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Due to the ambiguity related to the lack of phase information, determining the

physical parameters of multilayer thin films from measured neutron and X-ray

reflectivity curves is, on a fundamental level, an underdetermined inverse

problem. This ambiguity poses limitations on standard neural networks,

constraining the range and number of considered parameters in previous

machine learning solutions. To overcome this challenge, a novel training

procedure has been designed which incorporates dynamic prior boundaries for

each physical parameter as additional inputs to the neural network. In this

manner, the neural network can be trained simultaneously on all well-posed

subintervals of a larger parameter space in which the inverse problem is

underdetermined. During inference, users can flexibly input their own prior

knowledge about the physical system to constrain the neural network prediction

to distinct target subintervals in the parameter space. The effectiveness of the

method is demonstrated in various scenarios, including multilayer structures

with a box model parameterization and a physics-inspired special para-

meterization of the scattering length density profile for a multilayer structure. In

contrast to previous methods, this approach scales favourably when increasing

the complexity of the inverse problem, working properly even for a five-layer

multilayer model and a periodic multilayer model with up to 17 open para-

meters.

1. Introduction

X-ray and neutron reflectometry (XRR and NR, respectively)

are well established and indispensable experimental techni-

ques commonly used to investigate the scattering length

density (SLD) profile along the direction perpendicular to the

surface of samples such as thin films and multilayers (Tolan,

1999; Holý et al., 1999; Sinha & Pynn, 2002; Daillant &

Gibaud, 2009; Zhou & Chen, 1995; Benediktovich et al., 2014).

The most common way of modelling the SLD profile of a

measured sample is via a box model parameterization, where

the physical parameters of interest are the thickness, the

roughness and the constant SLD of each layer in a multilayer

structure. More complex parameterizations of the SLD profile

can be employed, based on pre-existing physical knowledge or

intuition about the investigated structure. For example, the

interfaces in real layered systems can exhibit imperfections

due to chemical diffusion or the formation of aggregates which

cannot be modelled as roughness. XRR and NR have been

extensively used in both in situ and ex situ studies of a large

variety of systems, such as liquid and solid thin films (Kowarik

et al., 2006; Woll et al., 2011; Braslau et al., 1988; Metzger et al.,
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1994; Michely & Krug, 2004; Lehmkühler et al., 2008; Seeck et

al., 2002; Fragneto-Cusani, 2001; Festersen et al., 2018;

Schlomka et al., 1996; Treece et al., 2019), layers of polymers

(Ankner et al., 1993; Mukherjee et al., 2002), lipids (Neville et

al., 2006; Skoda et al., 2017; Salditt & Aeffner, 2016; Sironi et

al., 2016), self-assembled monolayers (Wasserman et al., 1989;

Skoda et al., 2022; Chu et al., 2020), and organic solar cells

(Tidswell et al., 1990; Fenter et al., 1997; Lorch et al., 2015). In

addition, polarized NR (Majkrzak, 1991) can be used to study

the magnetic properties of thin films. However, it is important

to realize that these successful uses of reflectometry usually

involve some form of complementary information in the data

analysis, such as typical densities or reasonable intervals for

the film thickness, provided by the experimentalist.

Reflectometry can be counted among the techniques

affected by the phase problem. In the absence of comple-

mentary information, the lack of phase information introduces

a degree of ambiguity when trying to reconstruct the SLD

profile of the investigated sample from the measured reflec-

tivity curve, i.e. the inverse problem is, on a fundamental level,

underdetermined (‘ill-posed’). This intrinsic ambiguity of the

scattering method is further magnified by additional ambiguity

due to the limited experimental accuracy, such as instrument

noise, measurement artefacts and the finite number of

measured points over the domain of the momentum transfer

qz [q = (4�/�)sin�, where � is half the scattering angle and � is

the wavelength of the incident radiation].

In recent years, machine learning has emerged as an alter-

native to classical methods of analysing surface scattering data

(Hinderhofer et al., 2023), being attractive due to its very fast

prediction times and its ability to be incorporated into the

operating pipelines of large-scale measurement facilities. In

particular, fast machine-learning-based solutions are ideal for

enabling an experimental feedback loop during reflectometry

measurements to be performed in real time (Pithan et al., 2023;

Ritley et al., 2001). While many machine learning approaches

dedicated to reflectivity exist (Greco et al., 2019, 2021, 2022;

Mironov et al., 2021; Doucet et al., 2021; Aoki et al., 2021; Kim

& Lee, 2021; Andrejevic et al., 2022), most of them do not

directly address the inherent ambiguity of the reflectivity data,

instead training neural networks over specific parameter

domains where the ambiguity is not prominent enough to

prevent convergence. Such networks lack the flexibility to be

used in broader scenarios, typically requiring to be retrained

on new parameter domains for each use case. Specifically, the

work of Greco et al. (2022), while successful within its target, is

limited to the case of a layer grown on top of a fixed substrate

(silicon).

In our method proposed here, we enhance the solution of

the inverse problem by including prior boundaries for the

parameters as supplementary inputs to the neural network.

This allows the network to be trained over wide parameter

domains while the regression is conducted over small enough

subdomains, defined by the prior bounds, to mitigate ambi-

guity. During inference, the output of the network is defined

not only by the measured reflectivity curve but also by the

prior experimental knowledge for the considered physical

scenario. Different choices of prior bounds can lead to the

recovery of distinct solution branches from the larger para-

meter domain.

The absence of extensive and diverse reflectometry data

sets makes the use of experimental data for training purposes

difficult. Consequently, simulations serve as a suitable alter-

native, a standard established in previous publications (Greco

et al., 2019; Mironov et al., 2021; Doucet et al., 2021). The

domain gap between experimental and simulated reflectivity

curves can be mitigated by augmenting the simulations with

physically inspired noise and distortions. We note that a

combined training strategy such as online learning could

potentially be used to adapt a trained model directly during

beamtime to the unique noise characteristics inherent to the

measurement instrument (Babu et al., 2022).

Another limitation of existing approaches is that they

require a specific discretization of the reflectivity curves, as

imposed by common network architectures. While experi-

mental curves can be interpolated to the required discretiza-

tion, interpolation is prone to introducing unphysical artefacts,

for example around the deep minima of Kiessig fringes in NR/

XRR curves. To address this limitation, we introduce the use

of a neural operator for processing reflectivity curves with

variable discretizations (number of points and q ranges).

In this paper, we first discuss the theoretical concepts

necessary to understand our approach in Section 2, after which

we present the technical details of the implementation in

Section 3. Finally, we demonstrate the results of our method

for different parameterizations of the SLD profile (two-layer

box model, five-layer box model, physics-informed model with

N repeating monolayer units) on both simulated and experi-

mental reflectivity curves in Section 4.

2. Theoretical considerations

2.1. The phase problem

This section provides a comprehensive description of the

phase problem in reflectometry.

The phase problem is a ubiquitous issue for experimental

techniques utilizing the interference of waves Aexp(� i!t) as a

means of probing the physical properties of materials, caused

by the fact that detectors cannot record the phase of the signal

but only its intensity |A|2 (Volostnikov, 1990). This loss of

information introduces a degree of ambiguity when trying to

reconstruct the physical quantities of interest from the

measured signal. It is well known that NR and XRR are

among the techniques affected by the phase problem

(Kozhevnikov, 2003), which precludes an analytical solution

via the Gel’fand–Levitan–Marchenko (Newton, 1974) inverse

scattering equation. Some approaches for experimentally

tackling the phase problem of NR and XRR have been

developed, such as the reference layer method (Majkrzak et

al., 1998) and the Lloyd mirage technique (Allman et al.,

1994), but they have certain practical limitations. Of particular

interest is the use of magnetic reference layers (Masoudi &

Pazirandeh, 2005) in polarized neutron reflectometry where
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the SLD of the reference layer depends on the polarization of

the incident neutrons. Three distinct measurements for up,

down and non-polarized neutron beams then allow for the

determination of the phase. Also for NR, the amount of

structural detail extracted from reflectivity data can be maxi-

mized by flexibly varying the SLD of specific structures within

the sample via isomorphic isotopic substitution (Heinrich,

2016), such as the replacement of protium with deuterium

(selective deuteration) in the hydrocarbon chains of lipid

bilayers (Clifton et al., 2012). Alternatively, the degree of

ambiguity can be reduced when measuring a series of reflec-

tivity curves for a sample with evolving structure (e.g. during

film deposition). Such theoretical ambiguity is in practice

further accentuated by experimental sources of error (noise,

finite instrumental resolution, artefacts) and the discrete

nature of the measurement process, the scattered intensity

being recorded over a finite range of the momentum transfer

qz at a finite number of points.

A consequence of this ambiguity is the underdetermined

(‘ill-posed’) nature of parameter recovery from the measured

data, different SLD profiles corresponding to equivalent

reflectivity curves. When taking into account multiple scat-

tering at the interfaces, as described by Parratt’s recursive

formalism (Parratt, 1954) or the Abelès transfer-matrix

method (Abelès, 1950), some information about the phase can

be recovered in the low-qz region (Zhou & Chen, 1993).

However, the difference between reflectivity curves can still

become vanishingly small (Pershan, 1994), especially when

compounded with systematic measurement errors of the total

reflection edge.

In the following, we briefly summarize a theoretical deri-

vation of how such SLD profiles can be identified in the

mathematically simpler kinematic approximation, which

neglects multiple scattering at the sample interfaces so that the

calculation remains analytical. In the kinematic approxima-

tion, the scattered intensity is proportional to the square of the

total scattering amplitude:

RðqzÞ ¼
RFðqzÞ
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where RF(qz) denotes the Fresnel reflectivity, �(z) is the SLD

profile along the perpendicular direction z to the sample and

�s is the SLD of the substrate.

For the commonly used box model with interfacial rough-

ness parametrized via the Névot–Croce factor (Névot &

Croce, 1980), an SLD profile can be written as a sum of the

error functions:
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��i erf
z � ziffiffiffi

2
p
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; ð2Þ

where erf(z) is the error function, N the number of interfaces,

zi the position of the ith interface, �i the roughness of the ith

interface, and ��i the SLD difference between interfaces i and

i + 1.

By substituting equation (2) into equation (1), we can

explicitly calculate the Fourier transform:
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Finally, we obtain a decomposition of the scattered intensity

into the sum of a constant term and several sinusoidal

components with amplitudes ��i��j exp ½� q2
zð�

2
i þ �

2
j Þ=2�

and frequencies �zij = zi � zj :

RboxðqzÞ
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j
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By solving for all combinations of ��i and zi with the same

scattered intensity, one can identify classes of theoretical
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Figure 1
(a) Two SLD profiles with mirrored derivatives. (b) The derivatives of the
two SLD profiles. (c) The corresponding reflectivity curves for the two
SLD profiles are almost identical (they would be exactly identical in the
kinematic approximation), despite the fact that the SLD profiles in (a) are
very dissimilar.



identical solutions in the kinematic approximation, such as

profiles with mirrored derivatives as reported in earlier studies

(Pershan, 1994; Sivia et al., 1991; Pynn, 1992) (shown in Fig. 1).

Restricting the shape of the considered SLD profiles to a box

model with a fixed number of layers already imposes a strong

constraint on the space of admissible solutions.

2.2. Solving ill-posed inverse problems using neural networks

If a forward process f(x) = y maps the hidden parameters x

describing a physical system to an observable signal y, the

inverse problem can be described as retrieving the physical

parameters from a possibly noise-corrupted measurement of

the signal (Kabanikhin, 2008). When the inverse problem

f� 1(y) = x represents a one-to-one mapping, neural networks

can be straightforwardly trained to approximate the inverse

function. In contrast, a many-to-one mapping of the forward

process leads to an underdetermined ill-posed inverse

problem, and the corresponding one-to-many inverse mapping

f� 1(y) cannot be approximated via regression. Attempting to

train a neural network as a point estimator over the domain

containing the non-uniqueness would lead to incorrect

predictions corresponding to an average of the distinct solu-

tion branches. Different machine learning approaches exist for

addressing ill-posed inverse problems (Adler & Öktem, 2017;

Li, Schwab et al., 2020; Ardizzone et al., 2019) but they

generally depend on the specific application.

The present study proposes a novel approach for tackling

ill-posed inverse problems which takes advantage of the a

priori knowledge of the experimentalist. The conventional

methodology for analysing reflectometry data, as imple-

mented in commonly used software such as GenX (Glavic &

Björck, 2022) or refnx (Nelson & Prescott, 2019), involves

setting prior boundaries for the parameters describing the

SLD profile of the sample and running an optimization algo-

rithm, such as differential evolution, resulting in a single

solution for the values of the parameters. Our machine

learning approach draws inspiration from this classical

procedure and combines the high speed of neural networks

with the flexibility of conventional fitting procedures. Our

proposed method is applicable to cases where enough prior

knowledge about the sample is available such that a single

mode of the distribution is isolated and the other solution

branches can be discarded.

Typically, some physical parameters of the studied samples

are known to the experimentalist with narrow uncertainty

ranges, such as densities of the used materials, thicknesses of

the deposited layers etc. In conventional fitting procedures,

this information is used to set upper and lower bounds on each

sample parameter within which solutions are allowed, the

bounds being narrower for layer SLDs and wider for layer

thicknesses and roughnesses. Our implementation allows us to

provide such prior knowledge as input to the neural network

in the form of two prior bounds for each parameter; the

regression problem is constrained to the local domain defined

by the prior bounds, thus avoiding the non-uniqueness asso-

ciated with the full parameter domain. As long as the prior

bounds are narrow enough not to include multiple solution

branches, the inverse mapping is well determined and can be

approximated by a neural network. In practice, even a small

amount of prior knowledge can be enough to rule out ambi-

guity in reflectometry analysis. We note that narrow priors do

not guarantee a single solution, as multiple solutions might

occur close to each other. However, our general assumption,

shared by experimentalists who analyse reflectometry data via

conventional fitting, is that for a large set of cases the prior

information is sufficient to isolate a single solution.

Our method can be envisioned as simultaneously learning

the inverse problem on all possible subdomains (or a subset of

subdomains) of the full parameter domain, using a single

neural network. Thus, some parallels can be drawn with

approaches such as that of Bae et al. (2022) where a beta

variational autoencoder is trained simultaneously for all

values of the � coefficient using a single neural network (a task

which would typically require retraining for each � value).

Importantly, any prediction provided by a neural network

should be validated for physical consistency, taking into

account the specifics of the investigated samples. Furthermore,

the initial neural network prediction can be further refined

using conventional fitting techniques or provided as a starting

point for posterior sampling using Markov-chain Monte Carlo

techniques (Gelman et al., 2013).

2.3. Discretization-invariant learning

Neural networks can only learn mappings between finite-

dimensional vector spaces, some architectures such as the

multilayer perceptron requiring a fixed discretization (range

and resolution) of the input. A new paradigm is represented

by neural operators, which can learn mappings between infi-

nite-dimensional function spaces, allowing discretization-

invariant learning (Li, Kovachki et al., 2020; Kovachki et al.,

2023). For an input function v0(x) defined over a domain D, a

neural operator is constructed as a series of transformations

vt 7! vtþ1,

vtþ1ðxÞ ¼ � WvtðxÞ þ ðKvtÞðxÞ
� �

; ð5Þ

where W is a linear transformation, � is a nonlinear activation

function and K is a non-local integral operator with learnable

kernel k:

ðKvtÞðxÞ ¼

Z

y2D

kðx; yÞ vtðyÞ dy: ð6Þ

The Fourier neural operator (FNO) (Li et al., 2021) repre-

sents an efficient and expressive implementation of a neural

operator which imposes kðx; yÞ ¼ kðx � yÞ and makes use of

the convolution theorem. It parameterizes the kernel operator

directly in Fourier space as

ðKvtÞðxÞ ¼ F� 1 T Fvtð Þ
� �

ðxÞ; ð7Þ

where F and F� 1 represent, respectively, the direct and the

inverse discrete Fourier transform, and T is a learnable linear

transformation.
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Neural operators have been predominantly used in the

fields of differential equation solving and physics-informed

learning (Oommen et al., 2022; Wen et al., 2022). Here, we use

a neural operator to learn a vector embedding for reflectivity

curves with variable discretizations (q ranges and numbers of

points) for our regression inverse problem. Such an approach

is beneficial as it confers a higher degree of flexibility on the

trained model, enabling the use of the full measured signal

without relying on interpolation.

3. Design and implementation of our method

3.1. Training methodology and neural network architecture

To enable the solution of the inverse problem by confining

the regression within a sample-dependent local domain, we

generate ground-truth values of the parameters for training in

the following manner. Firstly, for each parameter, we obtain

the centre (c) and the width (w) of the local domain, the centre

being uniformly sampled from the global domain (i.e. the

parameter range) and the width being uniformly sampled from

a predefined width range for that parameter. Secondly, the

ground-truth values of the parameters are obtained by

uniform sampling within the local domain [c � w/2, c + w/2]

defined by the previously sampled values, the two prior

bounds being the edges of this local domain, c � w/2 and

c + w/2.

The whole training process is performed exclusively using

simulated data. At each training step, we simulate a new batch

of reflectivity curves from the sampled ground-truth para-

meters using a fast GPU-accelerated Pytorch (Paszke et al.,

2019) implementation of the Abelès transfer-matrix method.

The training is conducted in a one-epoch regime (Komatsu-

zaki, 2019), the data not being reused at any step during the

training. Consequently, the effective data set size is the

product of the number of iterations and the batch size. As a

preprocessing step, we set intensities below 10� 10 which

cannot be recorded in most experimental scenarios (although

there are exceptions) to this chosen minimum threshold, we

add noise to the curve, and we apply a logarithmic transfor-

mation followed by a linear rescaling. The prior bounds are

normalized with respect to the corresponding parameter

ranges and the ground-truth parameters are normalized with

respect to the local domain they were sampled from, such that

all the inputs and outputs to the neural network are in the

range [� 1, 1].

As shown in Fig. 2, an embedding of the reflectivity curve

and the prior bounds are input to a fully connected neural

network (also known as a multilayer perceptron or MLP;

Murtagh, 1991), the loss being computed as the mean-squared

error between the neural network output and the ground-

truth parameters (normalized with respect to the prior

bounds). Note that obtaining the final prediction requires

reversing the normalization of the neural network output with

respect to the prior bounds. The architecture of our model and

the sampling procedure are shown in Fig. 2 (parameter scaling

omitted for simplicity). The MLP consists of a sequence of

nblocks = 6 residual blocks inspired by the ResNet (He et al.,

2016) architecture design, each block containing two hidden

layers of width dimhidden = 1024 neurons. The use of skip

connections has the role of facilitating gradient propagation

and preventing singularities (Orhan & Pitkow, 2018). Batch

normalization (Ioffe & Szegedy, 2015) is known to improve

the convergence of neural networks, so we use it to normalize

the intermediate features before activation. Since the type of

activation function can have a significant impact on the

performance of a neural network, we explored the use of

several popular activation functions [ReLU (Fukushima,

1975), GELU (Hendrycks & Gimpel, 2020), SELU (Klam-

bauer et al., 2017) and Mish (Misra, 2020)], choosing GELU as

the default.

We trained our models using the AdamW (Loshchilov &

Hutter, 2019) optimizer, a version of Adam (Kingma & Ba,

2017) with decoupled weight decay regularization. The weight
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Figure 2
(a) Data generation for training. The prior bounds and ground-truth parameters are sampled using the described procedure and the reflectivity curves
are simulated from the ground-truth parameters. (b) The neural network architecture. An embedding of the reflectivity curves and the prior bounds are
provided as inputs to the MLP. The MLP consists of residual blocks with batch normalization (BN), nonlinear activation (chosen to be GELU) and linear
layers.



decay coefficient is kept at the default value of 0.01. The initial

learning rate of 0.0001 was decreased by a factor of 10 on

plateau of the loss. We used the largest batch size that fits in

our GPU memory (4096) to ensure stable gradients.

3.2. Embedding networks

Going beyond previous publications, where a reflectivity

curve is directly provided as input to the MLP, we first use a

network that produces a latent embedding of the reflectivity

curve which is subsequently fed to the MLP. Our imple-

mentation is modular, allowing seamless replacement of the

components of the model. A one-dimensional convolutional

neural network (1D CNN) (Kiranyaz et al., 2021) is the default

embedding network used for our model. The FNO embedding

network is provided as an alternative to the 1D CNN, allowing

training for reflectivity curves with variable discretization, but

its convergence is slower than that of the 1D CNN.

When training a model on reflectivity curves with fixed

discretization, a 1D CNN embedding network is parameter-

efficient and makes better use of the sequential characteristics

of the data. While less popular than their 2D counterparts, 1D

CNNs have been successfully used in a variety of tasks

involving 1D signals, such as automatic speech recognition

(Collobert et al., 2016) and time-series prediction (Guessoum

et al., 2022). The 1D CNN, as shown in Fig. 3(a), consists of a

sequence of convolutional layers with kernel size 3, stride 2

and padding 1, the dimension of the signal being (approxi-

mately) halved after each layer. At the same time, the number

of channels is doubled after each layer, starting from 32 up to

chout = 512. An adaptive average pooling layer with output

size dimavpool = 8 ensures a fixed input size (chout � dimavpool)

for a linear layer, which produces the final embedding with

dimension dimemb, CNN = 128. While the adaptive average

pooling allows a fixed size embedding to be obtained from

curves with variable discretizations, CNNs do not enable

discretization-invariant learning, as shown in previous studies

(Li et al., 2021).

When training a model on reflectivity curves with variable

discretizations, we employ an FNO as the embedding network

[Fig. 3(b)], as theoretically motivated in the previous section

on discretization-invariant learning. In this scenario the

minimum and maximum values of q and the number of points

in the curve are also uniformly sampled for each batch from

the considered ranges. The input to the FNO is the reflectivity

curve together with the corresponding q values (concatenated

along the channel axis). After the input is raised to a higher

channel space chFNO = 128 by a pointwise linear operation, a

sequence of nFNO = 5 spectral blocks are applied which

implement the kernel operator in Fourier space as illustrated

in Fig. 3(b). The number of Fourier modes kept after

performing the discrete Fourier transform is a hyperparameter

set at nmodes = 16. Finally, a mean pooling over the input

dimension followed by a linear layer produces the last

embedding with dimension dimemb, FNO = 256.

4. Results

We trained neural networks according to the previously

described approach for different parameterizations of a thin-

film SLD profile. Each of the following subsections elaborates

on a network trained on data with a different parameteriza-

tion: either a different number of layers (two or five) for the

box model or a physics-informed special parameterization of a

multilayer structure with repeating monolayers. We use the 1D

CNN as the default embedding network. In the last subsection

the FNO is used as the embedding network for data with

variable discretization. We evaluate performance metrics on

statistically significant batches of simulated data and we

illustrate the applicability of our method on experimental

reflectivity data when available.

4.1. Two-layer box model

This subsection shows the performance evaluation for a

neural network trained on data corresponding to a two-layer

parameterization of the box model, the total number of

physical parameters predicted by the neural network being

eight [three parameters per layer (thickness, roughness, SLD)

plus two additional parameters for the substrate (roughness

and SLD)]. The q range of the simulated curves is [0.02,

0.15] Å� 1 which aligns with the range of the test experimental

data, and the resolution is 128 points. Various types of noise

were applied to the simulated reflectivity curves in order to

provide robustness to experimental artefacts, namely Poisson
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Figure 3
The architecture of the embedding networks. (a) The 1D CNN, consisting
of convolutions with kernel size 3, stride 2 and padding 1. (b) The FNO,
consisting of spectral blocks which implement the neural operator kernel
in Fourier space.



noise, q-position noise, curve shifting and curve scaling based

on previous investigations (Greco et al., 2021).

The chosen parameter ranges are [0, 500] Å for the thick-

nesses, [0, 60] Å for the roughnesses and [� 25, 25]� 10� 6 Å� 2

for the SLDs. The negative values of the SLD include specific

cases of NR. The ranges of the prior bound widths are [0.01,

500] Å for the thicknesses, [0.01, 60] Å for the roughnesses

and [0.01, 4] � 10� 6 Å� 2 for the SLDs. While the prior bound

widths for the thicknesses and roughnesses span the whole

domain of these parameter types, the maximum prior bound

width for the SLDs was reduced, since this type of parameter

is associated with the highest amount of prior experimental

knowledge. Fig. 4 illustrates examples of input simulated

reflectivity curves for this model, together with the neural

network predictions (top row) and the ground-truth and

predicted SLD profiles (bottom row). The minimum and

maximum bound profiles serve as visual indicators of the

target interval’s narrowness, as defined by the input prior

bounds for each shown example. The minimum bound profile

is obtained by setting the values of all parameters (thicknesses,

roughnesses and layer SLDs) to their respective minimum

prior values, and conversely for the maximum bound profile.

Fig. 5 shows box plots of the absolute errors for each of the

eight predicted parameters [panel (a) thicknesses, (b) rough-

nesses and (c) SLDs] computed over a batch of 4096 simulated

curves, the ground-truth parameters and prior bounds being

generated as in the training procedure. We can see from the

box plots that the prediction errors for the thicknesses,

roughnesses and SLDs are quite low considering the large

parameter ranges used for training. We also note that the

mean of the absolute errors for the thickness predictions is

higher than both the median and the 75th percentile, which

indicates the existence of several outlier predictions with a

relatively high error.

It is important to understand how the performance of the

model depends on the input prior bounds, as this informs users
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Figure 4
(a)–(c) Examples of input simulated reflectivity curves (blue markers) and the corresponding neural network predictions (red lines) for the two-layer
model. (d)–( f ) Ground-truth (blue) and predicted (red) SLD profiles corresponding to the reflectivity curves in the top row. SLD profiles corresponding
to the minimum (green) and maximum (yellow) prior bounds used for the prediction are also shown as dotted lines. These minimum and maximum
bound profiles should not be visually interpreted as an envelope encasing the ground-truth or predicted SLD profiles.

Figure 5
Box plots of the absolute errors of each predicted parameter of the two-
layer model, computed over a batch of 4096 simulated curves, with the
prior bounds being uniformly sampled. (a) Thicknesses, (b) roughnesses
and (c) SLDs. The horizontal red lines denote the median, the black dots
denote the mean, and the lower and upper extremities of the box plots
denote the 25th and 75th percentiles, respectively.



how much prior knowledge they should provide for an

expected prediction quality. To evaluate such a dependence,

we sample batches of ground-truth parameters and prior

bounds such that the prior bound widths are fixed for each

batch. The prior bound widths are varied by multiplying the

maximum bound width of one parameter type at a time (while

keeping the maximum bound width for the other parameter

types constant) by a scalar value in the range [0, 1]. As shown

in Fig. 6, we observe that the absolute errors of the thick-

nesses, roughnesses and SLDs decrease when the relative

prior bound width for the corresponding parameter type is

decreased, as expected. A relative bound width of 0 represents

the trivial case where the prior bounds define the ground-truth

parameters exactly.

We demonstrate the applicability of our method for

analysing experimental reflectivity data using XRR curves

from a previously published data set (Pithan et al., 2022)

containing in situ measurements performed during the

deposition of a layer of organic material [diindenoperylene

(DIP) or pentacene] on top of a thin silicon oxide layer sitting

on a silicon substrate, together with the ground-truth manual

fits of the parameters. We are able to exploit the a priori

experimental knowledge of this data set by setting narrow

prior bounds around the known values of the SLD for the
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Figure 6
The dependence of the mean absolute error of each parameter type, (a) thickness, (b) roughness and (c) SLD, for the two-layer model as a function of the
prior bound width.

Figure 7
(a)–(c) Examples of input experimental reflectivity curves (blue markers) and the corresponding neural network predictions (red lines). (d)–( f ) Ground-
truth (blue) and predicted (red) SLD profiles corresponding to the reflectivity curves in the top row. SLD profiles corresponding to the minimum (green)
and maximum (yellow) prior bounds used for the prediction are also shown as dotted lines. These minimum and maximum bound profiles should not be
visually interpreted as an envelope encasing the ground-truth or predicted SLD profiles.



substrate (Si) and the bottom layer (SiO2). In previous

approaches using this data set (Greco et al., 2022), all the

parameters of the substrate and SiO2 layer were kept at

predefined constant values during training and only the

thickness, roughness and SLD of the top layer were predicted.

Our approach is capable of also tackling this specific use case

while being applicable to broader scenarios, such as for

substrates other than silicon. For the predictions on the

experimental data we use the same trained network we

previously employed for the evaluation on the simulated

curves. Fig. 7 shows input experimental curves together with

the neural network predictions (top row) and the corre-

sponding SLD profiles (bottom row).

4.2. Five-layer box model

Increasing the number of layers in the box model para-

meterization increases the difficulty of training a neural

network for the inverse problem since the reflectivity curves

become more complex and the degree of non-uniqueness also

increases. Nevertheless, we demonstrate that our method can

still be successfully applied to models with an increased

number of layers, namely a five-layer model, the total number

of physical parameters predicted by the neural network being

17 [three parameters per layer (thickness, roughness, SLD)

plus two additional parameters for the substrate (roughness

and SLD)]. We increase the q range of the simulated curves to

[0.02, 0.3] Å� 1 and the resolution to 256 points. The chosen
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Figure 8
(a)–(c) Examples of input simulated reflectivity curves (blue markers) and the corresponding neural network predictions (red lines) for the five-layer
model. (d)–( f ) Ground-truth (blue) and predicted (red) SLD profiles corresponding to the reflectivity curves in the top row. SLD profiles corresponding
to the minimum (green) and maximum (yellow) prior bounds used for the prediction are also shown as dotted lines. These minimum and maximum
bound profiles should not be visually interpreted as an envelope encasing the ground-truth or predicted SLD profiles.

Figure 9
Box plots of the absolute errors of each predicted parameter of the five-layer model, computed over a batch of 4096 simulated curves, with the prior
bounds being uniformly sampled. The horizontal red lines denote the median, the black dots denote the mean, and the lower and upper extremities of the
box plots denote the 25th and 75th percentiles, respectively.



parameter ranges are [0, 300] Å for the thicknesses, [0, 60] Å

for the roughnesses and [0, 25] � 10� 6 Å� 2 for the SLDs. The

ranges of the prior bound widths are [0.01, 300] Å for the

thicknesses, [0.01, 60] Å for the roughnesses and [0.01,

4] � 10� 6 Å� 2 for the SLDs. Fig. 8 shows examples of input

simulated curves and predictions for the five-layer model,

together with the corresponding SLD profiles. The absolute

errors between the ground-truth and predicted parameters are

displayed in Fig. 9. We observe that the prediction errors do

not vary much with the specific layer in the model. While, as

expected, the prediction errors for the five-layer model are

higher than those for the two-layer model (the difference

being more pronounced for roughnesses and less pronounced

for SLDs), the performance of our model is still very good in

this more challenging use case.

4.3. Complex multilayer model

In this subsection, instead of a box model parameterization,

we employ a physics-informed parameterization of a complex

multilayer structure, as illustrated in Fig. 10. The physical

scenario is the following. On top of a silicon/silicon oxide

substrate we consider a thin film composed of repeating

identical monolayers (grey curve in Fig. 10), each monolayer

consisting of two boxes with distinct SLDs. A sigmoid

envelope modulating the SLD profile of the monolayers

defines the film thickness and the roughness at the top inter-

face (green curve in Fig. 10). A second sigmoid envelope can

be used to modulate the amplitude of the monolayer SLDs as

a function of the displacement from the position of the first

sigmoid (red curve in Fig. 10). These two sigmoids allow one to

model a thin film that is coherently ordered up to a certain

coherent thickness but becomes incoherently ordered or

amorphous towards the top of the film. Such a scenario is

sometimes encountered when Kiessig and Laue fringes show

different periods. In addition, a layer between the substrate

and the multilayer is introduced to account for the interface

structure, which does not necessarily have to be identical to

the multilayer period. This ‘phase layer’ (i.e. a layer that

strongly influences the relative scattering phase between the

substrate and the multilayer) is important, as the relative

phase between a strong substrate reflection and a multilayer

Bragg reflection can lead to very different shapes of the curve

around the Bragg reflection for constructive or destructive

interference.

The 17 parameters describing the model together with their

training ranges are displayed in Table 1. For experimental

XRR curves of DIP monolayers, measured on a laboratory

X-ray source, we use prior knowledge about this system (layer

spacing, substrate SLDs, approximate SLD values for the two

boxes in the monolayer) to set suitable prior bounds. Fig. 11

shows input experimental curves together with the neural

network predictions for the model with physics-informed

parameterization. Again the prediction quality is good,

demonstrating the potential of the proposed method to fit

experimental data in increasingly complex scenarios such as

multilayer structures featuring Bragg peaks. Note that in this
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Figure 10
Physics-informed parameterization of the SLD profile for a thin film
consisting of repeating identical monolayers on top of a substrate. The
grey curve shows the base SLD profile of the monolayers, the green curve
shows the SLD profile with surface roughness and the red curve shows
the modulation of the SLD amplitude. The blue curve represents the final
SLD profile.

Table 1
Parameters of the model with physics-informed parameterization of the
SLD profile, together with the parameter ranges and the ranges of the
prior bound widths used for training.

Some of the parameters are relative with respect to the monolayer thickness.

Parameter Parameter range
Prior bound width
range

Monolayer thickness [10, 20] Å [0.1, 10] Å
Relative roughness of the

monolayer interfaces
[0, 0.3] [0.1, 0.3]

SLD of the first box in the

monolayer

[0, 20] � 10� 6 Å� 2 [0.1, 5] � 10� 6 Å� 2

SLD difference between the
second and first boxes in
the monolayer

[� 10, 10] � 10� 6 Å� 2 [0.1, 5] � 10� 6 Å� 2

Fraction of the monolayer
thickness belonging to the

first box

[0.01, 0.99] [0.01, 1]

Roughness of the silicon
substrate

[0, 10] Å [0.01, 10] Å

SLD of the silicon substrate [19, 21] � 10� 6 Å� 2 [0.01, 2] � 10� 6 Å� 2

Thickness of the silicon oxide
layer

[0, 10] Å [0.01, 10] Å

Roughness of the silicon oxide

layer

[0, 10] Å [0.01, 10] Å

SLD of the silicon oxide layer [17, 19] � 10� 6 Å� 2 [0.01, 2] � 10� 6 Å� 2

SLD of the phase layer [0, 25] � 10� 6 Å� 2 [0.01, 25] � 10� 6 Å� 2

Relative thickness of the phase
layer

[0, 1] [0.01, 1]

Relative roughness of the phase

layer

[0, 1] [0.01, 1]

Relative position of the first
sigmoid (total film thickness)

[0, 25] [0.1, 25]

Relative width of the first
sigmoid

[0, 5] [0.1, 5]

Relative position of the second

sigmoid (coherently ordered
film thickness)

[� 10, 10] [0.1, 20]

Relative width of the second
sigmoid

[0, 20] [0.1, 20]
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Figure 11
(a)–(b) Examples of input experimental reflectivity curves of DIP monolayers grown on top of a silicon/silicon oxide substrate (blue markers) with the
corresponding neural network predictions (red lines) for the model with physics-informed parameterization. (c)–(d) Predicted SLD profiles corre-
sponding to the reflectivity curves in the top row.

Figure 12
(a)–(c) Examples of input simulated reflectivity curves with variable discretizations (blue markers) and the corresponding neural network predictions
(red lines) for a two-layer model with the FNO embedding network. (d)–( f ) Ground-truth (blue) and predicted (red) SLD profiles corresponding to the
reflectivity curves in the top row. SLD profiles corresponding to the minimum (green) and maximum (yellow) prior bounds used for the prediction are
also shown as dotted lines. These minimum and maximum bound profiles should not be visually interpreted as an envelope encasing the ground-truth or
predicted SLD profiles.



case the gradient descent polishing procedure introduced in

previous studies (Greco et al., 2022) can further improve the

fit, and it can be performed both with the 17 introduced

parameters and with the full set of box model parameters,

allowing the final solution potentially to evolve beyond the

designed parameterization.

4.4. Model with Fourier neural operator embedding network

In this subsection, we show the results obtained when using

the FNO as the embedding network instead of the 1D CNN

used in the previous sections. The number of points in the

simulated curves is in the range [128, 256], the minimum value

of q is in the range [0.01, 0.03] Å� 1 and the maximum value of

q is in the range [0.15, 0.4] Å� 1. We consider a two-layer box

model with parameter ranges [0, 300] Å for the thicknesses, [0,

60] Å for the roughnesses and [0, 25] � 10� 6 Å� 2 for the

SLDs. The ranges of the prior bound widths are [0.01, 300] Å

for the thicknesses, [0.01, 60] Å for the roughnesses and [0.01,

4] � 10� 6 Å� 2 for the SLDs. Due to increased memory

demands the batch size is reduced to 1024. Fig. 12 shows input

curves with variable numbers of points and q ranges, together

with the neural network predictions (top row), and the

corresponding SLD profiles (bottom row). By using an FNO

as the embedding network, our approach is successfully

extended to curves with variable discretizations. A disadvan-

tage in this scenario is that the network takes longer to

converge.

5. Conclusions

In this study, we have addressed the ambiguity related to the

phase problem as a primary obstacle in machine-learning-

based approaches for extracting information from X-ray

reflectivity and neutron reflectivity data. The ambiguity in the

space of possible solutions increases the larger the considered

parameter space becomes. This prevents the successful

training of neural networks for complex multilayer structures

with many free parameters. Therefore, previous solutions were

limited to relatively simple layer structures with just a few

parameters. To tackle this issue, we have proposed a proce-

dure that enables training of a neural network on a continuous

range of smaller subspaces of a large parameter space.

Our method allows users to incorporate prior experimental

knowledge by specifying upper and lower bounds for each

parameter during inference. This approach overcomes the

limitations in existing machine learning methods, as it allows

training of networks with a larger number of parameters and

expanded parameter ranges, while still enabling proper

convergence.

The proposed approach is a natural way of tackling the

inverse problem in reflectometry as it resembles the standard

workflow of conventional fitting techniques routinely used in

the analysis of reflectometry data, i.e. choosing a proper

parameterization of the SLD profile, setting prior bounds for

the parameters and obtaining a single solution which best fits

the data. We emphasize though that in some cases Bayesian

analysis of the data can be preferred by researchers in order to

understand the correlations between the parameters.

We have validated the effectiveness of our approach by

training networks using different physical models: two-layer

and five-layer box model parameterizations, and a specialized

parameterization for repeating identical monolayers. In

contrast to previous work, our approach scales favourably

when increasing the complexity of the inverse problem, giving

good predictions even for the challenging five-layer multilayer

model.

We note that the proposed approach can be adapted to

tackling other inverse problems in science affected by the non-

uniqueness issue.
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