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This work introduces X-Ray Calc (XRC), an open-source software package

designed to simulate X-ray reflectivity (XRR) and address the inverse problem

of reconstructing film structures on the basis of measured XRR curves. XRC

features a user-friendly graphical interface that facilitates interactive simulation

and reconstruction. The software employs a recursive approach based on the

Fresnel equations to calculate XRR and incorporates specialized tools for

modeling periodic multilayer structures. This article presents the latest version

of the X-Ray Calc software (XRC3), with notable improvements. These

enhancements encompass an automatic fitting capability for XRR curves

utilizing a modified flight particle swarm optimization algorithm. A novel cost

function was also developed specifically for fitting XRR curves of periodic

structures. Furthermore, the overall user experience has been enhanced by

developing a new single-window interface.

1. Introduction

X-ray reflectivity (XRR) has emerged as a prevalent tech-

nique in analyzing thin-layered materials, encompassing

semiconductor heterostructures, metallic multilayers and

various thin-film systems. The precise determination of crucial

structural parameters, such as interface roughness, density and

thickness, plays a pivotal role in comprehending the other

properties exhibited by the sample (Björck & Andersson,

2007; Penkov et al., 2020). Nevertheless, reconstructing the

intricate structure of multiple layers through XRR curves

entails a non-linear inverse problem that necessitates

computationally intensive calculations. The forward problem

encompasses the propagation of waves, involving both

reflection and transmission, through the successive layers. This

recursive process is highly sensitive to minute intricacies such

as wave polarization (Björck & Andersson, 2007). To tackle

the forward problem of XRR, Parratt’s exact recursive

method (Parratt, 1954) is employed for precise computation.

Conversely, the inverse problem necessitates implementing

global optimization techniques. However, these methodolo-

gies encounter analogous challenges associated with compu-

tationally demanding ill-posed non-linear inverse modeling

problems. Although the inverse problem poses a considerable

difficulty, automating the extraction process of structure

parameters for periodic multilayer mirrors (PMMs) using

XRR measurements is imperative, as manual curve fitting

becomes impractical when confronted with complex PMM

configurations.
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XRR has become a standard instrument in laboratories

developing X-ray optics. Over the years, various commercial

and open-source software packages have been developed to

simulate XRR. These include GenX (Björck & Andersson,

2007), JGIXA (Ingerle et al., 2016), REFLEX (Vignaud &

Gibaud, 2019), Multifitting (Svechnikov, 2020), XOP (Rı́o &

Dejus, 2011) and X-Ray Calc 2 (Penkov et al., 2020). One of

the earliest software packages, IMD, was introduced by Windt

(1998) for modeling and analyzing multilayer films.

X-Ray Calc (XRC) emerged as a user-friendly and efficient

alternative to IMD. Its initial version was released in 2002,

followed by significant upgrades in 2016 and 2020 (Penkov et

al., 2020). The primary focus of the previous versions of XRC

was to manually fit simulated and measured XRR curves of

PMMs. Despite its nearly 20-year existence, XRC continues

to be widely utilized in numerous laboratories (Voronov

et al., 2006; Yamada et al., 2023; Wu et al., 2021; Broekhuijsen,

2021).

However, as previously mentioned, solving the inverse

problem in XRR analysis on the basis of measured data

requires tackling a challenging task that involves numerous

non-linear optimization parameters. A recent study demon-

strated that implementing the Levy flight particle swarm

optimization (LFPSO) algorithm can greatly enhance the

solution of the inverse XRR problem (Li et al., 2023). The

Levy flight is a form of random walk that employs the Levy

distribution to determine the size of each step taken. This

search strategy is renowned for its efficiency in global opti-

mization, owing to the long jumps made by the particles (Haklı

& Uğuz, 2014; Jensi & Jiji, 2016). Initially, the LFPSO algo-

rithm was implemented by combining MATLAB with a

parallelized command-line version of XRC (Li et al., 2023).

The MATLAB code generated a set of solutions (particles)

and invoked the XRC executable to calculate the XRR for

each solution. The ‘cost function’ was used to evaluate the

solutions. The cost function was the chi-squared (�2) good-

ness-of-fit test, a type of Pearson chi-squared test. We use it to

test whether the fitted XRR curve differs from the target

(experimental) curve. The best solution and the corresponding

value of the cost function were then returned. Through

iterative repetition of this process, it was observed that �80%

of the computation time was spent on data exchange between

MATLAB and XRC. Consequently, it is anticipated that the

computation time can be further reduced by directly incor-

porating the LFPSO algorithm into XRC.

In this research article, we introduce the latest iteration of

X-Ray Calc software, denoted as XRC3 (major version 3),

which incorporates automated fitting of XRR data and facil-

itates the reconstruction of coating structures, thus addressing

the inverse problem. Significant enhancements have also been

made to the fitting of periodic structures. Moreover, the initial

version of the LFPSO algorithm has been refined to enhance

convergence and a novel cost function for fitting XRR curves

of periodic structures has been devised. Additionally, the

associated graphical user interface (GUI) has undergone

substantial improvements to enhance the overall user

experience.

2. Algorithms

This section briefly describes the XRR computation algorithm

and mainly focuses on the automatic fitting of XRR curves.

2.1. X-ray reflectivity

The algorithms used in XRC for calculating XRR are

described in detail elsewhere (Penkov et al., 2020; Li et al.,

2023). The Parratt algorithm is used for simulating specular

XRR. A Gaussian distribution is assumed for roughness. The

refractive indices of materials are calculated using the Henke

tables for XRR (Henke et al., 1993). The implementation of

the computational algorithm has been validated against the

IMD software (Windt, 1998). XRR curves for various single,

few and periodic multilayer structures were simulated using

both software packages, utilizing the same database of X-ray

scattering factors in both instances. A point-by-point

comparison of the results revealed minimal divergence

between XRC and IMD results, with accumulated variances of

the whole XRR curve consistently below 0.5%. Any observed

distinctions between these programs could reasonably be

ascribed to the accumulation of rounding errors. This valida-

tion process collectively underscores XRC’s precision and

accuracy.

2.2. Coating structure representation and fitting modes

An effective representation of a coating’s structure plays a

pivotal role in enhancing user experience and computational

effectiveness. Various methods for representing the fitted

structure have been integrated into the software to better

align with practical requirements. Throughout both the XRC

software and this article, the following terminology is

employed to elucidate the description of a coating structure

intended for simulation or fitting:

(a) Fitting – the process of solving inverse problems, which

can be carried out manually or automatically. Manual fitting

was introduced in the previous versions of XRC (Penkov et al.,

2020). Automatic fitting is described in the present article.

(b) Material – the chemical composition of a layer, for

example, Mo or MoB2. This value is used to find the values of

atomic scattering factors, atomic weights and table densities in

the embedded materials database. It cannot be changed

during fitting.

(c) Layer – the basic ‘geometrical’ entity. The layer consists

of a material and has three parameters: thickness, roughness of

the top surface and density. All three parameters will be

subject to adjustment during the fitting procedure.

(d) Stack – a set of layers. It can be single or periodic.

(e) Structure – a set of stacks, including a ‘substrate’. The

substrate is a special type of stack consisting of a single layer

with infinite thickness.

For example, Fig. 1(a) illustrates a structure comprising a

single stack, with the substrate included. Figs. 1(b) and 1(c)

demonstrate more complicated structures. In Fig. 1(b), the

stack named ‘Top’ is a surface layer consisting of SiO2 and Si.

‘Main’ is periodic, comprising four layers repeated 50 times.

The ‘Bottom’ stack in Fig. 1(c) represents a Mo sublayer.
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Additional examples of diverse structures are presented in

Fig. S1 of the supporting information. The general types are:

(i) Regular structure – every parameter of each layer is

treated independently. This mode is used for non-periodic

coatings consisting of several layers. An example of such a

structure is shown in Fig. 1(a).

(ii) Periodic structure – the coating consists of repeated

stacks; every stack consists of several layers [Fig. 1(b)].

(iii) Periodic structure with distributions – in this context,

‘distribution’ refers to utilizing nonuniform layer thicknesses.

In such instances, additional guidelines can be implemented to

depict the distribution of a specific parameter across the

periodic stack.

In the previous implementation of the LFPSO algorithm (Li

et al., 2023), each layer in the structure was treated indepen-

dently, which was suitable for non-periodic coatings (referred

to as the ‘regular structure’). However, this approach ineffi-

ciently utilizes computational resources when fitting periodic

structures like regular PMMs. For instance, consider a typical

Mo/Si PMM as a relatively simple model with one periodic

stack in the middle and single-surface and sublayer stacks. If

the level of periodicity is high, the stack can be represented

using a set of coupled parameters. For example, the thickness

of a specific layer (Mo or Si) is the same across all stacks.

Consequently, the total number of variables is significantly

reduced. For instance, if the aforementioned Mo/Si PMM

contains 60 repeated stacks, the total number of variables is

reduced from 2 � 3 + 60 � 4 � 3 = 726 (using the regular

approach) to 2 � 3 + 1 � 4 � 3 = 18. This reduction in the

number of variables is substantial. Generally, a structure can

comprise single and periodic stacks [e.g. as shown in Figs. 1(b)

and (c)], and each stack is treated independently.

‘Distributions’ provide a convenient means to describe

coatings with periodically stacked layers that exhibit stochastic

variations in the periodicity parameter D. Such coatings may

have a graded period, as seen in supermirrors, or the peri-

odicity may be distorted due to unstable deposition conditions,

among other possibilities. In a general case, each parameter

within the entire coating can be treated independently.

At the start of the fitting procedure, the software expands

each periodic stack into individual layers. For example, a Mo/

Si PMM with 60 repeated stacks will be transformed into a

structure comprising a single stack consisting of 60 layers of

Mo alternated with 60 layers of Si. Subsequently, this structure

will be fitted as a regular stack. Once the fitting is complete,

the software generates a distribution chart for each parameter

of every material type (e.g. thickness, roughness, density)

within the structure. This feature allows for a comprehensive

understanding of the parameter distributions across the

coating.

Typically, independently treating every parameter of each

layer is not physically meaningful. For example, while the

thickness of a certain layer may vary during the deposition

process due to an unstable deposition rate, the roughness and

density of each layer type remain constant across the whole

multilayer stack. The software enables the ‘stack locking’ of

specific parameters in such cases. An example of such a

structure is illustrated in Fig. 1(c), where the expected varia-

tion occurs in the thickness of Mo and B from the top to the

bottom of the coating while other parameters are paired.

After fitting, distribution charts will only be generated for

non-paired parameters. This approach allows for a more

focused analysis of the parameters that exhibit variations,

providing valuable insights into the specific aspects of the

coating’s properties.

In many practical situations, the arbitrary distributions of

the structure’s parameters across the stack can also be

meaningless. If the deposition rate changes due to variations in

deposition conditions, this process will lead to gradual changes

in thickness rather than arbitrary oscillations. Usually, such

changes in thickness can be described as polynomial functions

such as

xn ¼ x0 þ a1nþ a2n2
0 þ . . .þ aknk

0 : ð1Þ
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Figure 1
Examples of different types of fitting structures. (a) Regular structure. (b) Periodic structure. (c) Periodic structure with distributions: the thicknesses of
the Mo and Si layers are varied across the stack; the rest of the parameters are paired.
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Thus, the number of fitting parameters can be further reduced.

For example, 60 different layer thicknesses of Si from the

above example can be replaced with only three or four

parameters: the thickness of the first layer (x0) and two or

three coefficients of the polynomial function (a1–ak). The user

can select the order of the polynomial function from 1 to 20.

The result of such a fitting is shown in Fig. S2. Overall, the

software provides various methods for describing the fitted

structure, as shown in Table 1, and users can choose the most

suitable depending on the nature of their coatings.

2.3. Fitting algorithms

The general flow of the algorithm called ‘Shake LFPSO’

implemented for the automatic XRR curve fitting is shown in

Fig. 2. This is a further development of the LFPSO algorithm

reported earlier (Li et al., 2023). The LFPSO algorithm, like

most evolutionary algorithms, involves creating a population

of solutions (particles), which is a vector of parameters. This

population is then modified according to a specific scheme to

generate new individuals better suited to the problem at hand

than the previous population. This process is known as a

generation, and it is repeated until a stopping criterion is met

or the maximum number of iterations is reached (Kennedy et

al., 2001). The population is a three-dimensional array X, in

which the first dimension represents various solutions, and its

length is the size of the population (SizeX) defined by the user.

The second dimension represents all layers in the model, so its

size NL equals the number of layers, including the substrate.

computer programs

4 of 12 Oleksiy V. Penkov et al. � X-Ray Calc 3 J. Appl. Cryst. (2024). 57

Figure 2
A general diagram of the Shake LFPSO algorithm. Bold dashed lines indicate call of subroutines.

Table 1
Summary of structure-representation methods and their applicability.

Structure representation Applicability Computation time

General Regular non-periodic

coatings

Long

Periodic PMMs Short
Periodic with arbitrary

deviations
Supermirrors, PMMs with

arbitrary parameter
distributions

Long

Polynomial distributions PMMs with gradual
change of parameters

Moderate

http://doi.org/10.1107/S1600576724001031


The last dimension represents the fitted parameters of every

layer (thickness, roughness, density), so its size is 3.

The algorithm comprises several subroutines (Init,

FindBest) distinguished by different colors. The invocation of

these subroutines is denoted by dashed bold lines (Fig. 2). The

roles and functions of these subroutines are elucidated below.

2.3.1. Initialization. The software proposes two methods for

the seeding of the initial population. The first method (SeedR)

can be used when the initially calculated XRR curve differs

greatly from the experimental curve. For instance, only the

sequence of layers is known, and all parameters can vary

widely. In such cases, the user is requested to define thickness,

toughness and density ranges. Then, the initial population is

seeded as follows:

X0 i; j; k½ � ¼ Rand Xmin j; k½ �; Xmax j; k½ �ð Þ;

j ¼ 1 . . . NL; k ¼ 1 . . . 3; i ¼ 1 . . . SizeX ; ð2Þ

where Xmin and Xmax are low and high constraints, respec-

tively. Rand is a function returning a random value in the

range indicated.

When the initially calculated XRR curve closely aligns with

the experimental curve, or when the subsequent fitting aims to

refine the previous fitting results, it is sensible to initialize the

initial population, denoted as P0, on the basis of the best-

known solution. The initial population X0 is seeded in the

function Init. The function accepts a solution P as the input

parameter and returns a new population X as follows:

X0 0; j; k½ � ¼ P0 j; k½ �; j ¼ 1 . . . NL; k ¼ 1; 2; 3 ð3Þ

and

X i; j; k½ � ¼ X 0; j; k½ � þ Rand 0;�X j; k½ �ð Þ; i ¼ 1 . . . SizeX;

ð4Þ

where �X[ j, k] contains ranges for each of the structure’s

parameters as defined by the user. Consequently, each solu-

tion within the population adheres to the same set of

boundary constraints. These constraints can be generated

automatically prior to the fitting procedure or manually

specified through the user interface, thus ensuring physically

meaningful parameter ranges. LFPSO also necessitates the

initialization of particle velocities within a swarm. In the

present implementation, the velocity for each parameter is

established as follows. First, the matrix of maximum velocities

is calculated:

Vmax j; k½ � ¼ Vmax�X j; k½ �; ð5Þ

where Vmax is a constant user-defined parameter. The initial

velocities are set as follows:

V i; j; k½ � ¼ Rand � Vmax i; j; k½ �; Vmax i; j; k½ �ð Þ: ð6Þ

After seeding the initial population and velocities according to

equations (3)–(6), the best solution for the current population

is checked, and the best solution, Pgbest, is found using the cost

function described in this article.

Additionally, the periodicity parameter of a stack, D,

representing the cumulative thickness of individual layers

within a given period, is computed during the initialization

stage. The calculation of the D value for each periodic stack is

carried out as follows:

D ¼
Pllast

j¼lfirst

X i; j; 1½ �: ð7Þ

Here, lfirst and llast are the current stack’s first and last layers.

This value is stored in the internal data structure for further

use.

2.3.2. The main loop. The PSO/LFPSO iteration is executed

as depicted in functions ‘Update PSO’ and ‘Update LFPSO’ in

Fig. 2. Within the PSO iteration, both the population X and

the velocities V are updated, leveraging the information from

the best solution obtained thus far, denoted as Pgbest, as

described in the previous subsection. Subsequently, boundary

constraints are applied to each element X[i, j, k] and V[i, j, k].

The next step involves the normalization of periodic stacks, as

elaborated in Section 2.3.3. Following the constraint and

normalization of the population, the new best solution Pgbest is

determined. The iteration loop persists until the cost function

attains its minimum or the maximum number of iterations is

reached. These parameters are user defined, affording control

over the algorithm’s tolerance and the total computation time.

2.3.3. Periodicity keeper. If a certain stack in the structure

is periodic, then the thickness of every layer is normalized to

maintain the total period of the stack D. The normalization is

performed as follows:

Xfinal i; j; 1½ � ¼ Xcurrent i; j; 1½ � 1þ
D � Dcurrent

Dcurrent

� �

; ð8Þ

where Dcurrent is the periodicity parameter for every periodic

stack in the current solution. It is calculated using equa-

tion (7).

2.3.4. Finding the best solution. An XRR curve is simulated

for every solution (particle) in the population, and the

deviation between the calculated and target curves is calcu-

lated using the following equation:

E ¼
X log10I �ð Þ exp � log10I �ð Þcalc

log10I �ð Þcalc

� �2

! �ð Þpeak! �ð Þ�; ð9Þ

where I(�)exp and I(�)calc are the measured (experimental) and

computed intensity of XRR for every angle �, !(�)peak is the

peak weight function, and !(�)� is the incidence-angle weight

function.

The peak weight function helps work with the XRR curves

of PMMs. In such cases, parameters of the periodic stack affect

the intensity of primary diffraction peaks; Kiessig fringes are

affected by the substrate and surface layers. Implementing the

peak-weight function allows focus on fitting the primary

features of the XRR curve. For applying the peak weight

function, the primary diffraction peaks should be found. The

fastest way is to compute the moving average function with a

relatively large window, as shown in Fig. 3. Then, for every

theta, the weight function is calculated as follows:
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! �ð Þpeak ¼
Iexp �ð Þ=MovAvg �ð Þ; Iexp �ð Þ � 3MovAvg �ð Þ;

1; Iexp �ð Þ < 3MovAvg �ð Þ:

�

ð10Þ

Using the peak weight function is optional; it is enabled in the

fitting control panel. The incidence-angle weight function is

also optional. It enables concentration of the fitting process on

distinct segments of the XRR curve, or, in other words, it

allows one to specify which part of the XRR curve is more

important for the fitting. The function is calculated as follows:

! �ð Þ ¼

�2;ffiffiffi
�2
p
;

1=�2:

8
<

:
ð11Þ

The user can select any of these functions or choose to use

!(�)� = 1 (no weight, default value).

2.3.5. Shake LFPSO. To enhance the convergence of the

LFPSO algorithm when applied to the inverse XRR problem,

a novel modification has been introduced. The concept behind

this modification is to navigate the system out of a local

minimum, as illustrated in Fig. 4. The condition for triggering

this action is based on the number of iterations that have

transpired without reducing the cost function. This parameter

can also be configured via the GUI. The ‘Shake’ functionality

is divided into two segments, denoted as ‘Shake I’ and ‘Shake

II’ in Fig. 2.

Block I is called at the end of the subroutine finding the best

solution in the current population, FindBest. If the absolute

lowest value of the cost function EAB is not improved, the

counter Jamcount increases by 1. Otherwise, the counter is reset

to 0, EGB is assigned to EAB, and the best solution in the

current population, Pbest, is assigned to the absolute best

solution Pabest.

Block II is called at the end of the main loop if the condition

for Shake is satisfied (Jamcount is larger than a user-defined

threshold). In this block, the Shake event is performed. This

event can have several iterations. First, the number of

continuous Shake iterations is checked. If it does not exceed

the allowed maximum, the Shake iteration is performed as

follows. (1) Coefficient Vmax [equation (5)] is multiplied by the

factor k1. (2) The stored value of the lowest achieved global

cost function EGB is multiplied by the factor k2. (3) The

counter of Shake iterations is increased by 1. (4) Then the Init

subroutine (Section 2.3.1) is called, using the best solution

Pgbest as the initial solution.

Parameters k1 and k2 could be considered as additional

heating leading to a temperature rise in traditional simulated

annealing optimization algorithms. The user defines the values

of factors k1 and k2, which determine the maximum allowable

Shake iterations via the GUI. If the number of consecutive

Shake iterations surpasses the predefined maximum limit, the

most recent Shake event is deemed unsuccessful, and the

system reverts to its previous state.

3. Software description

The software was developed using Embarcadero Delphi 11.3,

a high-level programming language. It is distributed as a

standalone executable (.exe) file. The software features a

user-friendly interface designed for working with scattering

structure models as well as calculated and experimental XRR

curves (see Fig. 5 for reference). Compared with earlier

versions, the interface has undergone a comprehensive rede-

sign, providing users with quick and convenient access to core

computer programs
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Figure 4
The idea of the Shake LFPSO algorithm. The red line represents a cost function in a single dimension. Dark red arrows indicate location and velocity
vectors of particles (solutions) in the population Xt. (a) Shake condition: all particles are trapped in a local minimum. (b) Shaking event: location and
velocities of all particles are randomized on the basis of Pgbest. The maximum of the velocities is multiplied by k1, while X2

GB is lifted by a factor k2. (c)
After LFPSO leap, the best new solution Pgbest is found.

Figure 3
The XRR curve and corresponding moving average used to define the
peak weight function.



functions through a unified single-window interface. The

primary window comprises four key panels. The first panel,

labeled ‘Project Items’, showcases the contents of the current

project. A project, contained within a single file, can organize

an unlimited number of theoretical models and experimental

curves into well structured folders. The software supports

concurrent computation of XRR curves for each model within

the project. The ‘Project Items’ panel is equipped with various

tool buttons that facilitate straightforward manipulation of

project items, including actions like duplication, copy/paste

and more.

The structure panel functions as a visual depiction of the

layered model and provides easy access to all parameters

linked with the structural model. The software empowers

users with full control over computation parameters, including

settings for wavelength, the number of points in computed

curves, grazing-angle range and instrumental beam diver-

gence. Reflectivity calculations can be performed as functions

of either incident angle or wavelength, offering flexibility to

suit user preferences. The main plot allows for the overlay of

multiple computed and experimental curves, enabling users to

compare the degree of matching visually. The vertical scale

can be switched between linear and logarithmic for conve-

nience, and users can zoom in on individual regions of the plot.

Layer controls allow editing of every parameter in the

structure. Also, parameters can be reduced/increased using

spinners. Thus, the software provides quick access to the

parameters of the structure, allowing users to manually fit the

computed curve to the experimental curve within the same

window. The calculation result can be exported as an ASCII or

graphic file. Experimental data can be loaded to the project

from an ASCII file or pasted from the clipboard. XRC

provides necessary tools for the experimental data, such as

sorting, smoothing and normalization.

Apart from providing a concise representation of periodic

structures, the software also offers specialized extensions for

modeling, including distribution functions. These extensions

enable a gradual variation of specific model parameters, such

as thickness, within any periodic stack. This feature proves

useful in simulating physical phenomena such as changes in

deposition rate during coating manufacturing or the intro-

duction of increased interface roughness due to columnar

growth. Additional extensions include tabulated parameter

distributions and specialized functions for interface roughness,

such as linear, exponential or step functions.

A parallel computation was implemented to enhance the

performance of computation and optimization (fitting). The

complete angular data range, denoted as M, is divided into n

segments. The value of n is then set to match the number of

available central processing unit (CPU) cores on the computer

platform. For instance, with a CPU containing 16 cores, the

typical simulation time for XRR ranges from 0.05 to 0.25 s for

a periodic multilayer model consisting of 300 stacks, each

comprising four layers. Consequently, the resulting XRR

curve consists of 3000 points. Computation times for some

typical CPUs are shown in Table S2 of the supporting infor-

mation. The remarkable computational speed empowers users

to perform manual curve fitting in real time, facilitating quick

and efficient analysis of experimental data. In addition to

improved manual fitting, a new automatic solver based on the

computer programs
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Figure 5
A screenshot of the GUI for XRC3. (1) Project tree. (2) Structure panel. (3) XRR calculation parameters. (4) Fitting parameters. (5) XRR curves.
(6) Distributions/Convergence panel.
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modified LFPSO algorithm was implemented, as described in

the following sections.

4. Performance evaluation

The performance of the fitting algorithm was evaluated on the

basis of the convergence as a function of the number of

iterations when an ‘unknown’ structure was fitted to a calcu-

lated curve. Thus, the target cost function was zero. Table 2

briefly describes the structures used in the benchmark.

Fig. 6 demonstrates the performance comparison between

the ‘classical’ LFPSO and one of the Shake LFPSO algorithms

introduced earlier. The calculation was performed for the

model shown in Fig. S2. The computation in each mode was

repeated three times for consistency and reliability.

The algorithm can be customized for different fitted models

by fine-tuning the parameters mentioned above (referred to as

‘magic numbers’) and enabling/disabling various options. To

demonstrate the impact of these magic numbers, we bench-

computer programs
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Figure 6
Reduction of the cost function with increasing number of iterations for
LFPSO and the Shake LFPSO algorithm (Model: ML 30x2 P3).

Figure 7
Benchmarking of the algorithm. (a) Effect of the algorithm’s modifications (Table 3). (b), (c) Comparison of LFPSO and Shake LFPSO for different
types of models. (d) Effect of the number of iterations and the size of the population on convergence of Shake LFPSO for the given model.
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marked different combinations of them, as outlined in Table 3,

while using the same initial model (ML 30x2 P3).

The initial value of E was �25. While pure LFPSO was

performed, E reduced to �10 after 30–40 iterations and

remained unchanged with increasing iterations, indicating

trapping in a local minimum. In the presence of the Shake

mode, the cost function experienced a sharp decline after

shaking at the 20th, 45th and 61st iterations for the bright-

green, dark-green and blue curves in Fig. 6, respectively.

Fig. 7(a) illustrates the effect of the improvements of the

LFPSO reported above on the example of model ML 30x2 P3

(Table 2). Table 3 shows combinations of the parameters and

Fig. 7(a) shows the fitting results with these combinations for

the given model. The calculation was performed 20 times for

every set of parameters and statistics were calculated. Error

bars in Figs. 7(a)–7(d) represent the standard deviation

between these 20 runs.

Overall, the effectiveness of the shaking event depends on

the structure’s complexity. Figs. 7(b) and 7(c) illustrate the

effect of the improvements of the LFPSO on the examples of

different types of models. The number of iterations and the

population size used was 100 for the first batch [Fig. 7(b)] and

200 for the second batch [Fig. 7(c)]. In Fig. 7, ‘Ini’ denotes the

initial value of the cost function before the optimization, and

‘P’ and ‘SP’ denote the resulting cost function after fitting

using classical LFPSO and Shake LFPSO, respectively.

Enabling Shake mode improves the convergence for all

models; the most significant improvement was achieved for

complicated cases: several periodic stacks (ML 2x7x4) and

non-linearly graded thickness (ML 30x2 P3).

For the same initial model and set of magic numbers, the

final convergence depends on the number of iterations and the

size of the population. The computation time linearly

increases with the increase of both parameters. As can be seen

from Fig. 7(d), it is beneficial to limit the number of iterations

to 200 and increase the size of the population. The maximum

size is 20 000–30 000 for the 32 bit version of the software. For

the 64 bit version, the size of the population is limited by the

available memory (RAM).

5. Illustrative examples

5.1. Single-layer coating

This example illustrates the evaluation of a single-layer

TiZrNi coating deposited by DC magnetron sputtering onto a

glass substrate, as described by Penkov et al. (2022). The XRR

was measured using a DRON-3M diffractometer (BOUR-

EVESTNIK, JSC) with filtered Cu K� radiation. The

measured and best-fitted curves are shown in Fig. 8. Initially,

the fitted model consisted of two layers: TiZrNi with TiO2 on

top of it. For such a model, the lowest cost-function value was

�0.48, and visual comparison of the measured and fitted

curves shows a significant difference when the diffraction

angle is above 3�. Adding an extra TiO2 layer beneath and

covering carbon-based layers minimizes the cost function to

0.1395 [Fig. 8(b)]. The final structure is shown in the corre-

sponding inset.

Interestingly, the top and bottom TiO2 layers had different

densities. The density of the bottom layer was 4.76 g cm� 3,

which was�10% higher than the reference data (4.26 g cm� 3).

The top layer had a density of 6 g cm� 3. This indicates the

non-stoichiometric composition of the layer and the presence

of some heavy atoms (Ni and/or Zr). The low density of the

top ‘carbon’ layer indicates that it consists of hydrocarbons,

e.g. the surface was contaminated with adsorbed oils.

5.2. Periodic X-ray mirrors

The first example illustrates the fitting of the XRR curve

for Mo/Si PMMs deposited by DC magnetron sputtering onto

a silicon substrate, as described by Penkov et al. (2022)

[Fig. 9(a)]. The XRR was measured using a DRON-3M

diffractometer (BOUREVESTNIK, JSC) with filtered Cu K�

radiation. The fitting was performed in the ‘periodic mode’

(Section 2.3.3). The results revealed well known features of

Mo/Si PMMs, such as asymmetrical intermixed zones between

Mo and Si.

The second example is a fitting of the XRR curve for Mo/B

PMMs with a 2.3 nm period [Fig. 9(b)]. These PMMs were

deposited using pulse DC sputtering for Mo and RF sputtering

for B as described by Li et al. (2023) and Penkov et al. (2021).

The substrate holder was water cooled during the deposition,

so the temperature did not exceed 50�C. The XRR was

measured using a Malvern Panalytical Empyrean diffract-

ometer equipped with a W/Si Göbel mirror in monochromatic

Cu K�1 radiation.

The XRR curve fitting unveiled the presence of relatively

thin and somewhat asymmetric intermixing zones between Mo

and B. A prior prediction by Penkov et al. (2021) had antici-

computer programs
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Table 3
Combinations of parameters used for benchmarking [Fig. 7(a)].

Bold type indicates a change compared with the previous line in the table.

Parameter

Name of setup Shake SeedR Vmax !1 !2 k1 k2

LFPSO Off Off N/A N/A N/A N/A N/A
Shake On Off 0.1 0.1 0 1 1
Set 1 On On 0.3 0.3 0 1 1

Set 2 On On 0.3 0.3 0.1 1 1
Set 3 On On 0.3 0.3 0.1 2 1
Set 4 On On 0.3 0.3 0.1 2 2
Set 5 On On 0.3 0.3 0.1 3 1
Set 6 On On 0.3 0.3 0.1 3 2
Best On On 0.3 0.3 0.1 1.41 1.41

Table 2
Description of structures used for benchmarking.

Structure Type Description

4 layers Regular 4 layers [Fig. 1(a)]

12 layers Regular 12 layers
ML 4x20 Periodic 1 stack, 4 layers, 20 periods
ML 2x7x4 Periodic 2 stacks, 4 layers, and 7 periods each
ML 20x4 P1 Periodic 1 stack, 4 layers, 20 periods [Fig. 1(c)], linearly

graded thickness for the Si layer
ML 30x2 P3 Periodic 1 stack, 2 layers, 30 periods [Fig. 1(c)], hyper-

bolically graded thickness for the Si layer



pated a reduction in intermixing at lower substrate tempera-

tures. Additionally, the fitting brought to light a disparity in

Mo density between the periodic structure and the Mo

sublayer. The Mo sublayer, which is nearly 10 nm thick,

exhibits polycrystalline characteristics, with a density closely

resembling that of bulk Mo. In contrast, the density of the

0.6 nm thick Mo layers within the periodic structures was

determined to be 84% in comparison with the bulk material.

5.3. Polynomial fitting on graded PMMs

A W/BN PMM was deposited using pulse DC sputtering for

W and RF sputtering for BN as described by Li et al. (2023).

computer programs
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Figure 9
XRR curve fitting for X-ray mirrors. (a) Mo/Si. (b) Mo/B.

Figure 8
XRR curve fitting for a single-layer coating. Insets show the fitted structures. (a) Two-layer model. (b) Four-layer model.



The XRR was measured using a Malvern Panalytical

Empyrean diffractometer equipped with a W/Si Göbel mirror

in monochromatic Cu K�1 radiation. The XRR curve and the

fitting result are shown in Fig. 10. The broadening and chan-

ging of the shape of the diffraction peaks indicate the variation

of layer parameters across the stack. The XRR was fitted in

polynomial mode. Due to unstable deposition conditions, the

thickness and roughness of the layers were found to vary

across the multilayer stack, as shown in the inset.

5.4. Supermirror

An Sb/B4C supermirror was deposited by DC magnetron

sputtering onto a glass substrate, as described by Vishnyakov

et al. (2018). The XRR was measured using a DRON-3M

diffractometer with filtered Cu K� radiation. The XRR curve

(Fig. 11) was fitted using the non-periodic mode as follows. It

was assumed that the density and roughness of similar layers

and the thickness of the intermixed zone did not change along

the multilayer stack, so these parameters were marked as

‘linked’. Thus, only the thicknesses of the Sb and B4C layers

varied. The calculated XRR curve represented the main key

features of the measured curve; the inset in Fig. 11 shows the

reconstructed thickness distribution for these layers, which

correlated with the expected thickness distribution given the

exposure time of these layers during manufacturing.

6. Conclusions

This article has presented the latest enhanced iteration of the

X-Ray Calc software, specifically developed for XRR curve

simulation and fitting. X-Ray Calc is an open-source software

designed to operate seamlessly on Windows platforms. It

boasts easy installation, rapid calculation capabilities and a

user-friendly interface. The software has incorporated a highly

efficient XRR curve fitting algorithm rooted in the LFPSO

method. The new algorithm significantly reduces the compu-

tational time compared with other global optimization

methods such as genetic algorithms.

7. Program distribution and technical details

The software was developed using the programming language

Delphi under Windows. The authors provide it for free under

the GNU General Public License. The package includes

executables, a database of optical constants and sample files

for fitting. The user manual for the software is available online.

Pre-compiled executables, source code and other resources

are available through a GIT repository at the following links:

(a) GIT repository – https://github.com/OleksiyPenkov/

X-RayCalc3.

(b) Online manuals, examples and benchmarks used in this

article – https://github.com/OleksiyPenkov/X-RayCalc3/wiki.

Delphi free community edition or any Delphi RAD Studio

commercial edition is required to modify and build execu-

tables using the source code. Using the most recent version of

Embarcadero Delphi (free community edition or commercial

license) is recommended. The following free open-source

libraries should be installed in Delphi:

(i) FastMM5 – https://github.com/pleriche/FastMM5.

(ii) VirtualTreeView – https://github.com/TurboPack/VirtualTreeView.

computer programs
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Figure 11
General XRR curve fitting for an Sb/B4C X-ray supermirror. The inset shows reconstructed distributions of layer thicknesses.

Figure 10
Polynomial XRR curve fitting for a W/BN X-ray mirror with gradually changed thickness of layers.

https://github.com/OleksiyPenkov/X-RayCalc3
https://github.com/OleksiyPenkov/X-RayCalc3
https://github.com/OleksiyPenkov/X-RayCalc3/wiki
https://github.com/pleriche/FastMM5
https://github.com/TurboPack/VirtualTreeView


(iii) FastMath – https://github.com/neslib/FastMath.

(iv) OmniThread Library – https://github.com/gabr42/

OmniThreadLibrary/tree/release-3.07.7.
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