
research papers

J. Appl. Cryst. (2024). 57, 413–430 https://doi.org/10.1107/S160057672400147X 413

ISSN 1600-5767

Received 29 September 2023

Accepted 13 February 2024

Edited by S. Boutet, SLAC National Accelerator

Laboratory, Menlo Park, USA

Keywords: serial crystallography; data

reduction; machine learning; feature extraction.

Published under a CC BY 4.0 licence

Robust image descriptor for machine learning based
data reduction in serial crystallography

Vahid Rahmani,a* Shah Nawaz,a David Pennicarda and Heinz Graafsmaa,b

aDeutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg, 22607, Germany, and bMid-Sweden University,

Sundsvall, Sweden. *Correspondence e-mail: vahid.rahmani@desy.de

Serial crystallography experiments at synchrotron and X-ray free-electron laser

(XFEL) sources are producing crystallographic data sets of ever-increasing

volume. While these experiments have large data sets and high-frame-rate

detectors (around 3520 frames per second), only a small percentage of the data

are useful for downstream analysis. Thus, an efficient and real-time data clas-

sification pipeline is essential to differentiate reliably between useful and non-

useful images, typically known as ‘hit’ and ‘miss’, respectively, and keep only hit

images on disk for further analysis such as peak finding and indexing. While

feature-point extraction is a key component of modern approaches to image

classification, existing approaches require computationally expensive patch

preprocessing to handle perspective distortion. This paper proposes a pipeline

to categorize the data, consisting of a real-time feature extraction algorithm

called modified and parallelized FAST (MP-FAST), an image descriptor and a

machine learning classifier. For parallelizing the primary operations of the

proposed pipeline, central processing units, graphics processing units and field-

programmable gate arrays are implemented and their performances compared.

Finally, MP-FAST-based image classification is evaluated using a multi-layer

perceptron on various data sets, including both synthetic and experimental data.

This approach demonstrates superior performance compared with other feature

extractors and classifiers.

1. Introduction

The growth of serial crystallography at synchrotron and X-ray

free-electron laser (XFEL) sources has led to an increase in

the volume of crystallographic data (Chapman et al., 2011).

The large size of these data sets poses challenges for fast and

efficient analysis, which must be overcome to enable real-time

data analysis and effectively manage XFEL experiments. In

serial femtosecond crystallography (SFX) experiments at the

European XFEL (EuXFEL, Schenefeld, Germany), up to

3520 images per second can be recorded using an AGIPD

detector (Allahgholi et al., 2019), which takes images in bursts

up to 4.5 MHz to match the European XFEL’s bunch struc-

ture. Despite the large-scale data sets generated by serial

crystallography, only a small portion of the data may contain

diffraction patterns of the target of interest. For example, a

study of lysozyme using SFX at the EuXFEL generated

749 874 images in an 83 min measurement period at 150 pulses

per second, of which only 25 193 images, or 3.4%, were found

to contain diffraction from a protein crystal (Wiedorn et al.,

2018). New free-electron laser facilities, such as LCLS-II

(Stanford, California, USA), will be handling experiments

with even higher repetition rates, resulting in even larger data

volumes (Galayda, 2018). This poses a significant challenge for

the efficient processing and analysis of diffraction data in SFX

experiments.

https://doi.org/10.1107/S160057672400147X
https://journals.iucr.org/j
https://scripts.iucr.org/cgi-bin/full_search?words=serial%20crystallography&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=data%20reduction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=data%20reduction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=machine%20learning&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=feature%20extraction&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:vahid.rahmani@desy.de
http://crossmark.crossref.org/dialog/?doi=10.1107/S160057672400147X&domain=pdf&date_stamp=2024-03-26


In SFX experiments, images recorded by the detector may

consist of X-ray diffraction from a single-crystal ‘hit’ (or

multiple crystals) or an empty shot, also known as a ‘miss’.

Diffraction from a protein crystal will produce Bragg peaks.

Given the experimental design of SFX, only crystal hits with

Bragg peaks are valuable for further analysis. Consequently,

current statistical techniques rely on peak identification to

distinguish between diffraction patterns that exhibit Bragg

peaks and those that only contain empty shots. Excluding

empty shots leads to a significant reduction in data volume

(Hadian-Jazi et al., 2021, 2017; Barty et al., 2014; Mariani et al.,

2016; Thayer et al., 2017).

Traditionally, discerning bad images has been done by

finding peaks using mathematical models or heuristic

approaches and then rejecting images with fewer peaks than

some threshold. These methods can be computationally

intensive and require manual adjustment of numerous para-

meters, making them challenging to use for large-scale data

analysis. Additionally, the performance of these methods is

often limited by the quality of the data and the expertise of the

user.

Recently, both traditional machine learning and deep

learning techniques have shown promise in the classification

and identification of patterns in images (Khan et al., 2020;

Naskath et al., 2023). These methods can automatically learn

features from large data sets, eliminating the need for manual

parameter tuning. They are also able to recognize complex

patterns in noisy and low-quality data, making them well

suited for crystallographic applications (Rahmani et al., 2023;

Souza et al., 2019; Ke et al., 2018; Becker & Streit, 2014).

The main difference between traditional machine learning

models and deep learning models, such as convolutional

neural networks (CNNs), lies in how they learn and recognize

patterns in data, particularly in image recognition tasks. This is

illustrated in Fig. 1. Traditional machine learning models, such

as support vector machines (SVMs), rely on hand-engineered

features that are extracted from the raw data and used to train

the model. These features are typically designed by domain

experts and involve some prior knowledge about the data.

Once the features are extracted, they are fed into the machine

learning model, which learns to make predictions based on the

input features. In the field of image classification, multilayer

perceptron (MLP) models are typically used in this way, so we

group them together with traditional machine learning models

in this paper. (In a multilayer perceptron, we have layers of

neurons whose input weights are independent, so while a very

large MLP can directly take an image as its input, this tends to

be computationally unfeasible and very prone to overfitting.)

In contrast, CNNs are a type of deep learning model that

can automatically learn and extract relevant features from raw

data such as images. CNNs use multiple layers of filters in the

form of convolutional and pooling layers. In effect, each layer

in a CNN behaves like an array of neurons which all have the

same weight, each ‘looking’ at a small patch of the image. This

approach takes advantage of the fact that images tend to

contain features that are localized, location-invariant (i.e.

similar features appear in different parts of the image) and

hierarchical. The successive layers detect low-level visual

features such as edges and corners, and then combine these

features into more complex visual patterns, ultimately leading

to high-level recognition of objects in images. Compared with

traditional feature extraction methods, CNNs tend to be more

computationally intensive, both for training and inference, and

they also typically require a larger amount of data to be

effective. So, training and evaluating CNNs and inference may

require more time and resources than with tradiational

machine learning methods.

Traditional machine learning approaches can help with

serial crystallography image classification by providing algo-

rithms that can learn to recognize patterns and features in the

research papers

414 Vahid Rahmani et al. � Robust image descriptor for machine learning J. Appl. Cryst. (2024). 57, 413–430

Figure 1
Traditional machine learning and deep learning for image classification. Both of these approaches extract key features from images and then use them to
classify images by learning from training data. In traditional approaches these features are extracted using handcrafted algorithms, whereas in deep
learning the features themselves are also learned during the training process.



images that are indicative of specific crystal structures. These

algorithms can be trained on large sets of labelled images, and

can then be applied to new images to classify them on the basis

of their crystal structure. Additionally, machine learning

techniques can be used to extract features from images and

classify them with high accuracy, which is difficult for tradi-

tional image processing techniques. With the increase in data

generated by serial crystallography, machine learning techni-

ques can provide the necessary computational power to clas-

sify images at a high rate and with high accuracy.

Although machine learning can help with serial crystal-

lography image classification, ‘domain gap’ and performance

drop can be a serious limitation. Generally, domain gap refers

to the difference in characteristics between the training and

testing data sets in a machine learning model. Serial crystal-

lography data can have substantial variability due to differ-

ences in crystal orientation, crystal size, X-ray dose and other

experimental factors. Therefore, a machine learning model

trained on one data set may not generalize well to new data

sets with different experimental conditions, leading to a

performance drop.

For example, Table 1 shows the classification performance

of a CNN classifier presented by Ke et al. (2018) with cross-

data-set training and testing for three diverse XFEL experi-

mental data sets (denoted LN84, LN83 and LO19). The

performance with data set LO19 is 93% when training and

testing are completed on the same data set. However, the

performance deteriorates from 93% to 91% and 74% when

cross testing is performed on the LN83 and LN84 data sets,

respectively. Similar results have been presented by Rahmani

et al. (2023). This phenomenon occurs because the model has

learned to recognize patterns and relationships specific to the

training data, but those patterns may not apply to the testing

data.

In a traditional machine learning pipeline like MLP, feature

extraction is the process of identifying and extracting relevant

features from the input data that will be used as inputs

(feature vectors) to a machine learning model to make

predictions or classify the data. Feature extraction plays an

important role in mitigating the effects of domain gap and

performance drop in machine learning. This is because the

choice of features used by the model to represent the input

data can affect the model’s sensitivity to variations in the input

data, and thus its performance. For example, if the features

used by the model are highly specific to the training data, such

as the size and shape of particular protein crystals, the model

may not generalize well to new data sets with different crystal

sizes and shapes.

To address this issue, researchers have explored various

feature extraction techniques, such as ORB (Rublee et al.,

2011), SIFT (Lowe, 1999), BRIEF (Calonder et al., 2010),

SURF (Bay et al., 2008) and FAST (Rosten & Drummond,

2005), and also data augmentation (Shorten & Khoshgoftaar,

2019; Perez & Wang, 2017; Abdollahi et al., 2020) techniques,

transfer learning (Pan & Yang, 2010; Kornblith et al., 2019)

and feature selection (Hira & Gillies, 2015; Yang & Pedersen,

1997), to improve the robustness and generalization of

machine learning models across different domains. These

techniques can help to extract relevant and invariant features

from the input data, and reduce the sensitivity of the model to

variations in the data.

In serial crystallography images, the FAST (features from

accelerated segment test) algorithm (Rosten & Drummond,

2005), which is a key-point (corner) detection algorithm, can

be used to detect regions of interest (ROIs) or key-point

regions. By detecting the key-point regions from an X-ray

diffraction pattern, a feature vector can be generated by key-

point descriptor algorithms like BRIEF (Calonder et al., 2010)

and used as an input vector for machine learning techniques to

train a model for classifying the hit and miss images.

However, the FAST algorithm, initially designed for corner

detection, requires modification to detect the centres of peaks

instead of corners. This adaptation is crucial for identifying

ROIs or key-point regions in the context of crystallographic

analysis. The FAST algorithm is efficient, making it ideal for

real-time tasks such as video processing, object tracking and

robotic navigation, but it is still not fast enough for serial

crystallography applications with new detectors like the

AGIPD or future detectors for facilities such as LCLS-II.

In this paper, we introduce a new method called MP-FAST

for detecting key points in serial crystallography images and

describe a general pipeline for data classification. We imple-

mented the MP-FAST algorithm on three different processors,

a central processing unit (CPU), a graphics processing unit

(GPU) and a field-programmable gate array (FPGA), and

analysed their performance. CPUs are the most commonly

used hardware for serial crystallography data reduction, as

they are versatile and widely available. Many software

packages, such as DIALS (Grosse-Kunstleve et al., 2002) and

CrystFEL (White et al., 2012), have been developed to run on

CPUs and can handle large volumes of data. However, the

processing time can be lengthy, especially for large data sets,

which can limit the speed at which researchers can analyse

their data. GPUs offer a potential solution to the problem of

processing time, as they can perform many calculations

simultaneously and are highly parallelizable. Several software

packages, such as GPU-accelerated CrystFEL and Nano-

PeakCell (Coquelle, 2022; Coquelle et al., 2015), can use

external modules/libraries like pyFAI (Kieffer et al., 2023) that

target GPUs, and these packages can provide significant

speedups over CPU-based methods. FPGAs are a less

common option for serial crystallography data reduction, but

they offer potential advantages over CPUs and GPUs in terms

of power efficiency and processing speed. FPGAs are highly

customizable and can be optimized for specific tasks, making

research papers

J. Appl. Cryst. (2024). 57, 413–430 Vahid Rahmani et al. � Robust image descriptor for machine learning 415

Table 1
Screening success rate of applying a CNN trained with one Rayonix data
set to another Rayonix data set (Ke et al., 2018).

Numbers in bold indicate the best performance.

Train/test LO19 LN83 LN84

LO19 93% 85% 65%
LN83 91% 96% 90%
LN84 74% 92% 90%



them well suited for specialized applications such as data

reduction. However, their use requires specialized knowledge

and programming skills.

The key differences between parallelization on CPUs,

GPUs and FPGAs include their architecture and processing

units, programming models, memory hierarchy and access

patterns, and performance characteristics. CPUs are general-

purpose processors with powerful cores, while GPUs are

highly parallel devices with many simple cores optimized for

high-bandwidth parallel processing, and FPGAs are

programmable chips that can be reconfigured to perform

custom logic operations. CPUs use threading for paralleliza-

tion, while GPUs use single instruction on multiple data

(SIMD) and FPGAs use a combination of parallel program-

ming models. CPUs have a hierarchy of caches and RAM,

GPUs have larger and faster memory optimized for parallel

processing, and FPGAs have limited on-chip memory and rely

on external memory. CPUs are good at handling complex

tasks, GPUs excel at highly parallelizable workloads, and

FPGAs are highly customizable but require more specialized

knowledge to program them effectively. In the next sections,

we will provide the details of our CPU, GPU and FPGA

implementations.

Section 2 presents related work and Section 3 provides an

overview of the original FAST key-point detection method,

followed by a discussion of the modifications and enhance-

ments made to the algorithm. Additionally, we examine

various implementations of the algorithm on different plat-

forms, including CPU, GPU and FPGA, and Section 4 covers

both the experimental data and the comparison of our CPU,

GPU and FPGA pipelines with other methods.

2. Related work

X-ray crystallography is a powerful tool for determining the

structure of proteins and other biological molecules. Serial

crystallography is a technique that has emerged in recent

years, which involves collecting a large number of diffraction

patterns from a series of small crystals. The resulting data are

highly redundant and challenging to process, requiring

specialized methods for indexing, integration and scaling of

the data.

Data reduction in serial crystallography can be achieved in

two ways: using peak finding methods based on statistical

frameworks, or machine learning. Typically, peak finding

methods accept or reject serial crystallography data by

locating Bragg peaks and counting the total number of peaks,

while machine learning methods encode key points and clas-

sify the data by learning without the need for finding peak

locations. These methods can be divided into a standard

machine learning pipeline with feature extractor and classifier,

and data-driven methods typically known as convolutional

neural networks.

Peak finding methods make use of carefully selected

threshold mechanisms based on statistical frameworks to

distinguish Bragg peaks from the background signal (Hadian-

Jazi et al., 2017, 2021; Parkhurst et al., 2016). For example, Li &

Zatsepin (2018) employ a global threshold mechanism to

separate the background signal from the Bragg peaks. Like-

wise, Hadian-Jazi et al. (2017) identify pixels which contain

potential peaks. Afterwards, the proposed approach develops

a model of the local background in the neighbourhood of

these potential peaks. The decision to reject the data is typi-

cally made by counting the total number of peaks. Though the

process is simple, its success is often highly contingent on the

selection of many input parameters. The peak finding method

is a crucial component of many serial crystallography data

analysis tools. For example, the Cheetah software suite (Barty

et al., 2014) has been developed to sort and filter data rapidly

to achieve significant reduction. Afterwards, the reduced data

are output in the facility-independent HDF5 format, enabling

downstream analysis using the CrystFEL software tool (White

et al., 2012). The software suite OnDA (Mariani et al., 2016)

allows real-time monitoring of X-ray diffraction data and

experimental conditions.

Existing methods for processing diffraction data require

expert input parameters. At XFELS, effective communication

of experimental results to various groups is crucial, along with

automating data processing. The cctbx.xfel graphical user

interface (Brewster et al., 2019) is a user-friendly application

that enables crystallographic scientists to efficiently navigate

data reduction for serial crystallography.

Over the past decade, machine learning has produced

unprecedented breakthroughs in various computer vision

tasks (LeCun et al., 2015). With these advancements, the

crystallographic community has also made use of machine

learning for various applications (Bruno et al., 2018; Sullivan et

al., 2019; Park et al., 2017; Ryan et al., 2018; Wang et al., 2020;

Zimmermann et al., 2019).

Bruno et al. (2018) utilized CNNs to classify the results of

crystallization processes. They implemented a modified

version of Inception-v3 (Szegedy et al., 2016) as their model,

where images were sorted into four classes: clear, precipitate,

crystal and other. The data set employed in their study

consisted of nearly 500 000 images, with approximately 10% of

them allocated for testing purposes. Their model achieved an

accuracy of around 94% on the test set.

Yann & Tang (2016) conducted an analysis of protein

crystallization trial images. Their CNN approach, known as

CrystalNet, demonstrated a notable improvement of

approximately 8% and 20% in overall accuracy compared to

the random-forest and nearest-neighbour approaches,

respectively.

Ziletti et al. (2018) employed CNNs to classify crystal

structures, specifically the arrangement of atoms within a

crystal. They utilized diffraction images to represent and

classify a data set consisting of approximately 100 000 crystal

structures.

In a separate study, Park et al. (2017) focused on the clas-

sification of powder X-ray diffraction patterns using CNNs.

They achieved an impressive accuracy of 94.99% in their

classification tasks.

In particular, the serial crystallography community has

experimented with machine learning methods to achieve data

research papers

416 Vahid Rahmani et al. � Robust image descriptor for machine learning J. Appl. Cryst. (2024). 57, 413–430



reduction (Becker & Streit, 2014; Ke et al., 2018; Souza et al.,

2019; Rahmani et al., 2023; Chen et al., 2021). For example,

Souza et al. (2019) presented a comparison of classification

methods from machine learning and deep learning by curating

a serial crystallography data set composed of real and

synthetic images.

The concept of employing neural networks for categorizing

diffraction images was introduced by Becker & Streit (2014).

Their study involved investigating neural network archi-

tectures that could achieve a notable recognition rate, utilizing

a minimal input layer of just three neurons. Additionally, they

proposed two optimization techniques for preprocessing the

data, aiming to enhance the recognition rates further, parti-

cularly for samples where a prominent disparity between

signal and noise (known as CatB) exists.

Recently, neural network models have shown potential in

Bragg peak finding. BraggNet (Sullivan et al., 2019) was the

first to demonstrate the proficiency of neural network models,

particularly U-Net (Ronneberger et al., 2015), in accurately

segmenting peak pixels from background pixels in neutron

crystallography data, including weak peaks. BraggNet used

simulated peaks to create training data sets, which underwent

several preprocessing steps, including centring, cropping to a

specific size and adding Poisson noise.

In addition, Sullivan et al. (2019) observed that machine

learning models performed well when training and testing are

completed on synthetic data. However, the performance

deteriorates considerably when such models are tested on real

data. As already discussed the Introduction, Ke et al. (2018)

and Rahmani et al. (2023) made similar observations. The

combination of the oriented FAST and rotated BRIEF (ORB)

feature extractor and an MLP hit classifier demonstrated

promising results for SFX data (Rahmani et al., 2023),

although those authors observed a similar performance dete-

rioration when training and testing were performed on

different data sets.

This implies that if we train a machine learning model, such

as an MLP, with a particular data set and subsequently test it

with a different, unseen, data set, the model is likely to

experience a significant decline in performance. The observed

performance drop occurs due to non-robust feature vectors. If

the feature vectors exhibit robustness across diverse data sets,

the model is expected to maintain consistent performance

without experiencing any decline.

In the light of this issue, we here put forth a robust feature

extraction algorithm for the traditional machine learning

pipeline that is capable of withstanding experimental varia-

tions. Our proposed approach aims to address the limitations

of existing methods and ensure consistent performance across

different data sets, enabling reliable data reduction in serial

crystallography experiments. By designing a pipeline that can

adapt and generalize effectively, we enhance the reliability

and applicability of machine learning techniques in this

domain.

3. Pipeline

Our objective is to use machine learning to classify X-ray

crystallography diffraction data into two categories, ‘hit’

(when the X-ray beam hits a crystal) and ‘miss’ (when the

X-ray beam does not hit a crystal), in order to reduce data. To

achieve this, we propose a pipeline with four key components:

detector artefact and background reduction, MP-FAST

feature extraction, image descriptor generation and a machine

research papers

J. Appl. Cryst. (2024). 57, 413–430 Vahid Rahmani et al. � Robust image descriptor for machine learning 417

Figure 2
The proposed pipeline consists of four components. (i) The detector artefact and background reduction module suppress the noise and artefacts. (ii) The
MP-FAST module detects key points in the image. (iii) The image descriptor vector is generated by computing the number of key features in different
regions of the image. (iv) A machine learning model classifies the data into hit or miss categories.



learning classifier (Fig. 2). Detector artefact and background

reduction are performed by populating a buffer with the most

recent non-hit frames and periodically calculating a pixel-wise

median through this buffer, which is used to remove the

detector’s artefacts and experimental background. MP-FAST

is a modified and parallelized version of the FAST (Rosten, &

Drummond, 2006) key-point detection approach. The image

descriptor step divides the image into n regions and creates a

feature vector based on the number of detected key points

(peaks) in each region. The generated feature vector is

considered as input for the machine learning model. Finally, a

machine learning classifier is trained by the computed image

descriptor vectors to classify the images into data categories.

3.1. Background and detector artefact reduction

In serial crystallography, photon detectors are used to

capture diffraction images of crystals. However, these detec-

tors can introduce noise and artefacts into the images, which

can make it difficult to detect and locate the diffraction spots.

These effects include fixed pattern noise, hot pixels and gain

variations. Likewise, X-ray scattering from the liquid jet and

beamline components will result in a background signal that

can make peaks harder to discern. The background and

detector artefact reduction step is designed to correct for these

effects. This step is accomplished by utilizing the recent non-

hit frames interspersed between hits to create an updated

estimate of the background signal in the data. This is done by

populating a buffer with the most recent non-hit frames and

regularly calculating the pixel-wise median through this

buffer, similar to the method used by Barty et al. (2014). This

median calculation is then subtracted from new images. Fig. 3

illustrates the background and artefact reduction pipeline and

Fig. 4 shows an image after this step.

A sequential median filter requires more computation time

because it involves calculating the median value of each

individual pixel over n non-hit frames. This process can be

time consuming, especially for larger numbers of frames with a

high resolution. Additionally, the calculation of the median

requires sorting the pixel values, which is also a computa-

tionally intensive task. However, the use of modern hardware

such as GPUs and parallel processing techniques can signifi-

cantly reduce the computation time required for median

filtering. In this paper the median filter was implemented using

CUDA (an SDK released by NVIDIA for programming on

their GPU architecture), OpenCV (https://opencv.org/) for

image processing and Thrust (parallel sorting algorithm),

which is a C++ parallel algorithms library (Hoberock & Bell,

2022).

This implementation was compared against a serial (i.e.

non-CUDA) version as well as with a CUDA implementation

tuned for different image sizes. Fig. 5 shows the performance

times for both parallel (CPU/GPU) and sequential imple-

mentations of the pixel-wise median filter.

The CUDA threading feature is particularly relevant to

parallel image filtering as it enables asynchronous program-

ming design. Since the majority of image processing tasks

involve pixel-wise filtering for a series of frames, processing

them asynchronously greatly enhances program stability.

Instead of waiting for serial pixel value checking, sorting and

research papers

418 Vahid Rahmani et al. � Robust image descriptor for machine learning J. Appl. Cryst. (2024). 57, 413–430

Figure 3
The background and detector artefact reduction pipeline.

Figure 4
(Left) An image with artefacts. (Right) The same image after the noise
reduction step.

https://opencv.org/


computing the median value to be completed before proces-

sing, the system can now process all pixel-wise checking in

parallel. This enables multiple GPUs to be added to the

system to increase the available resources.

3.2. Image descriptor

In traditional machine learning models like MLP, feature

vectors are used to represent the input data for training the

models. These vectors contain numerical values that describe

the characteristics or features of the input data. Feature

vectors are essential for machine learning training because

they enable the models to learn from the input data and make

predictions on new data. Key-point detection and feature

vectors are two related concepts in computer vision and

machine learning. Key-point detection refers to the process of

identifying distinctive points or regions in an image that can be

used for various tasks such as object detection, tracking and

image stitching. These points are also known as interest points

or feature points and are characterized by their uniqueness,

repeatability, and invariance to scale, rotation and illumina-

tion changes. In traditional machine learning models, key-

point detection is essential because it helps to reduce the

dimensionality of the feature vector and removes redundant

or irrelevant features that may negatively impact the perfor-

mance of the model. By selecting the most important features,

key-point detection improves the accuracy and efficiency of

the machine learning model.

Key-point detection plays an important role in generating

feature vectors for images. Typically, a set of key points is first

detected in an image using algorithms such as SIFT, SURF or

ORB. For each key point, a feature descriptor is computed

that summarizes the local image information around the point.

The collection of all feature descriptors for the key points

forms a feature vector that represents the image. The choice of

key-point detection algorithm and feature descriptor can have

a significant impact on the quality and efficiency of feature

vectors. There is a large body of research on the design and

evaluation of key-point detection and feature extraction

methods, and different approaches are suitable for different

types of images and applications (Liu et al., 2021; Rosten &

Drummond, 2005).

Feature vectors can be constructed in various ways,

depending on the type of data being used. For example, in the

hit and miss image classification in serial crystallography,

feature vectors may be constructed by extracting specific

characteristics of the image, such Bragg spots. In this paper, we

use the modified and parallelized FAST key-point detection

algorithm, dubbed MP-FAST.

3.2.1. MP-FAST. There are several feature detectors avail-

able that are highly effective, but their lack of speed makes

them unsuitable for real-time applications. The FAST algo-

rithm is useful for identifying feature points that can be

utilized for object tracking and mapping in various computer

vision tasks. The main concept behind the FAST algorithm is

to recognize corners in an image by detecting points with a

significant change in intensity in all directions. The FAST

algorithm employs a circular pattern of pixels surrounding a

candidate pixel to determine quickly whether it is a corner or

not. This is achieved by comparing the intensity of the

candidate pixel with that of the pixels in the circular pattern. If

the intensity of the candidate pixel varies significantly from

the surrounding pixels, it is classified as a corner. Fig. 6 shows

the FAST detection mechanism.

The FAST algorithm is efficient and well suited to real-time

tasks such as video processing, object tracking and robotic

navigation, but it may require modification to fully meet the

needs of serial crystallography experiments that use newer

detectors like the AGIPD, which is capable of measuring up to

3520 pulses per second at megahertz frame rates.

As mentioned above, the FAST algorithm is primarily

designed for detecting sharp changes in image intensity, such

as corners or edges in 2D images. On the other hand, Bragg

peaks in diffraction data are characterized by a periodic

pattern of intensity modulation that is determined by the

crystal structure. Bragg peaks are not necessarily sharp

changes in intensity, and they do not necessarily have a well

defined corner-like shape. However, by applying some modi-

fications, the FAST algorithm can be used as a detector of key

research papers

J. Appl. Cryst. (2024). 57, 413–430 Vahid Rahmani et al. � Robust image descriptor for machine learning 419

Figure 5
Parallel (CPU/GPU) and sequential pixel-wise median filter time
performance comparison for 100 images.

Figure 6
The FAST key-point detection mechanism. (a) A pixel p is compared with
16 neighbouring pixels in a circle formulation. If more than 8 pixels are
darker or brighter than p than it is selected as a key point.



points such as Bragg peaks in an image, and these key points

(i.e. the position of the peak) can then be used to generate

feature vectors for training a machine learning model (Fig. 7).

Modification. Instead of comparing pixel p with 16 neigh-

bouring pixels in a circle formulation, we applied a high-speed

checking mechanism. If the intensity value of the current pixel

(photon counts) is less than a minimum threshold value (tr =

20) the algorithm ignores further checking of this pixel since it

cannot be a peak. Otherwise, if the intensity of the current

pixel is greater than the minimum threshold value tr, the

intensity of the current pixel is checked versus neighbouring

pixels 1, 5, 9 and 13 (Fig. 8). If the intensity of pixel p is greater

than the intensities of at least three out of these four neigh-

bouring pixels 1, 5, 9 and 13, then pixel p is considered as a

candidate point for a Bragg peak. In some cases, a Bragg peak

in the diffraction pattern may cover multiple pixels on the

detector due to the size and shape of the crystal or the reso-

lution of the detector (Fig. 9). This is known as a multiple-pixel

Bragg peak. To detect the centre of a multiple-pixel Bragg

peak accurately, we compute the maximum intensity of the

eight neighbouring pixels around the candidate point. The

pixel with the highest intensity is then considered as the key

point for Bragg peak detection. This modified approach can

improve the speed and accuracy of Bragg peak detection

compared with the method presented by Rahmani et al.

(2023). To optimize computational efficiency and prevent

duplicate checking in image processing algorithms, a checking

flag is typically assigned to each pixel. In this case, a checking

flag value of 0 is initially assigned to all pixels in the image.

When processing a candidate point, the checking flag values

for the surrounding nine neighbouring pixels are set to 1. This

means that the algorithm will not check those pixels again, as

they have already been checked and their results have been

stored. This approach can significantly reduce the computa-

tion time performance on the CPU and improve the overall

performance of the algorithm. Note that for the GPU and

FPGA, since all neighbouring pixels will be checked in parallel

at the same time, there is no need to flag pixels.

Parallelization on a CPU. This can be approached from two

perspectives. Firstly, by incorporating multiple cores, the CPU

significantly enhances the available processing power. This

means that multiple tasks can be executed simultaneously,

resulting in improved overall performance.

Secondly, each core can support multiple threads of

execution, which enables more efficient utilization of system

resources. This is particularly beneficial when waiting for

operations such as memory access. By allowing multiple

threads to run concurrently on a single core, the CPU can

better optimize resource allocation and maximize its compu-

tational capabilities.

In order to enhance the computational efficiency of MP-

FAST on a CPU, a parallelization strategy can be employed to

make full use of all available CPU cores and threads. This

involves dividing the image into distinct regions, forming

separate subsets of data for concurrent processing. By utilizing

multiple threads, each dedicated to a specific region, compu-

tations can be executed simultaneously on different virtual

cores. This parallelized approach capitalizes on the inherent

parallel processing capabilities of modern CPUs, enabling a

more expedited execution of the MP-FAST algorithm.

Through the distribution of computational workload across

various threads and cores, the system can achieve higher

throughput and reduced processing times, ultimately opti-

mizing the utilization of available hardware resources for

image processing tasks.

research papers

420 Vahid Rahmani et al. � Robust image descriptor for machine learning J. Appl. Cryst. (2024). 57, 413–430

Figure 7
(a) An input image as recorded by an AGIPD detector. (b) The image
after noise reduction. (c) MP-FAST key-point (peak) detection.

Figure 8
(a) Showing 16 pixels neighbouring a current pixel p. (b) High-speed checking for pixels 1, 5, 9 and 13. (c) Finding the maximum intensity for eight
neighbouring pixels.



The number of threads used will depend on the number of

physical cores and the number of hyperthreads available on

the CPU. For instance, if a CPU is equipped with four physical

cores, each supporting hyperthreading (e.g. two threads per

core), it can effectively execute up to eight threads concur-

rently (Fig. 10). In this scenario, the image can be subdivided

into eight regions, with each region assigned to a distinct

virtual core. Consequently, MP-FAST can simultaneously

identify key points within each region, capitalizing on the

parallel processing capabilities. To fully harness the compu-

tational potential of the available threads for the MP-FAST

algorithm, one strategy involves partitioning the diffraction

pattern image into N modules, where N represents the number

of threads, and executing the MP-FAST algorithm concur-

rently on each thread. This approach maximizes paralleliza-

tion, optimizing the algorithm’s efficiency by distributing the

workload across multiple computational units.

Parallelization on a GPU. GPU threads and CPU threads

exhibit distinct characteristics and behaviours. In CPU archi-

tectures, individual threads commonly handle separate tasks

or instruction streams autonomously. Unlike CPU threads,

GPU threads are designed with parallelism in mind, allowing

for simultaneous execution of tasks. They use CUDA cores

(NVIDIA) or stream processors (AMD) organized into

thread blocks or warps, where threads within a block/warp

execute the same instructions on different data. This single-

instruction multiple-thread (SIMT) model enables GPUs to

process large data sets efficiently in parallel, achieving high

throughput across multiple tasks.

research papers

J. Appl. Cryst. (2024). 57, 413–430 Vahid Rahmani et al. � Robust image descriptor for machine learning 421

Figure 9
Different types of single-pixel and multiple-pixel peaks.

Figure 10
Quad-core hyperthreading in a CPU.

Figure 11
(a) The NVIDIA CUDA block and thread architecture. (b) A CUDA
hardware model with global memory, constant cache, texture cache,
registers and shared memory



CUDA allows developers to access the GPU’s parallel

processing power to accelerate the performance of their

applications. Fig. 11(a) shows the NVIDIA CUDA block and

thread architecture and Fig. 11(b) shows the CUDA hardware

model with global memory, constant cache, texture cache,

registers and shared memory. By implementing MP-FAST on

CUDA kernels, the key-point detection process can be

parallelized, leading to significant acceleration compared with

running the algorithm on the CPU. The algorithm is divided

into several parallelizable steps. The input image is loaded into

the GPU memory, and the algorithm is run on the GPU using

CUDA kernels. The CUDA kernels are designed to perform

the key-point detection process efficiently in parallel on

multiple threads. One of the advantages of using CUDA

kernels for MP-FAST is that it allows for efficient memory

management. The GPU has much faster memory access than

the CPU, and the CUDA kernels can be optimized to mini-

mize the amount of data that needs to be transferred between

the CPU and GPU.

In CUDA programming, a kernel is executed by launching a

grid of blocks, where each block is a group of threads that run

the same code in parallel. The number of blocks and threads to

be used depends on the specific problem being solved and the

hardware capabilities of the GPU.

To construct the CUDA kernel for MP-FAST, a block of

16 � 16 threads was utilized. Subsequently, the input image

was partitioned into a grid of (W + 15)/16 � (H + 15)/16

blocks, where W and H are the width and height in pixels,

respectively.

The image is transferred to CUDA global memory, and the

choice of a 16� 16 block size is primarily driven by the goal of

ensuring the kernel’s successful execution. Defining a CUDA

kernel involves considering certain limitations. For instance,

the total number of threads per block should not exceed 512

for compute capability 1.x or 1024 for compute capability 3.x

or later. The maximum block dimensions are constrained to

[512� 512� 64] or [1024� 1024� 64] for compute capability

1.x/3.x or later, respectively. The shared memory usage is

capped at 16 kB/48 kB/96 kB for compute capability 1.x/2.x–

6.2/7.0 (NVIDIA et al., 2022). Staying within these constraints

ensures that any successfully compiled kernel will launch

without errors. To prevent kernel crashes, we perform verify

memory allocation (line 5 of Algorithm 1, Fig. 12) and index

bounds checking (line 6 of Algorithm 2, Fig. 13). By inte-

grating these practices into the CUDA code, the potential for

read-access violations can be minimized, leading to enhanced

robustness in GPU kernels.

FPGA accelerator. FPGAs are semiconductor devices that

contain many blocks of circuitry of different kinds (such as

combinatorial logic, digital signal processing and RAM)

connected through programmable interconnects. While

compiling software to run on a CPU involves translating the

program into a series of instructions in machine code for the

CPU to follow, to create an FPGA’s firmware we describe the

functionality we need, and then a synthesis process finds a

suitable configuration of blocks and interconnects that

achieves this functionality. In turn, this means that FPGAs are

not suited to quickly switching from one algorithm to another

on the fly (since this requires reconfiguring the device), but for

a given algorithm they can offer a great deal of processing

power and consistent latency.

Recently, vendors like Xilinx have started offering FPGA-

based data centre accelerator cards (Fig. 14). As well as the

research papers

422 Vahid Rahmani et al. � Robust image descriptor for machine learning J. Appl. Cryst. (2024). 57, 413–430

Figure 12
The code for Algorithm 1.

Figure 13
The code for Algorithm 2.



FPGA, these cards typically include built-in network links and

on-board memory, and connnect to the host PC using standard

interconnects like PCIe. The high-speed Ethernet ports give

the potential for the card to receive data directly from the

detector and process them, before passing the results into the

PC’s memory. However, in this first implementation the FPGA

receives data from the PC.

Unlike CPUs and GPUs, a great deal of the parallelism

offered by FPGAs is due to pipelining. An algorithm can be

implemented by a series of hardware blocks in the FPGA

(such as digital signal processing blocks, lookup tables etc.)

and data elements will be streamed from one block to another,

having operations performed on them. This is analogous to a

car being constructed on an assembly line, where at any given

moment many cars are being worked on, in different stages of

assembly. (Further parallelism can be achieved, for example, if

each element is a vector rather than a scalar.)

For this FPGA implementation of MP-FAST, we used the

Xilinx Alveo U280 card (Abuowaimer et al., 2018). While

FPGAs are typically programmed with hardware description

languages, Xilinx offers a ‘high-level synthesis’ tool, where

algorithms can be written in C++ and then compiled into

firmware. Directives called pragmas can be included in the

code to control how the firmware is implemented, and to help

guide the compiler in finding optimizations. For example, a

pragma can indicate that instructions in a loop should be

implemented in a pipelined way. In turn, the structure of the

algorithm can strongly affect the performance. For example, if

the processing of element K + 1 depends on the result of

processing element K, this may prevent pipelining, or at least

create a delay of multiple clock cycles before each new

element can start to be processed.

The FPGA implementation of MP-FAST was aimed at

processing one pixel per clock cycle. Optimization of the

algorithm required a few key elements. Firstly, the algorithm

must explicitly handle how data are buffered in the FPGA

during processing. When processing each pixel, we also need

to access the adjacent pixels. So, a ring buffer is used to hold

four lines of the image (three for processing and one for

loading), with one new pixel being loaded in each clock cycle.

In turn, pragmas indicate that the buffer should be imple-

mented in a way that allows the required five pixel reads per

clock cycle, and that iterations are independent (i.e. processing

pixel K will not change the buffer in a way that affects pixel

K + 1). Secondly, the logic to iterate over the pixels and

control the ring buffer uses simple loops with fixed bounds

where possible, to make it easier for the compiler to infer

optimal pipelining. Transferring data between the host PC, the

high-bandwidth memory (HBM) on the Alveo and the FPGA

itself was based on examples provided by Xilinx, using the

‘load, compute, store’ pattern that they recommend

(Advanced Micro Devices, https://docs.xilinx.com/r/en-US/

ug1393-vitis-application-acceleration).

The time taken to finish the execution of one such kernel is

1 ms for an image size of 512 � 512 and 3.02 ms for an image

size of 1024 � 1024. Resource usage in the FPGA for one

compute unit for processing an image of size 512 � 512 is

shown in Table 2.

Given the low resource usage, there is considerable

potential to increase the throughput of the algorithm. In the

current implementation, one new 8-bit pixel value is read in

per clock cycle, but each internal channel of the FPGA is

capable of reading 512-bit-wide vectors, which would allow

pixels to be processed in 64-pixel-wide blocks. However, either

additional logic would be required to handle the pixels at

either end of each block or key points at the edges of blocks

could be missed (which may be acceptable in practice). In

terms of FPGA resources, this approach would not greatly

increase the amount of RAM needed, since we would still

research papers

J. Appl. Cryst. (2024). 57, 413–430 Vahid Rahmani et al. � Robust image descriptor for machine learning 423

Table 2
Resource usage in the FPGA for one compute unit.

Kernel(s)
LUT
(% used)

Register
(% used)

BRAM
(% used)

URAM
(% used)

DSP
(% used)

mp_fast_1 7.708 (0.59%) 12.290 (0.5%) 23 (1.14%) 0 (0.0%) 37 (0.41%)

Figure 14
The different parts of the Xilinx UltraScale architecture. Used with permission of ACM, from Abuowaimer et al. (2018).

https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration


buffer four lines of data, but processing the 64 pixels in

parallel would require more resources for mathematical

operations and logic. Aside from RAM, the current imple-

mentation uses around 0.5% of the FPGA’s resources, so if we

make the assumption that this implementation would require

64 times more resources for a factor of 64 acceleration, this

would use approximately one-third of the FPGA’s resources

for an execution time of 0.03 ms.

3.2.2. Generating feature vectors. As mentioned in Section

3.2, a feature vector is a numerical representation of the image

that captures its relevant information for the machine learning

task. In serial crystallography, the feature vector typically

includes features that describe the spatial and intensity

distribution of the diffraction spots and background. There are

different methods for extracting features from serial crystal-

lography images, depending on the specific application and the

nature of the images. One common approach is to use image

processing techniques to identify and extract the diffraction

spots and their properties, such as intensity, size, shape and

orientation. These features can be represented as a set of

numerical values or vectors, which are combined to form the

feature vector.

The robustness of the feature vector against different data

sets is critical for achieving good performance in machine

learning. A feature vector that is designed to be robust to a

specific data set may not perform well on other data sets with

different characteristics, such as the crystal orientation, the

X-ray wavelength, the detector resolution and the imaging

geometry. In addition, it is important to consider the inter-

pretability and explainability of the feature vector, especially

in scientific applications such as serial crystallography image

classification. This can involve using feature selection techni-

ques to identify the most informative and relevant features for

the task, as well as visualizing and analysing the feature vector

to gain insights into the underlying data distribution and

structure.

In this paper, we divide the image into regions and count

the number of key points which have been extracted by the

MP-FAST algorithm in each region. To generate a feature

vector based on the number of key points in each region, the

key points (mostly Bragg spots) are detected in the entire

image using the MP-FAST key-point detection algorithms as

described above.

The image is then partitioned into n = 8 regions, and the

count of key points (not peak positions) in each region is

tallied. This collective count is then utilized to generate the

feature vector. This ensures that the feature vector size

remains consistent across all experiments. The incorporation

of eight regions is driven by the necessity for a relatively

symmetrical arrangement of key points. This choice aims to

enhance reliability, especially in the face of challenges such as

noisy patterns. Additionally, it ensures an equitable opportu-

nity for all the diverse regions of the image to contribute to the

generation of a robust feature vector. Fig. 15 visually presents

various symmetrical patterns.

Finally, the counts of Bragg spots in each region are

combined into a single feature vector. This feature vector can

then be used as input to machine learning algorithms for

image classification tasks. Fig. 16 shows the image feature

descriptor for eight regions.

If a diffraction pattern does not contain any Bragg spots,

this means that the beam did not intersect with a protein

crystal. In the context of generating a feature vector based on

key points where the Bragg spots are ROIs, the feature vector

will be empty. Fig. 17 shows the number of key points detected

by MP-FAST for 100 images of hit and 100 images of miss

classes for four different data sets.

research papers

424 Vahid Rahmani et al. � Robust image descriptor for machine learning J. Appl. Cryst. (2024). 57, 413–430

Figure 15
Feature vector generation by splitting the image into (a) two parts, (b) four parts, (c) six parts and (d) eight parts and counting the number of peaks in
each region.

Figure 16
Dividing the image into eight regions and generating an image descriptor
vector based on the number of detected key points.



As is shown in Fig. 17, it is evident that for the miss images

MP-FAST will not detect any key points, or may detect just a

few key points, and the resulting feature vector will be sparse

or empty. This can be useful for machine learning tasks that

rely on the feature vector to distinguish between hit and miss

diffraction patterns. By treating miss images as a separate

class, the algorithm can learn to recognize patterns and

features that are associated with unsuccessful diffraction

patterns. This can help improve the overall accuracy and

efficiency of the machine learning model.

3.3. Classifier

The classification of X-ray diffraction patterns involves two

main steps. The first step involves applying the MP-FAST

feature extraction technique to obtain key points, feature

vectors and descriptors from labelled patterns. In the second

step, a machine learning algorithm is trained to classify the

images into different categories. Fig. 18 shows the image

classification pipeline based on the proposed method.

In this work, we compared four supervised classifiers,

namely the MLP, SVM, random forest (RF) and naı̈ve Bayes

(NB), to train the feature vectors extracted using the MP-

FAST key-point detection and image descriptor technique

explained in Section 3.2.2.

Our experimental results demonstrate that the MLP clas-

sifier produces superior performance across all data sets.

Specifically, the MLP exhibits higher accuracy, precision and

recall than the other classifiers, demonstrating its effectiveness

in capturing complex relationships within the feature space.

One of the essential steps in the machine learning model is

hyperparameter tuning because it directly impacts a machine

learning model’s performance and generalization to new

unseen data. Choosing the right hyperparameters can mean

the difference between a model that underfits (too simplistic)

or overfits (too complex) the data and one that achieves

optimal predictive accuracy. Proper tuning ensures the model

is well suited to the specific problem, leading to better results

and improved real-world applicability.

research papers

J. Appl. Cryst. (2024). 57, 413–430 Vahid Rahmani et al. � Robust image descriptor for machine learning 425

Figure 17
Demonstrating the number of key points detected by MP-FAST for 100 images of hit and 100 images of miss classes for four different data sets.



We utilized the GridSearchCV tool from the Sklearn library

(Pedregosa et al., 2011) for hyperparameter tuning. Various

hyperparameters such as hidden layer sizes, activation func-

tions (logistic, tanh, relu), solvers (sgd, adam), alphas (0.0001,

0.05) and learning rates (constant, adaptive) were explored.

Subsequently, the optimal hyperparameters were determined

as follows: stochastic gradient descent (SGD) was employed

for weight optimization; the MLP consisted of four hidden

layers, each with L neurons, where L = {50, 30, 20, 20}; the

activation function was logistic which returns f ðxÞ ¼ 1=

½1þ exp ð� xÞ�; and the regularization term was 10� 5.

For the RF classifier, we specified the parameters as follows:

‘criterion’ is ‘gini,’ maximum depth is 30, and the initial

number of estimators is 100. For the SVM classifier, we set the

regularization parameter C = 10 and used the rbf kernel. For

the NB classifier we considered var_smoothing = 1 � 10� 9,

which is the portion of the largest variance of all features that

is added to variances for calculation stability.

4. Experiments

This section covers both the experimental data and the

implementation details of our pipeline. We present the

experimental results and discuss the CPU, GPU and FPGA

implementations for the classification task.

4.1. Data sets

To evaluate our pipeline, we utilized both synthetic and real

experimental serial crystallography data in our experiments.

The synthetic data set, named DiffraNet (Souza et al., 2019),

was generated using the nanoBragg simulator (https://bl831.

als.lbl.gov/~jamesh/nanoBragg/), which employs a single-

crystal structure and varying X-ray beam intensity to produce

variations in image quality. Imperfections in the crystal were

also modelled by breaking it up into smaller crystals. Back-

ground noise sources and crystal orientation were additional

parameters considered in generating this data set. It consists of

25 000 diffraction patterns with an image size of 512 � 512

pixels, divided into five classes (Blank, No Crystal, Weak,

Good, Strong) for performing the classification task.

We selected four diverse experimental data sets to reflect

different imaging detectors, beam energies and sample

delivery methods, as well as crystals with varying space groups

and unit-cell parameters, to represent our experimental data.

These protein serial crystallography diffraction data sets were

collected on the Coherent X-ray Imaging (CXI) and Macro-

molecular Femtosecond Crystallography (MFX) instruments

of the Linac Coherent Light Source (LCLS). In the recent

study by Ke et al. (2018), the first 2000 images from the native

LCLS data format were converted to a 4-byte integer HDF5

format for further analysis. We utilized the same diffraction

patterns and evaluation protocols in our experiments as

presented in their work. These data sets are labelled by human

annotation and the diffraction integration for advanced light

sources (DIALS) (Winter et al., 2018) spotfinder. Table 3

provides a summary of the experimental data sets used. We

also applied our MP-FAST pipeline to peak finding on two

complete data sets recorded by an AGIPD detector, one from

the well known model system in crystallography, lysozyme,

and the other from a complex of a �-lactamase from Klebsiella

pneumoniae involved in antibiotic resistance (Wiedorn et al.,

2018).

4.2. Implementation details

Our pipeline comprises feature extractor and machine

learning components, whose performance we evaluate using

standard classification evaluation metrics such as accuracy,

precision, recall and F1 scores. For our experiments, we

utilized the C++ programming language, along with the

OpenCV library. For CPU and GPU implementations the

experiments were run on a system with an Intel Core i7-

11370 H CPU at 3.30 GHz, featuring 1 MB L2 cache, 8 MB L3

cache and 16 GB RAM. Additionally, we employed an

NVIDIA RTX 3070 GPU equipped with 10 496 CUDA cores.

For the FPGA implementation we ran the code on a Xilinx

Alveo U280 which is equipped with 8 GB of HBM, two 16 GB

research papers

426 Vahid Rahmani et al. � Robust image descriptor for machine learning J. Appl. Cryst. (2024). 57, 413–430

Table 3
Experimental data.

LCLS data set (proposal, run) Incident energy (eV) Protein Space group, unit cell (Å) Instrument Sample delivery Detector

L498, 27 9773 Thermolysin P6122, a = 93, c = 130 CXI MESH CSPAD

LN84, 95 9516 Photosystem II P212121, a = 118, b = 223, c = 311 MFX Conveyor belt Rayonix
LN83, 18 9498 Hydrogenase P212121, a = 73, b = 96, c = 119 MFX Conveyor belt Rayonix
LO19, 20 9442 Cyclophilin A P212121, a = 42, b = 52, c = 88 MFX Liquid jet Rayonix

Figure 18
The image classification pipeline including MP-FAST key-point detection, generation of the image descriptor vector and the MLP classifier.

https://bl831.als.lbl.gov/~jamesh/nanoBragg/
https://bl831.als.lbl.gov/~jamesh/nanoBragg/


DDR4 RDIMMs operating at 2400 MT s� 1 and two QSFP28

Ethernet ports capable of 100 Gb s� 1 each.

4.3. Experimental results

Here we present a comprehensive analysis of the outcomes

obtained through rigorous experimentation. In subsection

4.3.1 we demonstrate the performance and accuracy of our

proposed methodology in classifying diverse data sets. This

involves evaluating the effectiveness of our classification

models (MLP, SVM, RF and NB) against three real and one

synthetic data set. We also compare the classification results

for accuracy and processing time performance for various

components of our proposed method with the CNN method

(Ke et al., 2018) and the ORB+MLP (Rahmani et al., 2023)

method. Subsection 4.3.2 focuses on the efficiency and accel-

eration achieved through parallelizing key components of our

approach. We compare the performance achieved by

employing the different hardware accelerators, specifically

focusing on the CPU, GPU and FPGA.

4.3.1. Classification performance. The MLP, SVM, RF and

NB classifiers (Section 3.3) were trained using feature vectors

extracted through the MP-FAST key-point detection and

image descriptor technique, as elucidated in Section 3.2.

Table 4 shows the classification performance of the four

classifiers for the three data sets LO19, LN83 and LN84 and

one synthetic data set DiffraNet for F1 score, precision, recall/

sensitivity and accuracy with the same training and testing

strategy on real experimental data.

Precision ¼
TP

TPþ FP
; ð1Þ

Recall=Sensitivity ¼
TP

TPþ FN
; ð2Þ

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
; ð3Þ

F1 score ¼
2� Precision� Recall

Precision þ Recall
; ð4Þ

where TP denotes true positive, TN true negative, FP false

positive and FN false negative.

Our experimental results demonstrate that the MLP clas-

sifier produces superior performance across all data sets.

Specifically, the MLP exhibits higher accuracy, precision and

recall than the other classifiers, showing its effectiveness in

capturing complex relationships within the feature space.

Table 5 compares the classification results for our proposed

method with the CNN (Ke et al., 2018) and ORB+MLP

(Rahmani et al., 2023) methods for accuracy performance with

the one-to-one (train and test with same data set) and cross

(train by one and test with another data set) training and

testing strategy on both synthetic and real experimental data,

and Table 6 shows a comparison of processing time for various

components of our GPU-based MP-FAST image classification

method with other methods.

4.3.2. Parallelization performance. Parallelization on the

CPU is achieved by considering the number of kernels n,

where n is the number of CPU threads. The image is divided

into n regions and each kernel runs MP-FAST for each region.

Extensive experiments showed that the execution perfor-

mance time is 1.55 ms for an image of size 512 � 512 pixels,

3.03 ms for an image of size 1024� 1024 pixels and 8.91 ms for

an image of size 2048� 2048 pixels. The acceleration achieved

by parallelization increases with the number of CPU threads,

demonstrating the effectiveness of our approach. Addition-

ally, we have observed that the parallelization of the algorithm

did not compromise the accuracy of feature detection.

To parallelize the MP-FAST algorithm on a GPU, we parti-

tioned the input image into a grid of (W + 15)/16� (H + 15)/16

research papers

J. Appl. Cryst. (2024). 57, 413–430 Vahid Rahmani et al. � Robust image descriptor for machine learning 427

Table 4
Classification performance (%) of four classifiers trained on MP-FAST
features for real and synthetic data sets.

Classifier F1 Precision Recall Accuracy

LO19
MLP 94.88 95.26 95.17 95.04

SVM 92.89 93.52 91.43 92.13
RF 91.62 89.62 90.33 90.43
NB 91.40 91.33 91.42 91.54

LN83
MLP 94.15 93.84 93.94 94.07

SVM 92.63 91.42 93.01 92.53
RF 93.42 93.49 93.46 93.15
NB 92.29 93.61 92.00 92.88

LN84
MLP 96.42 96.33 97.63 97.38
SVM 91.72 91.39 93.27 92.77

RF 88.72 87.42 88.41 88.38
NB 89.21 89.91 89.42 89.67

DiffraNet
MLP 97.19 97.55 97.11 97.21
SVM 96.77 97.03 96.64 96.37

RF 94.62 93.92 94.83 94.77
NB 94.54 94.57 94.73 94.02

Table 5
Classification performance (%) with cross-data-set training and testing
for our proposed method compared with the CNN method (Ke et al.,
2018) and ORB+MLP (Rahmani et al., 2023).

Train/test LO19 L498 LN83 LN84

LO19 MP-FAST 95.04 87.74 91.22 93.26
CNN 93 85 65

ORB 92.0 73.3 75.7 77.5

L498 MP-FAST 87.12 93.77 87.58 86.44
CNN 82
ORB 69.7 89.7 71.5 67.1

LN83 MP-FAST 87.8 87.91 94.07 91.88

CNN 91 96 90
ORB 72.3 78.4 93.5 80.1

LN84 MP-FAST 92.21 86.81 93.31 97.38
CNN 74 92 90
ORB 79.1 75.9 72.6 96.5



blocks. Each pixel is treated by a separate thread within each

block and the results are combined to obtain the final output.

Extensive experiments using a high-end GPU showed that the

parallelization of the MP-FAST algorithm on a GPU signifi-

cantly reduces the execution time compared with the CPU-

parallelized and non-parallelized versions. Specifically, the

execution performance time, including data transfer from host

to device and kernel execution time, is 0.360 ms for an image

of size 512 � 512 pixels, 0.52 ms for an image of size 1024 �

1024 pixels and 1.4 ms for an image of size 2048 � 2048 pixels.

Our implementation of the algorithm on an FPGA, which

used less than 1% of the FPGA’s resources, had an execution

time of 2 ms for an image of size 720 � 720, roughly equalling

the non-parallelized CPU version. We estimate that further

parallelization could speed this up by a factor of approxi-

mately 64, while using roughly one-quarter of the FPGA’s

resources; this would give an execution time of the order of

0.04 ms, which is slower than the GPU but would still leave

resources for other processing steps.

The size of an image can have a significant impact on

execution time performance for image processing, particularly

for sequential CPU processing, parallel CPU processing and

FPGA pipelining. Table 7 shows the runtime performance of

different sizes of diffraction pattern for CPU, GPU and FPGA

implementations. For sequential CPU processing, the size of

the image can directly impact the execution time performance.

This is because the CPU can only process one instruction at a

time and must process the image pixel by pixel in a sequential

manner. Therefore, the larger the image, the more time it will

take for the CPU to complete the processing.

For parallel CPU processing, the size of the image can also

have an impact on the execution time performance, but it may

not be as significant as for sequential CPU processing. In

parallel processing, multiple CPU threads can work simulta-

neously to process the image, which can reduce the overall

execution time. However, if the image is too large to fit into

the number of threads of each CPU, it may need more waiting

time to synchronize the threads, which can add overhead to

the processing time.

For parallel GPU processing, the size of the image can also

have a significant impact on the execution time performance.

GPUs are optimized for parallel processing and can process

large amounts of data simultaneously. However, for parallel

algorithms like the artefact detection described in Section 3.1

where 100 of the miss images are stacked, the size of the image

can still impact the execution time. The image must be loaded

into the GPU’s memory and, if the images are too large, they

may not fit into the GPU’s memory, or there may not be

sufficient free threads (one thread per pixel), resulting in an

additional overhead.

For image processing on the FPGA, the size of the image

can also have a significant impact on the execution time

performance, but the specific impact will depend on the design

of the FPGA-based image processing system.

Our experimental results show that parallelizing the MP-

FASTalgorithm on a GPU is a promising way of improving the

performance of feature detection algorithms.

5. Conclusions

In this paper, we have introduced a new method called MP-

FAST for detecting key points in serial crystallography images,

and have described a general pipeline for data classification.

We have implemented the MP-FAST algorithm on three

different processors, CPU, GPU and FPGA, and analysed

their performance.

Our experiments have showed that the GPU parallelization

yields the best results in terms of reducing the execution time

when compared with the other processors and the non-

parallelized version, leading to a more efficient algorithm. Our

approach has the potential to be applied to other algorithms

that deal with large images. Parallelizing the MP-FAST algo-

rithm on a GPU is a promising way of improving the perfor-

mance of feature detection algorithms.

Additionally, we have evaluated our classification approach

based on MP-FAST using a multi-layer perceptron on various

data sets, including synthetic and experimental data, which

resulted in superior performance compared with other feature

extractors and classifiers.

Acknowledgements

We are grateful to Samuel Flewett for detailed feedback on

this work. Open access funding enabled and organized by

Projekt DEAL.

Funding information

We acknowledge Helmholtz IVF project InternLabs-0011

(HIREX) and Helmholtz Innovationspool project Data-X for

providing funds to carry out this project.

research papers

428 Vahid Rahmani et al. � Robust image descriptor for machine learning J. Appl. Cryst. (2024). 57, 413–430

Table 6
Processing time (ms) for various components of our proposed method
compared with the CNN method (Ke et al., 2018) and the ORB method
(Rahmani et al., 2023) on 64 images.

CNN ORB MP-FAST

LCN CNN
Total
time ORB BVWs MLP

Total
time

MP-
FAST MLP

Total
time

Train 5700 260 5960 11.264 3171 197.3 3379.564 24.31 188.5 212.81
Test 5700 50 5750 11.584 3099 101.03 3211.614 23.88 101.7 125.58

Table 7
Execution time performance for feature extraction (in milliseconds).

Image size

Hardware 512 � 512 720 � 720 1024 � 1024 2048 � 2048

CPU, sequential 2.13 4.88 8.71 15.23
CPU, parallel 1.55 2.38 3.17 8.91
FPGA 1.00 2.01 3.02 14.00
GPU 0.36 0.41 0.49 0.83



References

Abdollahi, B., Tomita, N. & Hassanpour, S. (2020). Deep Learners and
Deep Learner Descriptors for Medical Applications, edited by L.
Nanni, S. Brahnam, R. Brattin, S. Ghidoni & L. C. Jain, pp. 167–180.
Heidelberg: Springer.

Abuowaimer, Z., Maarouf, D., Martin, T., Foxcroft, J., Gréwal, G.,
Areibi, S. & Vannelli, A. (2018). ACM Trans. Des. Autom. Electron.
Syst. 23, 1–33.

Allahgholi, A., Becker, J., Delfs, A., Dinapoli, R., Goettlicher, P.,
Greiffenberg, D., Henrich, B., Hirsemann, H., Kuhn, M., Klanner,
R., Klyuev, A., Krueger, H., Lange, S., Laurus, T., Marras, A.,
Mezza, D., Mozzanica, A., Niemann, M., Poehlsen, J., Schwandt, J.,
Sheviakov, I., Shi, X., Smoljanin, S., Steffen, L., Sztuk-Dambietz, J.,
Trunk, U., Xia, Q., Zeribi, M., Zhang, J., Zimmer, M., Schmitt, B. &
Graafsma, H. (2019). J. Synchrotron Rad. 26, 74–82.

Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H.,
White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118–1131.

Bay, H., Ess, A., Tuytelaars, T. & Van Gool, L. (2008). Comput. Vis.
Image Underst. 110, 346–359.

Becker, D. & Streit, A. (2014). IEEE Fourth International Conference
on Big Data and Cloud Computing, Sydney, Australia, 3–5
December 2014, pp. 71–76. New York: IEEE.

Brewster, A. S., Young, I. D., Lyubimov, A., Bhowmick, A. & Sauter,
N. K. (2019). Comput. Crystallogr. Newsl. 10, 22–39.

Bruno, A. E., Charbonneau, P., Newman, J., Snell, E. H., So, D. R.,
Vanhoucke, V., Watkins, C. J., Williams, S. & Wilson, J. (2018). PLoS
One, 13, e0198883.

Calonder, M., Lepetit, V., Strecha, C. & Fua, P. (2010). Computer
Vision – ECCV 2010, Lecture Notes in Computer Science,
Vol. 6314, edited by K. Daniilidis, P. Maragos & N. Paragios,
pp. 778–792. Heidelberg: Springer.

Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A.,
Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U.,
Doak, R. B., Maia, F. R. N. C., Martin, A. V., Schlichting, I., Lomb,
L., Coppola, N., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles,
D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G.,
Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan,
M. J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B.,
Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner, D., Strüder,
L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G.,
Schopper, F., Soltau, H., Kühnel, K., Messerschmidt, M., Bozek,
J. D., Hau-Riege, S. P., Frank, M., Hampton, C. Y., Sierra, R. G.,
Starodub, D., Williams, G. J., Hajdu, J., Timneanu, N., Seibert,
M. M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M., Stern,
S., Nass, K., Andritschke, R., Schröter, C., Krasniqi, F., Bott, M.,
Schmidt, K. E., Wang, X., Grotjohann, I., Holton, J. M., Barends,
T. R. M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp,
D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H.,
Potdevin, G., Graafsma, H., Nilsson, B. & Spence, J. C. H. (2011).
Nature, 470, 73–77.

Chen, L., Xu, K., Zheng, X., Zhu, Y. & Jing, Y. (2021). 2021 IEEE
International Conference on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking,
30 September to 3 October 2021, New York, USA, pp. 517–521.
New York: IEEE.

Coquelle, N. (2022). NanoPeakCell, https://github.com/coquellen/
NanoPeakCell.

Coquelle, N., Brewster, A. S., Kapp, U., Shilova, A., Weinhausen, B.,
Burghammer, M. & Colletier, J.-P. (2015). Acta Cryst. D71, 1184–
1196.

Galayda, J. N. (2018). 9th International Particle Accelerator Confer-
ence (IPAC2018), 29 April to 4 May 2018, Vancouver, Canada, pp.
18–23. Geneva: JACoW.

Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams,
P. D. (2002). J. Appl. Cryst. 35, 126–136.

Hadian-Jazi, M., Messerschmidt, M., Darmanin, C., Giewekemeyer,
K., Mancuso, A. P. & Abbey, B. (2017). J. Appl. Cryst. 50, 1705–
1715.

Hadian-Jazi, M., Sadri, A., Barty, A., Yefanov, O., Galchenkova, M.,
Oberthuer, D., Komadina, D., Brehm, W., Kirkwood, H., Mills, G.,
de Wijn, R., Letrun, R., Kloos, M., Vakili, M., Gelisio, L.,
Darmanin, C., Mancuso, A. P., Chapman, H. N. & Abbey, B. (2021).
J. Appl. Cryst. 54, 1360–1378.

Hira, Z. M. & Gillies, D. F. (2015). Adv. Bioinform. 2015, 198363.
Hoberock, J. & Bell, N. (2022). Thrust, https://github.com/coquellen/

NanoPeakCell.
Ke, T.-W., Brewster, A. S., Yu, S. X., Ushizima, D., Yang, C. & Sauter,

N. K. (2018). J. Synchrotron Rad. 25, 655–670.
Khan, S., Sajjad, M., Hussain, T., Ullah, A. & Imran, A. S. (2020).

IEEE Access, 9, 10657–10673.
Kieffer, J., Valls, V., deschila, Vincent, T., picca, payno, Wright, J.,

Huder, L., Pandolfi, R., Ashiotis, G., dodogerstlin, Faure, B.,
mstorm, Wright, C. J., woutdenolf, Weninger, C., Pascal, E.,
gbenecke, jbhopkins, Hov, A., Prestat, E., Flucke, G., jangarrevoet,
Märdian, L., Hudson-Doyle, M., Hans, P., Rodrigo & Sigmund-
Neher (2023). silx-kit/pyFAI: pyFAI-2023.09, https://doi.org/10.
5281/zenodo.8329219.

Kornblith, S., Shlens, J. & Le, Q. V. (2019). 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
15–20 June 2019, Long Beach, California, USA, pp. 2656–2666.
New York: IEEE.

LeCun, Y., Bengio, Y. & Hinton, G. (2015). Nature, 521, 436–444.
Li, C. & Zatsepin, N. A. (2018). Python-Based EZ-Hit-Finding Suite,

https://sites.google.com/view/zatsepinlab/resources/hit-finding.
Liu, C., Xu, J. & Wang, F. (2021). Sci. Program. 2021, 1–25.
Lowe, D. G. (1999). Proceedings of the Seventh IEEE International

Conference on Computer Vision, 20–27 September 1999, Kerkyra,
Greece, Vol. 2, pp. 1150–1157. New York: IEEE.

Mariani, V., Morgan, A., Yoon, C. H., Lane, T. J., White, T. A.,
O’Grady, C., Kuhn, M., Aplin, S., Koglin, J., Barty, A. & Chapman,
H. N. (2016). J. Appl. Cryst. 49, 1073–1080.

Naskath, J., Sivakamasundari, G. & Begum, A. A. S. (2023). Wireless
Personal Commun. 128, 2913–2936.

NVIDIA , Vingelmann, P. & Fitzek, F. H. P. (2022). CUDA, release:
10.2.89, https://developer.nvidia.com/cuda-10.2-download-archive.

Pan, S. J. & Yang, Q. (2010). IEEE Trans. Knowl. Data Eng. 22, 1345–
1359.

Park, W. B., Chung, J., Jung, J., Sohn, K., Singh, S. P., Pyo, M., Shin, N.
& Sohn, K.-S. (2017). IUCrJ, 4, 486–494.

Parkhurst, J. M., Winter, G., Waterman, D. G., Fuentes-Montero, L.,
Gildea, R. J., Murshudov, G. N. & Evans, G. (2016). J. Appl. Cryst.
49, 1912–1921.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.
& Duchesnay, E. (2011). J. Mach. Learn. Res. 12, 2825–2830.

Perez, L. & Wang, J. (2017). arXiv:1712.04621.
Rahmani, V., Nawaz, S., Pennicard, D., Setty, S. P. R. & Graafsma, H.

(2023). J. Appl. Cryst. 56, 200–213.
Ronneberger, O., Fischer, P. & Brox, T. (2015). Medical Image

Computing and Computer-Assisted Intervention – MICCAI 2015.
Lecture Notes in Computer Science, Vol. 9351, pp. 234–241. Cham:
Springer.

Rosten, E. & Drummond, T. (2006). Computer Vision – ECCV 2006:
9th European Conference on Computer Vision, Graz, Austria, May
7-13, 2006. Proceedings, Part I, pp. 430–443. Berlin, Heidelberg:
Springer.

Rosten, E. & Drummond, T. (2005). Tenth IEEE International
Conference on Computer Vision (ICCV’05), 17–21 October 2005,
Beijing, China, Vol. 2, pp. 1508–1515. New York: IEEE.

Rublee, E., Rabaud, V., Konolige, K. & Bradski, G. (2011). 2011
International Conference on Computer Vision, 6–13 November
2011, Barcelona, Spain, pp. 2564–2571. New York: IEEE.

research papers

J. Appl. Cryst. (2024). 57, 413–430 Vahid Rahmani et al. � Robust image descriptor for machine learning 429

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB13
https://github.com/coquellen/NanoPeakCell
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB20
https://github.com/coquellen/NanoPeakCell
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB23
https://doi.org/10.5281/zenodo.8329219
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB26
https://sites.google.com/view/zatsepinlab/resources/hit-finding
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB56
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB56
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB56
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB56
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB41
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB41
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB41


Ryan, K., Lengyel, J. & Shatruk, M. (2018). J. Am. Chem. Soc. 140,
10158–10168.

Shorten, C. & Khoshgoftaar, T. M. (2019). J. Big Data, 6, 1–48.
Souza, A., Oliveira, L. B., Hollatz, S., Feldman, M., Olukotun, K.,

Holton, J. M., Cohen, A. E. & Nardi, L. (2019). arXiv:1904.11834.
Sullivan, B., Archibald, R., Azadmanesh, J., Vandavasi, V. G., Langan,

P. S., Coates, L., Lynch, V. & Langan, P. (2019). J. Appl. Cryst. 52,
854–863.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. (2016).
2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 27–30 June 2016, Las Vegas, Nevada, USA, pp. 2818–
2826. New York: IEEE.

Thayer, J., Damiani, D., Ford, C., Dubrovin, M., Gaponenko, I.,
O’Grady, C. P., Kroeger, W., Pines, J., Lane, T. J., Salnikov, A. &
others (2017). Adv. Struct. Chem. Imaging, 3, 1–13.

Wang, H., Xie, Y., Li, D., Deng, H., Zhao, Y., Xin, M. & Lin, J. (2020).
J. Chem. Inf. Model. 60, 2004–2011.

White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty,
A. & Chapman, H. N. (2012). J. Appl. Cryst. 45, 335–341.

Wiedorn, M. O., Oberthür, D., Bean, R., Schubert, R., Werner, N.,
Abbey, B., Aepfelbacher, M., Adriano, L., Allahgholi, A., Al-
Qudami, N., Andreasson, J., Aplin, S., Awel, S., Ayyer, K., Bajt, S.,
Barák, I., Bari, S., Bielecki, J., Botha, S., Boukhelef, D., Brehm, W.,
Brockhauser, S., Cheviakov, I., Coleman, M. A., Cruz-Mazo, F.,
Danilevski, C., Darmanin, C., Doak, R. B., Domaracky, M., Dörner,
K., Du, Y., Fangohr, H., Fleckenstein, H., Frank, M., Fromme, P.,
Gañán-Calvo, A. M., Gevorkov, Y., Giewekemeyer, K., Ginn,
H. M., Graafsma, H., Graceffa, R., Greiffenberg, D., Gumprecht,
L., Göttlicher, P., Hajdu, J., Hauf, S., Heymann, M., Holmes, S.,
Horke, D. A., Hunter, M. S., Imlau, S., Kaukher, A., Kim, Y.,

Klyuev, A., Knoška, J., Kobe, B., Kuhn, M., Kupitz, C., Küpper, J.,
Lahey-Rudolph, J. M., Laurus, T., Le Cong, K., Letrun, R., Xavier,
P. L., Maia, L., Maia, F. R. N. C., Mariani, V., Messerschmidt, M.,
Metz, M., Mezza, D., Michelat, T., Mills, G., Monteiro, D. C. F.,
Morgan, A., Mühlig, K., Munke, A., Münnich, A., Nette, J., Nugent,
K. A., Nuguid, T., Orville, A. M., Pandey, S., Pena, G., Villanueva-
Perez, P., Poehlsen, J., Previtali, G., Redecke, L., Riekehr, W. M.,
Rohde, H., Round, A., Safenreiter, T., Sarrou, I., Sato, T., Schmidt,
M., Schmitt, B., Schönherr, R., Schulz, J., Sellberg, J. A., Seibert,
M. M., Seuring, C., Shelby, M. L., Shoeman, R. L., Sikorski, M.,
Silenzi, A., Stan, C. A., Shi, X., Stern, S., Sztuk-Dambietz, J., Szuba,
J., Tolstikova, A., Trebbin, M., Trunk, U., Vagovic, P., Ve, T.,
Weinhausen, B., White, T. A., Wrona, K., Xu, C., Yefanov, O.,
Zatsepin, N., Zhang, J., Perbandt, M., Mancuso, A. P., Betzel, C.,
Chapman, H. & Barty, A. (2018). Nat. Commun. 9, 4025.

Winter, G., Waterman, D. G., Parkhurst, J. M., Brewster, A. S., Gildea,
R. J., Gerstel, M., Fuentes-Montero, L., Vollmar, M., Michels-Clark,
T., Young, I. D., Sauter, N. K. & Evans, G. (2018). Acta Cryst. D74,
85–97.

Yang, Y. & Pedersen, J. O. (1997). Proceedings of the Fourteenth
International Conference on Machine Learning, pp. 412–420. San
Francisco: Morgan Kaufmann Publishers.

Yann, M. & Tang, Y. (2016). Proc. AAAI Conf. Artif. Intell. 30, 1373–
1379.

Ziletti, A., Kumar, D., Scheffler, M. & Ghiringhelli, L. M. (2018). Nat.
Commun. 9, 2775.

Zimmermann, J., Langbehn, B., Cucini, R., Di Fraia, M., Finetti, P.,
LaForge, A. C., Nishiyama, T., Ovcharenko, Y., Piseri, P., Plekan,
O., Prince, K. C., Stienkemeier, F., Ueda, K., Callegari, C., Möller,
T. & Rupp, D. (2019). Phys. Rev. E, 99, 063309.

research papers

430 Vahid Rahmani et al. � Robust image descriptor for machine learning J. Appl. Cryst. (2024). 57, 413–430

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB43
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB45
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB45
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB45
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB46
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB46
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB46
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB46
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB47
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB47
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB47
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB48
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB48
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB49
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB49
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB51
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB51
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB51
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB51
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB52
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB52
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB52
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB53
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB53
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB54
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB54
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB55
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB55
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB55
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5128&bbid=BB55

	Abstract
	1. Introduction
	2. Related work
	3. Pipeline
	3.1. Background and detector artefact reduction
	3.2. Image descriptor
	3.2.1. MP-FAST
	3.2.2. Generating feature vectors

	3.3. Classifier

	4. Experiments
	4.1. Data sets
	4.2. Implementation details
	4.3. Experimental results
	4.3.1. Classification performance
	4.3.2. Parallelization performance


	5. Conclusions
	Acknowledgements
	Funding information
	References

