak

profiles are sensitive to them. Scattering from misfit disloca-

tions cannot be neglected even in situations where the

threading dislocations dominate. Reciprocal space maps of

GaN films several micrometres thick, where threading dislo-

cations are expected to dominate, also showed a significant

scattering from misfit dislocations (Kopp et al., 2014a,b). In

these studies, misfit and threading dislocations were consid-

ered as two separate dislocation arrays uncorrelated with each

other.

It is more appropriate to model the dislocation distribution

by dislocation half-loops consisting of a misfit segment with

two threading arms extending from it to the surface. The two

threading segments have opposite displacement fields, corre-

sponding to opposite directions of the dislocation lines when

the Burgers vector is kept constant along the half-loop.

Equivalently, the two threading segments can be considered to

have opposite Burgers vectors if the dislocation line directions

are taken to be the same. These threading dislocations screen

the strain fields from each other and provide a model of the

dislocation correlations that reduce the elastic energy of the

film (Kaganer & Sabelfeld, 2010). By varying the relative

lengths of the misfit and threading segments, one can go from

the limiting case of misfit dislocations to the opposite limit of

threading dislocations. The elastic field of a dislocation half-

loop is quite complicated (see the supporting information) and

the diffraction from the half-loops cannot be studied analyti-

cally. However, the XRD from a statistical distribution of

defects with known elastic fields can be calculated by the

Monte Carlo method (Kaganer & Sabelfeld, 2009, 2010).

The aim of the present work is to model the XRD from

dislocation half-loops. We follow the transformation of the

reciprocal space maps and the diffraction profiles with

increasing film thickness while keeping the dislocation density

constant. In this way the change from the diffraction pattern

characteristic of misfit dislocations to that of threading dislo-

cations can be analyzed. We show that the parameter

controlling this transformation is the ratio of the total lengths

of misfit and threading dislocations, or equivalently, the ratio

of the mean length of the misfit segment to the film thickness.

We find that this transformation is rather smooth and also

depends on the inclination of the actual diffraction vector to

the surface. We compare the effects of the half-loops with the

edge and screw dislocation types of the threading arms, and

find that they both contribute to the symmetric Bragg reflec-

tions.

2. Monte Carlo simulation of X-ray diffraction

We study the XRD from the dislocation half-loops sketched in

Fig. 1. Threading arms are assumed to be straight and

perpendicular to the film surface. Two types of dislocations are

considered. Dislocations with edge-type threading arms

(denoted by in Fig. 1) have Burgers vectors normal to the half-

loop plane. Such half-loops correspond to the insertion (or

removal, depending on the sense of the mismatch) of a

rectangular piece of an extra atomic plane, bound by the

dislocation line and shaded in Fig. 1. The second type of

dislocation has screw-type threading dislocation arms

(denoted bz in Fig. 1). Their misfit segments provide a local tilt

of the film. For these half-loops, Burgers vectors with opposite

signs are taken with equal probability, so there is no net tilt of

the film.

We take the density of the threading dislocation arms �T

and the mean length of the misfit segment L as two parameters

that characterize the dislocation ensemble. The misfit dislo-

cation density is therefore �M = L�T/2, since each half-loop

has two threading arms. We note that the threading dislocation

density �T and the misfit dislocation density �M have different

dimensionalities. The threading dislocation density is the

number of threading dislocations per unit area of the surface,

or more generally, the total length of the threading disloca-

tions per unit volume. The misfit dislocation density is the

number of dislocations per unit length of the interface, or

more generally, the total length of the dislocation lines per

unit area of the interface.

A parameter that controls the relative contributions of

misfit and threading dislocations is the ratio L/t of the mean

length of the misfit segment L to the film thickness t. One can

also compare the total length of misfit dislocations per unit

area of the interface �M with that of threading dislocations �Tt,

since the length of each threading segment is t. Given the

definition of �M above, this ratio is simply L/2t. Another

parameter of the dislocation array is the dimensionless para-

meter M introduced by Wilkens (1970a, 1976) to characterize

the screening of the dislocation strain by the surrounding

dislocations. It is equal to the ratio of the mean distance L

between threading dislocations with opposite Burgers vectors

(assuming the same dislocation line directions of the threading

segments) to the mean distance between threading disloca-

tions �
� 1=2
T , so that M ¼ L�

1=2
T .

The Monte Carlo simulations below are performed for a

GaN{0001} epitaxial film as an example. The positions of the

dislocation half-loops are random and uncorrelated. The

lengths L of the misfit segments have a lognormal distribution

with the standard deviation L/2. The misfit segments of the

half-loops run in three equivalent h1100i directions with equal

probability. The length of the Burgers vector of a half-loop

with edge threading arms by is a = 0.319 nm, while that of the
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Figure 1
Geometry of an epitaxial film with a dislocation half-loop.
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half-loop with screw threading arms bz is c = 0.518 nm. The

displacement field of a half-loop, satisfying the elastic

boundary conditions of the free surface, is constructed from

the displacement field of an angular dislocation near the free

surface (Comninou & Dundurs, 1975) and that of a dislocation

normal to the surface (Lothe, 1992). Details of the construc-

tion and the analytical expressions for all components of the

displacements are given in the supporting information.

The choice of Poisson’s ratio to model dislocations in GaN

is somewhat ambiguous. In strain relaxation problems for

elastically anisotropic epitaxial films, the Poisson ratio is

commonly chosen to give the same vertical strain as in the

isotropic approximation. For GaN(0001), this requirement

gives � = c13/(c13 + c33), where cij are the anisotropic elastic

moduli. The value � = 0.21 is obtained using the elastic moduli

of GaN given by Polian et al. (1996). The measured values of �

vary from 0.15 to 0.23 (Moram & Vickers, 2009). On the other

hand, the strain field of a straight edge dislocation with a

h0001i dislocation line direction in an anisotropic hexagonal

crystal coincides with the isotropic solution when the Poisson

ratio is taken to be �h = c12/(c12 + c11) (Belov, 1992). Using the

elastic moduli of GaN (Polian et al., 1996), Poisson’s ratio is

�h = 0.27. We use the latter value in the Monte Carlo simu-

lations below to obtain a better representation of the strain

fields of the threading dislocation arms.

The diffracted intensity is a Fourier transform of the

correlation function Gðr1; r2Þ ¼ exp iQ � Uðr2Þ � Uðr1Þ½ �
� �� �

to

reciprocal space. Here r1 and r2 are the coordinates of two

points inside the crystal, U(r) is the total displacement

produced by all dislocations (equal to the sum of the displace-

ment fields of individual dislocations due to linear elasticity)

calculated at these two points, and Q is the diffraction vector.

The statistical average h . . . i over the dislocation ensemble

and the Fourier transform can be performed simultaneously in

one and the same Monte Carlo integration (Kaganer &

Sabelfeld, 2009). This integration is time consuming, especially

when dislocation densities are large and low intensities at

asymptotes are of interest: the integration is a summation of

complex numbers of modulus 1 to finally obtain a real number

which is much less than 1.

When the mean-squared strain in a crystal is large, only

correlations between closely spaced points r1 and r2 are impor-

tant. The expansion Q � Uðr2Þ � Uðr1Þ½ � ’ ðr2 � r1Þ � rðQ �UÞ

allows us to reduce the calculation of the X-ray intensity to the

calculation of the probability density of the respective

distortion components (Stokes & Wilson, 1944). This

approximation, without a reference to Stokes and Wilson, is

the basis of the theory of XRD from crystals with dislocations

by Krivoglaz & Ryaboshapka (1963a,b) and Wilkens (1970a,b,

1976). In particular, this approximation, applied to the strain

field of a single dislocation, gives the well known asymptotic

law for the X-ray intensity IðqÞ / q� 3 at large q.

Kaganer & Sabelfeld (2014) studied the applicability limits

of the Stokes–Wilson (SW) approximation in Monte Carlo

simulations of the diffraction from various arrays of parallel

dislocations. It was shown that the SW approximation is

applicable as long as long-range order is absent, i.e. its mani-

festation as a coherent (resolution-limited) peak is not seen in

the diffraction profile. For dislocations in a bulk crystal, the

coherent peak arises when the dislocations form dipoles with a

small distance between dislocations in the dipole compared

with the distance between the dipoles. This situation corre-

sponds to the Wilkens parameter M < 1. The accuracy of the

SW approximation increases as M > 1 is increased. For

epitaxial films, the coherent peak arises when the mean

distance between misfit dislocations is larger than the film

thickness, or the misfit dislocations are almost periodic. In

these cases, the calculation of the diffraction profile as a

probability density distribution of distortions fails, and a

calculation with the difference of displacements must be

performed.

Calculation of the diffraction profile in the SW approx-

imation avoids the summation of oscillating complex terms

and drastically reduces the computation time. Fig. 2 compares

the calculation of an XRD profile in the SW approximation

and directly by Fourier transform of the correlation function

exp iQ � Uðr2Þ � Uðr1Þ½ �
� �� �

. Details of the calculations are

described below and in the supporting information. The

calculation in the SW approximation (blue line) is an average

over N = 1 � 106 dislocation arrangements, which took

approximately 9 min in our computational setup described

below. A direct calculation using the difference of displace-

ments with an average over N = 2 � 106 dislocation arrange-

ments (black line) took the same computation time, since the

calculation of the x and z strain components by finite differ-

ences requires twice the number of displacement calculations.
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Figure 2
XRD profile of the 1124 reflection in skew geometry for dislocation half-
loops with edge threading arms. Threading dislocation density �T = 1 �
1010 cm� 2, mean length of the misfit segments L = 1 mm, film thickness t =
1 mm. The calculation in the SW approximation (blue line) is compared
with the direct calculation by performing a Fourier transform of the
correlation function exp iQ � Uðr2Þ � Uðr1Þ½ �

� �� �
. The black curve is a

calculation that takes the same computational time as that in the SW
approximation, whereas calculation of the orange curve took 103 times
longer.
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The accuracy achieved in the calculations is evident from the

noise levels of the respective curves: the accuracy of the strain-

based calculation is at least 102 higher. A 103 times longer

calculation using the difference of displacements (orange

line), which took one week in our computational setup, shows

good agreement with the calculation in the SW approximation,

but still does not reach its accuracy. Therefore, all calculations

in Figs. 3 and 4 are performed using the SW approximation.

The relevant strain components in the SW approximation

depend on the diffraction geometry. Stokes & Wilson (1944)

developed their approximation for powder diffraction, in

which case the normal strain in the direction of the diffraction

vector is involved. The corresponding components for the

reciprocal space maps and skew diffraction geometry of single

crystals are discussed in detail in the supporting information.

Here we note that the intensity I(qx, qz) in the reciprocal space

map is calculated as the joint probability density of the

distortions qx ¼ � @ðQ �UÞ=@x and qz ¼ � @ðQ �UÞ=@z. These

distortions depend on the depth z of the point in the epitaxial

film at which they are calculated. Therefore, an integration

over z is performed from the surface z = 0 to the interface z =

t. As is usual for a Monte Carlo simulation, this integration

does not require any additional computational effort: the

point z is randomly and homogeneously seeded on the interval

[0, t]. Similarly, the intensity I(q) in a double-crystal scan with

an open detector, in particular a scan in skew geometry, is

calculated as the probability density of the distortion

q ¼ � K̂out � rðQ �UÞ, where K̂out is a unit vector in the

direction of the diffracted beam and the integration of the

probability density over z is performed, as above. The wave-

vector value q is related to the angular deviation ! by q =

Q!cos�, where � is the Bragg angle of the actual reflection.

This Monte Carlo calculation is ideally suited to parallel

computing since each realization of the random dislocation

distribution can be computed independently and the partial

sums obtained on different processors can be added at the

end. We use the coarray extension to Fortran, which was

added to the language standard in 2008. In practice, the

parallel computations require only a few lines of code to be

modified and are executed on 128 cores of an Epyc 7763

compute server without any loss of computational efficiency.

Diffraction profiles and maps are typically computed in less

than 1 min with sufficient accuracy to reveal the features of the

intensity distribution. Computation times of up to several

hours are used to reduce the statistical noise. Since the

statistical error decreases as 1/N1/2, where N is the number of

repetitions, the 1 min runs are only an order of magnitude less

accurate in intensity. The computation time can be reduced by

choosing larger steps in the angles in the curves and wave-

vectors in the maps. On the other hand, most of the compu-

tation time is required for the calculation of the dislocation

displacements using the analytical formulae presented in the

supporting information, which leaves very little room for

improvement. The calculation requires memory for an array of

the calculated intensity and an array of the coordinates of the

dislocations in an actual realization of their distribution, which

together do not exceed several megabytes per core.

3. Results
Let us consider the XRD from dislocation half-loops with

edge threading arms. We assume a threading dislocation

density �T = 1 � 1010 cm� 2 and a mean length of the misfit

segments L = 1 mm. Fig. 3(a) shows the transformation of the

1124 reciprocal space maps with increasing film thickness. We

note first that the position of the intensity maximum ðq0x; q0zÞ

does not depend on the film thickness. Each dislocation half-

loop provides a rectangular cut of size L � t (see the shaded

rectangle in Fig. 1), where an extra lattice plane of thickness be

is inserted. Here the edge component of the Burgers vector

normal to the half-loop plane is denoted by be, instead of by in

Fig. 1, to account for half-loops of different orientations. When

this area is divided by the volume per half-loop, the in-plane

strain is "xx ¼ "yy ¼ � be�M=2. Hence, the position of the

X-ray peak is q0x ¼ � Qxbe�M=2 and, due to the Poisson

effect, q0z ¼ ½�=ð1 � �Þ�Qzbe�M, where Qx and Qz are the

lateral and the normal components of the scattering vector,

respectively. The peak positions in Fig. 3(a) correspond to

these formulae (the substrate peak is taken at qx = qz = 0). To

obtain these peak positions in Monte Carlo simulations, one

has to increase the lateral size of the simulated region

proportional to the film thickness. The simulations in Fig. 3(a)

are performed with the lateral size of 25t, which requires a

corresponding increase in computing time for thick films.

However, the lateral size of the simulated region affects only

the peak positions; the sizes and shapes of the intensity spots

are only slightly affected.

For a thickness t = 0.05 mm, which is small compared with

the misfit segment length, the misfit dislocations dominate the

diffraction. The reciprocal space map has the same features as

that of infinitely long misfit dislocations (Kaganer et al., 1997).

It is extended in the direction almost perpendicular to the

direction of the diffraction vector, indicated by an arrow in the

figure (these directions need not be exactly perpendicular to

each other as this is not required by symmetry). In the

opposite limit, where the thickness t = 5 mm is large compared

with the misfit segment length, the diffraction is dominated by

threading dislocation arms. Since threading dislocations are

parallel straight lines in real space, their diffraction pattern in

reciprocal space is a disk perpendicular to the dislocation line

(Kopp et al., 2014a,b). A section of the disk through the

scattering plane gives the horizontal streak in the map. The

maps in Fig. 3(a) show a gradual transition from one limit to

the other. At thickness t = 0.2 mm, five times smaller than the

misfit segment length, the diffraction pattern already differs

from that for misfit dislocations. At thickness t = 5 mm, five

times larger than the misfit segment length, there is still a finite

width of the intensity spot in the qz direction.

Fig. 3(b) shows diffraction profiles in skew geometry

(Srikant et al., 1997; Sun et al., 2002; Kaganer et al., 2005) for

the same film thicknesses and for three reflections, a

symmetric reflection (0002, left), a slightly asymmetric

reflection (1104, middle) and a highly asymmetric reflection

(1231, right). The intensities calculated by the Monte Carlo

method are seen as noisy lines, while smooth lines of the same

colors are the fits discussed below. Let us start the analysis
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with the symmetric reflection. Since straight edge dislocations

in an infinite medium produce strain only in the plane normal

to the dislocation line, it is expected that edge threading

dislocations will not cause any broadening of the symmetric

reflections. However, the plot in Fig. 3(b) shows that the total

effect of the strain field of the misfit segment and the strain

due to stress relaxation at the free surface of the threading

segments of the half-loop give rise to a diffraction peak

broadening even at a thickness of 5 mm.

In the usual treatment of broadening of symmetric reflec-

tions as a manifestation of the screw dislocations, this broad-

ening would be interpreted as a density of screw dislocations.

The smooth lines in the plots of Fig. 3(b) are the fits proposed

by Kaganer et al. (2005) for threading dislocations. They

include two parameters, the dislocation density and the length

of the strain field screening (or the dimensionless parameter

M). An application of the formulae derived for straight

threading dislocations for dislocation half-loops is not justi-

fied. These fits only show apparent dislocation densities

obtained when the diffraction profiles are treated as the result

of threading dislocations. The apparent density of screw

threading dislocations obtained in the fit of the 0002 reflection

for a film thickness of 5 mm is 1.1 � 108 cm� 2. The apparent

density of screw dislocations increases with decreasing film

thickness, as can be seen in the plots, and reaches 6.5 �

109 cm� 2 for a film thickness of 0.05 mm.

At the opposite extreme of the highly asymmetric 1231

reflection in the right plot of Fig. 3(b), the strain due to edge
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Figure 3
Monte Carlo calculation of the XRD from dislocation half-loops with edge threading arms. Threading dislocation density �T = 1 � 1010 cm� 2, mean
length of the misfit segments L = 1 mm. (a) Reciprocal space maps for the 1124 reflection for different epitaxial layer thicknesses. The diffraction vector is
indicated by an arrow on the left map. (b) Diffraction peak profiles in skew geometry. The noisy lines are Monte Carlo simulations, and the smooth
curves are fits that treat the diffraction intensity as due only to threading dislocations. (c) Apparent density of threading dislocationse�T and (d) apparent
values eM of the Wilkens parameter obtained in these fits. (e) FWHM of the diffraction profiles of the reflections. � is the angle between the reflection
vector and the crystal surface.



threading arms dominates. The diffraction profiles almost

coincide for a film thicknesses of 0.2 mm and above. The

slightly asymmetric 1104 reflection in the middle plot of

Fig. 3(b) shows an intermediate behavior: for thicknesses less

than 1 mm, the misfit segment of the half-loop makes a

significant contribution.

Figs. 3(c) and 3(d) summarize the results of the fits made by

the model for infinitely long edge threading dislocations

(Kaganer et al., 2005). These fits are represented by smooth

lines in Fig. 3(b). A total of 19 diffraction profiles for different

asymmetric reflections in skew geometry are calculated by the

Monte Carlo method. The apparent density of edge threading

dislocations e�T and the corresponding apparent parameter eM

are obtained in the fits. The results for different reflections are

compared by plotting these apparent parameters as a function

of the angle � between the diffraction vector and the film

surface. � = 0 corresponds to diffraction in the surface plane,

and � = 90� to symmetric reflections. The symmetric reflec-

tions are not included in Figs. 3(c) and 3(d) since they have

been fitted to screw rather than edge threading dislocations.

The results for the film thickness of 5 mm are shown in

Figs. 3(c) and 3(d) by filled squares, deliberately made larger

than the symbols for the other thicknesses, as they come

closest to the model of infinite threading dislocations assumed

by the fits. The dislocation density obtained in the fit for this

film thickness is quite close to the density of 1 � 1010 cm� 2

modeled in the Monte Carlo simulations. This result confirms

the consistency between the present Monte Carlo simulations

and the fits with the formulae proposed by Kaganer et al.

(2005). Fig. 3(c) shows that, as the thickness decreases, the

misfit parts of the half-loops make progressively larger

contributions. The apparent density of edge dislocations can

be six times larger than the real density. It can also be seen that

the apparent density systematically depends on the inclination

angle � of the reflection: the less asymmetric reflections give a

larger apparent density. This dependence can help us to

recognize the contribution of misfit dislocations.

The input value of the parameter M in the Monte Carlo

simulations is M ¼ L�
1=2
T ¼ 10. The values ~M obtained in the

fit are larger and show a large scatter even for the 5 mm film

thickness, where the threading dislocations dominate. This

result is not surprising: as discussed by Kaganer et al. (2005),

the fit formula does not take into account the orientation

factors involved in this parameter. As a result, the accuracy of

the dislocation correlation determination is lower than that of

the dislocation density determination. As also discussed by

Kaganer & Sabelfeld (2010), the consideration of these

orientation factors is a rather complicated task. In many

applications, it is the dislocation density rather than the

dislocation correlations that is of primary interest. Correct

determination of the dislocation screening length is particu-

larly important to determine the strain energy stored in the

dislocated crystal (Borbély et al., 2023). A possible way to

determine the screening length is to perform a Monte Carlo

simulation of the diffraction profiles of all the reflections of

interest and introduce correction factors ~M=M to the para-

meters obtained by fitting the experimental curves.

The Monte Carlo simulated profiles (noisy lines) in Fig. 3(b)

are asymmetric compared with the fits (smooth lines) which

are symmetric. The asymmetry is a consequence of the nature

of the half-loops: they are all of the insertion type, corre-

sponding to the introduction of a piece of an extra atomic

plane, and not to its removal. Such ‘polarized’ dislocation

distribution gives rise to a higher-order term in the correlation

function (Groma et al., 1988), which is not included in our fits.

Fig. 3(e) shows the full widths at half-maximum (FWHMs)

of the peaks obtained from the Monte Carlo simulation. The

data are shown for film thicknesses of 0.05 and 5 mm. The

points from the intermediate thicknesses (not shown) are

scattered in between. The FWHMs are used to estimate the

dislocation density via the formula �T ¼ FWHM2=4:35b2

(Metzger et al., 1998), which is popular because of its extreme

simplicity. This formula is used for symmetric or asymmetric

reflections with the length of the Burgers vector b equal to

either the c or the a lattice parameter of GaN to obtain the

densities of either screw or edge dislocations. The correct use

of this formula for edge dislocations implies the use of twist,

i.e. extrapolation of the peak widths in Fig. 3(e) to � = 0 (Sun

et al., 2002).

When the threading dislocation arms are long and dominate

in the scattering (filled squares), the FWHMs of the asym-

metric reflections in Fig. 3(e) increase with the increasing

inclination of the reflection (the angle � decreases). The same

dependence is observed in experiments (Heinke et al., 2000;

Sun et al., 2002; Kaganer et al., 2005). Extrapolation to � = 0

gives a ‘twist’ of 0.3� which, according to the above formula,

gives a threading dislocation density of 6 � 109 cm� 2, about

half of the threading dislocation density used as input in the

Monte Carlo simulations. Thus, this simple formula gives a

reasonable estimate of the threading dislocation density, with

some underestimation. Further Monte Carlo simulations (not

presented here) show that this underestimation is systematic.

The reflections for a thin epitaxial film, shown by triangles in

Fig. 3(e), give a large scatter of the FWHMs of different

reflections and, on average, a similar ‘twist’. Hence, the

FWHM-based determination of the threading dislocation

density gives the same underestimate. The FWHMs of the

symmetric reflections, shown by the points at � = 90� in

Fig. 3(e), depend significantly on the order of the reflections.

The 0002 reflection would give an apparent density of screw

dislocations of 1 � 107 cm� 2 for the 5 mm-thick film and 4 �

109 cm� 2 for the 0.05 mm-thick film.

Fig. 4 shows the reciprocal space maps and the diffraction

profiles for the symmetric 0002 reflection of dislocation half-

loops with screw (top) and edge (bottom) threading arms. In

both cases, the mean length of the misfit segments and the film

thickness are taken to be the same, L= 1 mm and t = 1 mm. The

dislocation densities differ by an order of magnitude; half-

loops with screw threading arms of density �T = 1 � 109 cm� 2

are compared with half-loops with edge threading arms of

density �T = 1 � 1010 cm� 2. For half-loops with screw

threading arms, the diffraction peak of the film in Fig. 4(a)

coincides with that of the substrate, q0x = q0z = 0. For the edge

threading arms in Fig. 4(c), the film peak is shifted in accor-
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dance with the formulae above. Note that q0z is just half of that

in Fig. 3(a), since the dislocation density is the same and the

Qz component of the diffraction vector is two times smaller

(0002 versus 1124).

The screw threading arms dominate in the diffraction

pattern of the respective half-loops, since the displacement

caused by a screw dislocation occurs along the diffraction

vector. As a result, the diffraction intensity in the map of

Fig. 4(a) is extended in the lateral direction, perpendicular to

the direction of the screw arms. The scan in the qx direction in

the map, which coincides with the ! scan in the symmetric

reflection, collects all the diffracted intensity. Fig. 4(b) shows

that the ! scan and the double-crystal scan almost coincide

and have the expected !� 3 asymptote.

The edge threading arms contribute to diffraction in a

symmetric Bragg reflection only due to the strain resulting

from elastic relaxation at the free surface, since the displace-

ment field of the edge threading dislocation in an infinite

medium is perpendicular to the diffraction vector. The

intensity in the reciprocal space map in Fig. 4(c) is mainly due

to the misfit segments of the half-loops and extends in both the

qx and the qz directions. The intensity in the ! scan shown in

Fig. 4(d) has an !� 4 asymptote, while the additional integra-

tion in the reciprocal space for the double-crystal scan gives

rise to an !� 3 dependence.

Comparing the double-crystal scans in Figs. 4(b) and 4(d),

one can see that 1 � 109 cm� 2 half-loops with screw threading

arms and 1 � 1010 cm� 2 half-loops with edge threading arms

give very close diffraction curves. Thus, when dislocation half-

loops with comparable lengths of the misfit and threading

segments are present, the common assumption that the

intensity in symmetric Bragg reflections is due to screw

threading dislocations and the intensity in asymmetric reflec-

tions is due to edge threading dislocations is no longer valid.

4. Conclusions

The use of the displacement field of an angular dislocation

allows the construction of arbitrary dislocation arrangements

in epitaxial films, in particular dislocation half-loops. The

XRD of an epitaxial film with an arbitrary density of dislo-

cation half-loops can be calculated by the Monte Carlo

method. When the diffraction profile does not possess a

coherent peak, the diffraction intensity can be calculated as

the probability density of the corresponding strain compo-

nents, in the SW approximation. The use of this approximation

allows the calculation time to be reduced by several orders of

magnitude.

The shape of the double-crystal diffraction curves for half-

loops is the same as that for threading dislocations. When both

misfit and threading dislocations are present, a joint analysis of

the double-crystal diffraction curves in skew geometry and

reciprocal space maps in coplanar geometry is required to

distinguish their contributions.

XRD from dislocation half-loops is controlled by the ratio

of the total lengths of the misfit and the threading segments. A

significant deviation from the scattering pattern of misfit

dislocations is already seen in the reciprocal space maps when

this ratio is 5:1, and the opposite limit of threading dislocations

is not yet reached when this ratio is 1:5. The apparent density

of threading dislocations obtained by fits to the formula

derived for threading dislocations alone is up to six times

larger than the real density of the threading segments. The

apparent density obtained in this way scatters significantly

depending on the reflection chosen. This scatter in density can

be used to distinguish between half-loops and infinitely long

threading dislocations. Another indicator that may help to

distinguish between these two cases is the dependence of the

FWHMs of the reflections on the angle � between the

reflection vector and the surface. For threading dislocations

the FWHM increases as � decreases. When misfit dislocations

dominate, the FWHMs show a larger scattering without a

systematic � dependence.

For half-loops with comparable total lengths of the misfit

and threading segments, the half-loops with edge and screw

threading arms both contribute to the diffraction curves of

symmetric Bragg reflections. The contribution of the half-

loops with screw threading arms is an order of magnitude

larger for comparable dislocation densities. However, since

the densities of the screw threading dislocations in GaN films

grown by molecular beam epitaxy are an order of magnitude

smaller than those of edge dislocations, the contributions of

the two dislocation types are comparable. In this case, a clear

distinction between the dislocation types can be seen in the

reciprocal space maps: the diffraction spot for half-loops with

edge threading arms is roundish, whereas for those with screw

arms it is laterally elongated.

5. Related literature

The following reference is cited only in the supporting infor-

mation: Thomas (1993).
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Figure 4
Reciprocal space maps for the symmetric 0002 Bragg reflection from
dislocation half-loops with (a) screw threading arms, �T = 1 � 109 cm� 2;
and (c) edge threading arms, �T = 1 � 1010 cm� 2. The mean length of the
misfit segments is L = 1 mm and the film thickness is t = 1 mm. The ! and
�–2� triple-crystal scans through the maps, as well as the double-crystal
scans, are shown in (b) and (d) in log–log scale.

http://doi.org/10.1107/S160057672400089X
http://doi.org/10.1107/S160057672400089X
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