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DLSIA (Deep Learning for Scientific Image Analysis) is a Python-based

machine learning library that empowers scientists and researchers across diverse

scientific domains with a range of customizable convolutional neural network

(CNN) architectures for a wide variety of tasks in image analysis to be used in

downstream data processing. DLSIA features easy-to-use architectures, such as

autoencoders, tunable U-Nets and parameter-lean mixed-scale dense networks

(MSDNets). Additionally, this article introduces sparse mixed-scale networks

(SMSNets), generated using random graphs, sparse connections and dilated

convolutions connecting different length scales. For verification, several DLSIA-

instantiated networks and training scripts are employed in multiple applications,

including inpainting for X-ray scattering data using U-Nets and MSDNets,

segmenting 3D fibers in X-ray tomographic reconstructions of concrete using an

ensemble of SMSNets, and leveraging autoencoder latent spaces for data

compression and clustering. As experimental data continue to grow in scale and

complexity, DLSIA provides accessible CNN construction and abstracts CNN

complexities, allowing scientists to tailor their machine learning approaches,

accelerate discoveries, foster interdisciplinary collaboration and advance

research in scientific image analysis.

1. Introduction

1.1. Purpose and motivation

Scientific image analysis forms a crucial component of

numerous workflows at user facilities, generating an abun-

dance of data sets that each possess unique characteristics.

Given the distinct nature of these data sets, the need

frequently arises to craft custom solutions tailored to indivi-

dual experiments. Convolutional neural networks (CNNs),

along with other machine learning tools, prove extremely

valuable in this regard, capable of addressing a variety of

analysis needs and producing insightful results. The unique

aspect of scientific data analysis in such settings often neces-

sitates the creation of bespoke solutions tailored to individual

experiments, providing optimal results given the data’s specific

characteristics. CNNs, along with a host of other machine

learning tools, present themselves as exceptionally suitable for

such tasks because of their flexibility and the wide array of

potential applications to which they cater.

1.2. Background and prior art

CNNs have emerged as a transformative class of machine

learning models specifically designed to unravel patterns and

extract meaningful features from various forms of data.

Having gained significant popularity in the scientific commu-

nity, CNNs are particularly well suited for tackling image
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analysis tasks, including object detection, image classification

and pixel-by-pixel semantic segmentation. The unique

strength of CNNs lies in their ability to autonomously learn

discriminative features directly from the data themselves,

eliminating the need for laborious manual feature engi-

neering. By training on large data sets with labeled examples,

CNNs can learn to recognize specific objects, identify

anomalies or detect subtle patterns. Moreover, CNNs remain a

versatile tool, allowing researchers from different back-

grounds to choose from a variety of different CNN archi-

tectures that can denoise, reconstruct and segment images

(Xing et al., 2017; Kaur et al., 2018; Manifold et al., 2019; Gong

et al., 2019; Kromp et al., 2020; Jung & Kim, 2014), or perform

higher-level tasks from among their diverse scientific disci-

plines, including automated structure and material classifica-

tion and data-driven discovery in X-ray scattering (Kiapour et

al., 2014; Liu et al., 2019; Deyhle et al., 2018; Douarre et al.,

2018; Wang et al., 2017), biological (Radivojević et al., 2020;

Wäldchen & Mäder, 2018), crystallographic (Ziletti et al., 2018;

Kirman et al., 2020; Sun et al., 2019) and signal processing

(Tabar & Halici, 2016; Schirrmeister et al., 2017; Lawhern et

al., 2018; LiKamWa et al., 2016) settings.

While the widespread adaptability of CNNs has made them

a prevalent tool across various scientific domains, not all

scientific researchers possess the expertise or knowledge

required to construct and train these networks effectively.

Access to user-friendly libraries with pre-built networks is

invaluable for individuals lacking a deep understanding of

CNNs. These libraries offer a convenient way to deploy CNNs

without dealing with network architecture intricacies.

Researchers can focus on their domain expertise by leveraging

these libraries instead of building CNNs from scratch. The

flexibility of these libraries enables iterative experimentation,

allowing researchers to easily swap network architectures and

adjust hyperparameters to find the best configurations for

their problems. Access to state-of-the-art networks saves time

and resources, while promoting interdisciplinary collaboration

by abstracting the complexities of CNN construction and

training, as researchers can focus on their areas of expertise

while leveraging the power of CNNs for their analyses.

In summary, the prevalence of CNNs in the sciences

necessitates user-friendly libraries that simplify their

construction and training, allowing scientists to stay at the

forefront of CNN research without the need for extensive

expertise in deep learning. To address these challenges and

expedite the process of incorporating machine learning into

scientific image analysis workflows, we introduce DLSIA

(Deep Learning for Scientific Image Analysis), a Python-

based general-purpose machine learning library offering a

flexible and customizable environment for generating custom

CNN architectures and an extensive suite of tools designed to

empower scientists and researchers from diverse scientific

domains, including beamline scientists, biologists and

researchers in X-ray scattering. DLSIA enables a seamless

integration of custom CNN architectures and other advanced

machine learning methods into common workflows, providing

researchers with the means to rapidly test and implement

different analysis approaches within a unified framework and

dramatically increasing efficiency and adaptability. Whether

the task at hand involves image classification, anomaly

detection or any other complex pattern recognition, DLSIA

offers a streamlined, efficient platform that enables users to

explore, compare and customize a wide array of CNN archi-

tectures, facilitating a systematic investigation of what works,

what does not work and what is best suited for their specific

scientific problems.

1.3. The DLSIA software library

The core focus of DLSIA lies in its ability to bridge the gap

between cutting-edge deep learning techniques and the chal-

lenges encountered in scientific image analysis. By offering a

comprehensive collection of user-customizable CNNs,

including autoencoders, tunable U-Nets, mixed-scale dense

networks and more novel randomized sparse mixed-scale

networks, DLSIA allows researchers to harness the power of

state-of-the-art deep learning while tailoring a network

architecture to the specific demands of their scientific inves-

tigations. This flexibility empowers users to fine-tune CNNs,

select appropriate layers, optimize hyperparameters and

explore diverse architectural variations, enabling a compre-

hensive exploration of the rich design space inherent in deep

learning based image analysis.

DLSIA facilitates seamless integration with various scien-

tific data sets and promotes reproducible research through its

intuitive and extensible PyTorch application programming

interface (API). It offers a rich set of functionalities for data

preprocessing, model training, validation and evaluation,

while also providing convenient visualization tools to aid in

the interpretation and analysis of results. With its user-centric

design philosophy, DLSIA aims to empower scientists across

domains to leverage the potential of CNNs for scientific image

analysis, ultimately accelerating discoveries and advancing

research in a wide range of scientific fields. DLSIA docu-

mentation and core may be accessed at https://dlsia.

readthedocs.io/en/latest/, while a list of DLSIA modules,

scripts and subroutines is given in Appendix A.

The rest of the article is organized as follows: Section 2

takes an in-depth look at the CNN architectures offered;

Section 3 describes the different utility functions, data loaders,

training regiments and uncertainty quantification available to

DLSIA users; we validate DLSIA CNN architectures through

various applications on experimental data in Section 4 and

offer insights regarding network selection and initializing

hyperparameter tuning; and Section 5 concludes with a

discussion of DLSIA results and viability.

2. DLSIA deep convolutional neural networks

CNNs are deep learning models that excel at visual data

analysis. In general, CNNs capture features by applying many

convolutional filters, or kernels, to local regions of the data via

several adjacently connected convolutional layers. The filters

are square matrices with adjustable weights that serve as
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‘windows’ observing a specific region of the image. By learning

the filters’ weights via network training and optimization,

CNNs can identify various features within the image.

We highlight below the different CNN architectures avail-

able in the DLSIA software library. Each available network

varies in its sequencing of layers and addition of nonlinear

activation, pooling and normalization layers to decompose

images into complex hierarchical structures and increase the

expressive power. But true to the original goal of DLSIA, all

networks are fully customizable with an array of user-specified

hyperparameters available to toggle.

2.1. Tunable U-Nets

Included in the DLSIA software suite is a tunable variant of

U-Nets (TUNets), a popular and effective deep CNN

(Ronneberger et al., 2015). Inspired by autoencoders (Section

2.2) and first introduced for the segmentation of biomedical

images, its distinctive U-shaped architecture consists of typi-

cally mirrored contractive encoder and expansive decoder

halves. Contextual information and features are captured by

the contractual encoder phase, made up of a predefined

number of layers d, each consisting of stacked unpadded

convolutional operators. Max-pooling operations between

layers reduce the spatial dimensionality to ease computational

costs, introduce translational equivariance (Finzi et al., 2020)

and encourage higher-level feature extraction. Next, the

expansive decoder half mirrors the downsampling phase, but

with transposed convolutions between layers to recover the

previously compressed spatial dimensions, effectively

projecting the encoder’s learned features into the higher

resolutions of the original image space to predict a pixel-by-

pixel semantic segmentation (Noh et al., 2019; Springenberg et

al., 2014). Moreover, long-reaching skip connections are

introduced in the form of channel-wise concatenations of

intermediate feature maps between adjacent contractive and

expansive phases, encouraging an aggregation of multi-scale

feature representation at different network stages (Zhou et al.,

2018, 2020; Kumar et al., 2018; Drozdal et al., 2016).

TUNet performance on different applications relies signif-

icantly on the various hyperparameters that govern the

network architecture (Kinnison et al., 2018; Li et al., 2021;

Berral et al., 2021). As such, the DLSIA API offers full flex-

ibility in creating and deploying TUNets of custom sizes and

morphology by allowing the user to define the four following

architecture-governing hyperparameters:

(i) Depth d: the number of layers in the TUNet. A depth of

d will contain d layers of dual convolutions and accompanying

intralayer operations in each of the encoder and decoder

phases, with d � 1 mirrored max-pooling, up-convolutions and

concatenation steps between each layer.

(ii) Number of initial base channels cb. The input data are

mapped to this number of feature channels after the initial

convolution.

(iii) Growth rate r: the growth rate/decay rate of feature

channels between successive layers.

(iv) Hidden rate rh: the growth rate/decay rate of feature

channels within each individual layer, between each layer’s

successive convolutions.

The original implementation of U-Nets (Ronneberger et

al., 2015) uses the following default hyperparameters which

may be used as a starting point for finding an appropriate
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Figure 1
Diagram of a 2D four-layer tunable U-Net congruent with input data of cin channels and spatial dimensions m and n. Among the user-defined
hyperparameters on display are the initial base channels cb and the channel growth factor r, both of which control the size of the network and thus its
potential expressive power. The hidden growth rate rh is set to 1 for simplicity. We note that DLSIA easily accommodates volumetric data by simply
replacing all convolutions (and associated layer normalization) with their 3D counterparts.



architecture for specific applications: d = 4, cb = 64 and r = 2,

where rh is exclusive to DLSIA, is typically set to 1, but can be

toggled for model fine-tuning purposes along with cb and r.

Additionally, DLSIA defaults to rectified linear unit (ReLU)

nonlinear activation and batch normalization after each

convolution operation to expedite the learning process (Ioffe

& Szegedy, 2015). A U-Net schematic of depth d = 4 is shown

in Fig. 1, depicting the order of operations and evolution of

channels and spatial dimensions along the contracting and

expanding halves. We note that the growth and hidden rates of

feature channel growth and decay may be non-integers.

2.2. Convolutional autoencoder

Convolutional autoencoders are a deep unsupervised

neural network framework generally tasked with learning

feature extraction for the purpose of reconstructing the input

(Rumelhart et al., 1985; LeCun et al., 1998). While relatively

simple in structure and acting as a precursor to U-Net

encoder–decoder structure, the difference displayed in Fig. 2

shows the encoder half terminating at a single-dimensional

latent space of features, often referred to as the latent space

representation. This informational ‘bottleneck’ forces the

network to learn only the most important features and

contextual information. The second half of the network, the

decoder, concludes with alternating transposed convolutions

and blocks of dual convolutions to project the information

back to the input space and learn the reconstruction of input

data.

DLSIA instantiation of autoencoders once again reflects

that of the tunable U-Nets. Users may find the autoencoder

with the appropriate expressive power to suit their needs by

toggling the number of layers d, the initial number of base

channels cb and the growth rate r of the convolutional chan-

nels. Additionally, users are encouraged to experiment with

different sizes of latent space vectors with the clat hyper-

parameter, as an appropriate clat may vary by several orders of

magnitude depending on the size and scope of the given

application.

2.3. Mixed-scale dense CNNs

The MSDNet was developed as a deep learning framework

with a relatively simple architecture containing approximately

two to three orders of magnitude fewer trainable parameters

(Pelt & Sethian, 2018; Pelt et al., 2018) than U-Nets and typical

encoder–decoder networks. MSDNets reduce model

complexity in two ways. First, to probe image features at

different length scales and preserve dimensionality between

all network layers, dilated convolutions (Yu & Koltun, 2015)

replace the upscaling and downscaling operations typically

found in CNNs. Convolutions of integer dilation l consist of

the same square kernel as their non-dilated counterparts,

though the dilated kernel’s receptive field is expanded by

spacing neighboring entries (l � 1) pixels apart in horizontal

and vertical directions. Secondly, as depicted in the three-layer

MSDNet diagram in Fig. 3, layers associated with different

length scales are mixed together by densely connecting all

potential pairs of layers, leading to several advantages,

including maximum feature reusability, recovery of spatial

information lost in the early layers and alleviation of the

vanishing gradient problem (Ioffe & Szegedy, 2015) that

plagues deep networks (Tong et al., 2017). The final MSDNet

output layer is computed by replacing dilated convolutions

with 1 � 1 non-dilated convolutions. These single-pixel filters

connecting all layers result in a linear combination of inter-

mediate feature maps with weights learned during the opti-

mization process.

Overall, MSDNets have a much simpler architecture than

the aforementioned U-Net design. As a result, the DLSIA
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Figure 2
Schematic overview of a two-layer autoencoder congruent with input data of cin channels and spatial dimensions m and n. DLSIA provides the flexibility
to adjust the following hyperparameters: initial base channels cb, channel growth factor r and length of latent space vector clat.



API requires only two main hyperparameters with which to

govern the network architecture.

(i) Depth d: the number of network layers.

(ii) Maximum dilation lm: the maximum integer dilation of

the network, where either

(a) each layer di is assigned integer dilation i mod lm, or

(b) DLSIA users can manually assign specific (custom)

dilations to each layer with a vector of length d, e.g. cycling

through dilations of size [1, 2, 4, 8, 16] ten times in a network

with d = 50.

The original implementation of MSDNets used d = 100 and

lm = 10 for all applications (Pelt & Sethian, 2018), though we

encourage users to experiment with larger dilation sizes, either

with lm > 10 or manually specifying powers of 2 such as

[20, 21, 22, . . . , 2n].

2.4. Sparse mixed-scale CNNs

MSDNets are designed to require a minimal number of

parameters, yet the resulting networks may still be trimmed

down using pruning approaches. For instance, results from the

graph-based pruning method LEAN (Schoonhoven et al.,

2020) demonstrate that large MSDNets can be reduced to

0.5% of their original size without sacrificing significant

performance. Given the high quality in performance of pruned

networks in general (Blalock et al., 2020; Park et al., 2016;

Wang et al., 2021), it would be advantageous to be able to

create pre-pruned networks from scratch, aimed at producing

networks that are as lean as possible with the lowest chances

of overfitting.

In this communication, we aim to produce this type of

network by using a stochastic approach that yields random

networks with configurable complexity. We are motivated by

the fact that network ensembling methods thrive among

models with higher variance (Dietterich, 2000). These sparse

mixed-scale networks (SMSNets), illustrated in Fig. 4, are

stochastically configured, both topologically with varying

random connections and morphologically with convolutions of

different random dilations assigned to each connection. This

random nature of model architectures produces additional

diversity and higher variance among many models, making

them suitable for ensemble methods (Dietterich, 2000; Ganaie

et al., 2022). Each SMSNet is produced using the following

user-specified hyperparameters:

(i) d: the number of nodes between the input (I) node and

the output (O) node.

(ii) kmin, kmax: the global minimum and maximum number of

edges per node. By default, these are set to 1 and (d + 1),

respectively. Adjustments are made on a node level based on

their depth.

(iii) LL�: the degree distribution parameter. The number

of edges nj at node j is a random number drawn from a

research papers

396 Eric J. Roberts et al. � DLSIA: Deep Learning for Scientific Image Analysis J. Appl. Cryst. (2024). 57, 392–402

Figure 3
Schematic of a three-layer MSDNet with cin and cout the number of input and output channels. Blue, green and red solid lines represent 3 � 3 dilated
convolutions between all possible pairs of input and intermediate layers, with different dilations assigned to each color. The black dashed lines at the
bottom connecting all input and intermediate layers to the output layer represent 1 � 1 convolutional operators, amounting to a linear sum between
individual pixels at each position among all non-output layers.

Figure 4
Schematic overview of a six-layer SMSNet. Network nodes consist of the input data I, six intermediate (hidden) layers L and output data O. All nodes/
layers are sparsely connected via convolution filters, represented by dashed, dotted and solid lines. For the sake of simplicity, connections between input-
to-output (IO) channels are not shown.



distribution with density proportional to expð� �njÞ, with

nj 2 ½minðkmin; d � jÞ;minðkmax; d � jÞ�.

(iv) LL�: the skip-connection distribution parameter

governing the probability for an edge to be assigned between

node i and node j, proportional to expð� �ji � jjÞ.

(v) PIL: the probability for an edge between input node I

and any of the intermediate hidden nodes L.

(vi) PLO: the probability for an edge between an inter-

mediate hidden node L and the output node O.

(vii) PIO: a Boolean variable that allows edges between all

channels in input node I and output node O.

DLSIA defaults to the following hyperparameters: d = 20,

fkmin; kmaxg ¼ f1; 5g, LL� � Uð0; 0:5Þ, LL� � Uð0:75; 1Þ and

{PIL, PLO, PIO} = {1, 1, 1}. But when searching parameter

space, we recommend first increasing network depth d and

once again specifying custom dilations of [20, 21, 22, . . . , 2n]

from which to sample.

Important to note are two observations regarding SMSNets.

Firstly, in typical applications with sufficient amounts of

labeled data, no individual SMSNet will outperform a more

traditional convolutional-based architecture of similar depth

d. Instead, we typically employ them in multi-network

ensembling schemes. Secondly, the exception to this is in

applications with limited or incomplete labeled data – indivi-

dual SMSNets learn a proper segmentation where larger

TUNets may completely fail to converge. We demonstrate this

phenomenon below in Section 4.2. In this example, TUNets

failed to learn a supervised segmentation from sparsely

labeled training data. However, we were able to leverage

predictions from an ensemble of several low-parameter

SMSNets, each with varied architectures generated stochasti-

cally and independently using the above hyperparameters

available in DLSIA.

3. Utility functions and hyperparameter tuning

3.1. DLSIA utility functions

In addition to custom CNN architectures, DLSIA offers a

number of tools to assist in the end-to-end training process.

(i) Training scripts. DLSIA offers comprehensive training

scripts for effortlessly loading data and customizing training

instances. Researchers can easily fine-tune a range of essential

parameters, including optimizer selection, learning rate,

learning schedulers, gradient clipping, early stopping and

automatic mixed precision. This flexibility ensures that users

can tailor their training process to the unique demands of their

scientific image analysis tasks, while efficiently optimizing

model performance.

(ii) Custom loss functions. In addition to standard classifi-

cation loss functions such as the cross-entropy provided by

PyTorch, DLSIA provides a collection of custom loss func-

tions designed to tackle specific challenges in scientific image

analysis. The Dice loss (Sorensen, 1948) is an alternative to the

cross-entropy loss that measures the overlap between

predicted and ground-truth masks. The focal loss (Lin et al.,

2017) aids in handling imbalanced data sets by prioritizing

hard-to-classify samples during training. The Tversky loss

(Tversky, 1977) offers a fine-tuned balance between false

positives and false negatives, granting users more control over

the desired trade-offs during training.

(iii) Random data loaders. In PyTorch, random data split-

ters are often used for creating separate training, validation

and testing data sets from a larger data set, a crucial step in

training a robust machine learning model. These tools, such as

the RandomSplit function, work by randomly assigning a

certain proportion of the data set to each subset. This ensures

an unbiased distribution of data points, aiding in preventing

overfitting and improving the generalization capability of the

model. In essence, random data splitters provide a quick and

efficient method to divide data sets, paving the way for

effective model training and evaluation processes.

While random data splitters in PyTorch excel in scenarios

with large data volumes, their effectiveness can diminish in

segmentation problems with a shortage of images. This is

because they operate at the image level, meaning they cannot

split and shuffle small data sets effectively for robust training

and testing. To overcome this limitation, DLSIA introduces

random data loaders that perform splitting at a more granular

pixel level, creating randomized disjoint sets. This allows for

more representative distributions of training and validation

data, even in situations with limited images, leading to better

model performance and generalizability.

(iv) Conformal estimation methods. DLSIA offers

conformal estimation methods (Angelopoulos & Bates, 2021),

enabling researchers to determine confidence intervals for

their model predictions. By quantifying uncertainty in

predictions, calibrated prediction sets with user-specified

coverage are provided, allowing one to make informed deci-

sions in critical applications.

4. Applications using DLSIA

We use DLSIA in the following examples to build end-to-end

deep learning workflows. Section 4.1 uses MSDNets and

tunable U-Nets for inpainting purposes, which are shown to

inpaint favorably compared with traditional inpainting algo-

rithms such as biharmonic function approximation. Here,

network training was performed on a single 40 GB capacity

Nvidia A100 GPU. Additionally, in Sections 4.2 and 4.3 vali-

dation of SMSNet ensembling and autoencoder latent space

clustering was performed on a single 24 GB memory capacity

Nvidia RTX 3090 GPU, along with a 20-thread I9-10900X

Intel Core CPU for loading, distributing and receiving work

calls to and from the GPU. All training was performed using

the ADAM optimizer (Kingma & Ba, 2014).

4.1. Inpainting X-ray scattering images with U-Nets and

MSDNets

Image inpainting is a restoration process that estimates the

contents of missing regions within images and videos. Several

machine learning (ML) approaches exist for inpainting

(Elharrouss et al., 2020; Jam et al., 2020), chief among them
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being competing dual-model generative adversarial networks

(GANs) (Chen et al., 2021a; Zhao et al., 2020) and partial

convolutional operators which augment traditional convolu-

tional layers with adaptive kernel masking (Liu et al., 2018).

While inpainting has recently gained popularity in non-

scientific communities for its ability to blindly fill in pictures of

heavily masked faces, inpainting in X-ray scattering sciences is

limited to only a handful of previous studies which heavily

exploit symmetry (Liu et al., 2017). Since beamline scientists

are currently using ML-based algorithms to process the large

amount of data they collect (Chen et al., 2021b), it is of great

importance to reconstruct the missing regions to avoid the

introduction of distortion and bias to the post-processing ML

analysis.

Hence, DLSIA was employed to inpaint the missing pixel

information in vertical and horizontal detector gaps in X-ray

scattering data sets. In the study of Chavez et al. (2022), the

ground-truth information exists for the missing horizontal gap

data which can be used for training, though missing gap data

information is entirely nonexistent for the vertical bars. To

alleviate this constraint, data augmentation was performed.

Outlined in Fig. 5, this augmentation process artificially

introduced vertical bar gaps in new positions which contained

ground-truth data behind them.

Two distinct CNNs quite capable at full-image pixel-by-

pixel segmentation, a U-Net and an MSDNet, are imple-

mented to see if their capabilities translated to the task of

inpainting the gaps. Once the data augmentation steps were

complete, nearly 15 000 training images were used, of which

three are shown in Fig. 5(c). The L1 loss metric, which gauges

differences between gap predictions and ground truth, was

chosen as the target function to minimize. The L2 loss was also

tested but resulted in more blurring, as is consistent with

previous inpainting studies (Isola et al., 2017). Of several

different hyperparameter combinations tested, a depth-4 U-

Net with �8.56 million parameters and a 200-layer MSDNet

with �0.18 million parameters were the best performing

networks, both achieving correlation coefficient scores of

>0.998 between predicted gaps and ground truth. The

inpainting predictions are displayed in Fig. 6. While the

inpainted gaps do not represent recorded truth and should not

be used to derive physical quantities, there is significant

evidence in the viability of using gap inpainting for further

downstream ML analyses. In particular, the inpainting

predictions and their dimensionally reduced autoencoder

latent space representations, as compared with non-inpainted

and gapped counterparts, are shown to have more favorable

compressed representations that can be used for classification

or image retrieval purposes (Chavez et al., 2022).
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Figure 6
Inpainting of X-ray scattering vertical and horizontal detector gaps using
U-Net and MSDNet for (a) a grazing-incidence X-ray scattering
(GISAXS) pattern of crystalline disordered material, (b) a transmission
SAXS pattern exhibiting diffuse rings and (c) a GISAXS pattern of a
crystalline material with a high degree of order.

Figure 5
Inpainting data augmentation process to artificially present new vertical gaps with ground-truth information behind them. (a) Input data are (b) cropped
into seven overlapping images, introducing new vertical gaps in one of four positions in the non-highlighted images. (c) Highlighted images constitute the
original input, but artificial gaps are randomly inserted in one of the four new gap positions.



4.2. Detecting 3D fibers in X-ray tomographic reconstruc-

tions of concrete using SMSNet ensembling

Fiber reinforcement in concrete plays a fundamental role in

enhancing the material’s properties, delivering increased

tensile strength, superior shrinkage control, and enhanced

flex-induced crack, blast and fire resistances (Beckmann et al.,

2021; Naser et al., 2019; Zollo, 1997). As concrete naturally has

good compression resistance but lower tensile strength, fibers

can be used to improve this tensional weakness, ensuring the

material can endure greater tensile stresses. Furthermore,

fibers significantly contribute to the concrete’s toughness and

durability, providing heightened resistance to impact and

abrasion damage (Yuhazri et al., 2020). Simultaneously, the

integral role of fibers in mitigating shrinkage throughout the

curing process and the concrete’s lifetime ensures overall

enhanced longevity of the structure (Aghaee & Khayat, 2021).

Understanding the structural distribution of fibers within

the concrete matrix is pivotal for comprehending the proper-

ties of the composite material and consequently the design of

better concrete mixtures. Fiber distribution, orientation and

density greatly impact the overall performance of the

concrete, influencing its strength, ductility and fracture resis-

tance (Raju et al., 2020). This characterization can be achieved

through techniques such as X-ray tomography, as performed

by Wagner & Maas (2023). Here, the authors use X-ray

tomography to produce a volumetric reconstruction of poly-

ethylene fibers distributed in strain-hardened cement

composites, commonly used to gauge resistance to cracking

under controlled tensile loading (Mechtcherine, 2013). While

the authors use the volumetric reconstruction data set

(available to download at https://doi.org/10.34740/KAGGLE/

DS/2894881) supplemented with extensive augmentation to

validate a number of 3D segmentation models, we instead

perform 2D manual binary segmentation with much more

incomplete and sparsely curated ground-truth data. This low

data constraint allows us to test the feasibility of training

SMSNets against limited ground-truth data and discuss their

advantages over U-Nets in these data-limited regimes.

The limited ground-truth data curation consisted of manual

segmentation using the Napari software (Sofroniew et al.,

2022) resulting in the sparse and incomplete hand-annotation

of only six fibers, consisting of �245 000 labeled pixels with a

10:2 background-to-foreground ratio. Hand-annotations used

for training are displayed in Fig. 7(a). This selection was

restricted to a few locations with the focus of balancing

accuracy – particularly when labeling the border between

classes – and overall speed of annotation to maintain a

manageable workload.

The prepared data were then subjected to (i) an ensemble

of five DLSIA-instantiated SMSNets, each with a different

stochastically generated architecture and approximately

45 000 parameters, and (ii) several different sizes of TUNets

ranging over two orders of magnitude in learnable weights.

Each TUNet failed to produce a meaningful segmentation

model, likely due to the sparsity of the labels. The SMSNets

here proved to be more resilient in low-data regimes, in line

with previous observations (Pelt & Sethian, 2018). Addition-

ally, we note that each individual SMSNet instance has a

stochastically generated architecture, thus simplifying the

hyperparameter fine-tuning process.

The SMSNet multi-network mean prediction probabilities

are displayed in Fig. 7(d). However, we choose to leverage the

multi-network standard deviation and keep only those pixel

predictions whose probability remains over 50% after

subtracting a single standard deviation, pictured in Fig. 7(e). A

subsequent analysis using the external Python package cc3d

(Wu et al., 2021) involved 3D instance segmentation using a
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Figure 7
Ensemble network predictions of fibers in concrete. (a) Sparse binary
labeling of target fibers (cyan) and background (brown). (b) Aggregated
network predictions. (c) Cross-sectional slice of raw training data. (d)
Probability map of aggregated network predictions. (e) Probability map
with standard deviations subtracted. ( f ) Cross-sectional view of instance
segmented fibers derived from (e).

Figure 8
Summary statistics of fiber segmentation predictions. Displayed are (a) a histogram plot of fiber lengths and (b) an equal-area Hammer projection of the
autocorrelation function of the 3D segmentation results at a radius of 30 pixels from the origin, showing a general anisotropic distribution of the direction
of the fibers.

https://doi.org/10.34740/KAGGLE/DS/2894881
https://doi.org/10.34740/KAGGLE/DS/2894881


decision tree augmented 3D variant of connected components

(Wu et al., 2005). Additionally, cc3d allowed for the removal

of small connected components – a so-called ‘dusting’ – below

some user-defined threshold. Both a histogram of the end-

to-end length of the instance segmented fibers and a

Hammer–Aitoff projection (Tobler, 1964) of the surface of an

origin-centered 30-pixel sphere of the autocorrelation func-

tion of the segmented labels – essentially measuring the

directional distribution of the segmented fibers – are shown in

Fig. 8, providing critical insights into the morphology and

organization of the segmented fibers that can be used to

understand, predict or design properties of fiber-reinforced

concrete.

4.3. Autoencoder compression and latent space clustering

We present the results of our clustering approach on the

highly compressed autoencoder latent space using synthetic

data consisting of 64 � 64 tiles, each containing one of four

random shapes (circle, triangle, rectangle and annulus) that

are randomly sized and rotated by a random degree around

their centers. We applied a four-layer 16-base channel auto-

encoder that bottlenecks to a 16 � 1 sized latent space (or

feature space) to reconstruct the input data, optimized on the

mean square error loss. To assess the quality of our model

reconstruction, we found the Pearson cross-correlation scored

against the original images, which yielded an impressive score

of approximately 0.98.

Once the model was sufficiently trained, we passed new

images through the trained autoencoder to obtain their 16 � 1

latent space representation, a 256-factor compression of the

data. To visualize and analyze the clustering behavior, we

further compressed the latent space down to two real numbers

using U-Map (McInnes et al., 2018), allowing us to generate

meaningful scatter plots in Cartesian coordinates. As illu-

strated in Fig. 9, our approach exhibits clear, distinct clustering

results between each of the four shapes. Moreover, the

approach handles the variations in shape orientation and size

remarkably well, with clear transitions between each shape’s

size and orientation within each cluster.

5. Discussion and conclusions

We introduce DLSIA (Deep Learning for Scientific Image

Analysis), a Python-based deep learning convolutional neural

network library aimed at bringing a new level of user-custo-

mizability to researchers and their image analysis tasks.

Offering simplified network construction, multiple proven

network architectures and an array of tunable training para-

meters, DLSIA provides a versatile platform allowing users to

explore diverse network settings. DLSIA-instantiated

networks and workflows were validated through three sepa-

rate applications: (i) semantic segmentation of fibers in X-ray

tomographic reconstruction of concrete data using an

ensemble of SMSNets, (ii) inpainting of missing gap infor-

mation in X-ray scattering data using U-Nets and MSDNets,

and (iii) investigation into clustering autoencoder latent space

on synthetic shape data.

The above algorithms are implemented in a set of Python3

routines, and are pip installable (via pip install dlsia).

Additionally, some DLSIA modules for custom MSDNet,

autoencoder and U-Net instantiation for segmentation
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Figure 9
Autoencoder latent space representation, further compressed by U-Map,
of randomly sized and oriented shapes.

Table 1
DLSIA utility modules and functions.

Script/module Description

baggins Contains ensembling-based methods for

combining neural networks
conformalize_segmentation Used to perform conformal estimation on a set

of model predictions
custom_losses Contains an array of popular loss functions

suitable for image segmentation
draw_sparse_network Visualizes the topology and layout of individual

SMSNets

helpers Contains several minor utility functions,
including functions for retrieving the current
computing device, counting model para-
meters and convolutional filters, and initi-
ating PyTorch DataLoader classes

latent_space_viewer Visualizes images in autoencoder latent space

upon a single instance of U-Map, as viewed
in Fig. 9

msae Creates autoencoder networks; mixed-scale
functionality is forthcoming

msdnet Creates mixed-scale dense networks
(MSDNets)

plots Contains a suite of plotting tools for model

segmentation, regression and aggregation
random_shapes Generates random circles, rectangles, triangles

and annuli used in Section 4.3 with random
size, orientation and user-defined Gaussian
noise

randomized_data_loader Returns input data into random partition of

training and testing data
scale_up_down Contains modules for data resizing used in

TUNets, U-Nets and autoencoders
segmentation_metrics Computes F1 scores for evaluating quality of

model segmentation performance
smsnet Creates random, sparse mixed-scale networks

(SMSNets) for 2D data

smsnet3d Creates random SMSNets for 3D data
train_scripts Contains end-to-end model training procedures

and evaluation metrics for segmentation and
regression problems

tunet Creates custom, tunable U-Nets
tunet3plus Creates U-Net3+, a new variant of the classic

U-Net featuring dense skip-connection
aggregating features from all network layers



purposes are available within the MLExchange collaborative

machine learning platform for facility scientists (Zhao et al.,

2022; Hao et al., 2023; Hexemer et al., 2021). Trained networks

and sample notebooks for examples listed in Sections 4.1 and

4.2 can be found online at https://huggingface.co/phzwart/

dlsia_inpainting_saxs_gisaxs and https://huggingface.co/phzwart/

dlsia_concrete_fiber, respectively.

APPENDIX A

DLSIA modules and subroutines

The DLSIA library contains many subroutines and function-

alities not listed or mentioned in the text above. Table 1

references a bulk of the DLSIA modules available for use. For

full documentation and listing of modules, please see https://

dlsia.readthedocs.io/en/latest/.
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K., Ambros, P. F., Ambros, I. M. & Taschner-Mandl, S. (2020). Sci.
Data, 7, 262.

Kumar, P., Nagar, P., Arora, C. & Gupta, A. (2018). 25th IEEE
International Conference on Image Processing (ICIP), pp. 3503–
3507.

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung,
C. P. & Lance, B. J. (2018). J. Neural Eng. 15, 056013.

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Proc. IEEE,
86, 2278–2324.

Li, Y., Chouzenoux, E., Charmettant, B., Benatsou, B., Lamarque,
J.-P. & Lassau, N. (2021). IEEE 18th International Symposium on
Biomedical Imaging (ISBI), pp. 611–615.

LiKamWa, R., Hou, Y., Gao, J., Polansky, M. & Zhong, L. (2016).
ACM SIGARCH Comput. Arch. News, 44, 255–266.

Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. (2017).
Proceedings of the IEEE International Conference on Computer
Vision, pp. 2980–2988.

Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A. & Catanzaro, B.
(2018). Proceedings of the European Conference on Computer
Vision (ECCV), pp. 85–100.

research papers

J. Appl. Cryst. (2024). 57, 392–402 Eric J. Roberts et al. � DLSIA: Deep Learning for Scientific Image Analysis 401

https://huggingface.co/phzwart/dlsia_inpainting_saxs_gisaxs
https://huggingface.co/phzwart/dlsia_inpainting_saxs_gisaxs
https://huggingface.co/phzwart/dlsia_concrete_fiber
https://huggingface.co/phzwart/dlsia_concrete_fiber
https://dlsia.readthedocs.io/en/latest/
https://dlsia.readthedocs.io/en/latest/
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5117&bbid=BB35


Liu, J., Lhermitte, J., Tian, Y., Zhang, Z., Yu, D. & Yager, K. G. (2017).
IUCrJ, 4, 455–465.

Liu, S., Melton, C. N., Venkatakrishnan, S., Pandolfi, R. J., Freychet,
G., Kumar, D., Tang, H., Hexemer, A. & Ushizima, D. M. (2019).
MRS Commun. 9, 586–592.

Manifold, B., Thomas, E., Francis, A. T., Hill, A. H. & Fu, D. (2019).
Biomed. Opt. Expr. 10, 3860–3874.

McInnes, L., Healy, J. & Melville, J. (2018). arXiv:1802.03426.

Mechtcherine, V. (2013). Constr. Build. Mater. 41, 365–373.

Naser, M., Hawileh, R. & Abdalla, J. (2019). Eng. Struct. 198, 109542.

Noh, K. J., Park, S. J. & Lee, S. (2019). Comput. Methods Programs
Biomed. 178, 237–246.

Park, J., Li, S., Wen, W., Tang, P. T. P., Li, H., Chen, Y. & Dubey, P.
(2016). arXiv:1608.01409.

Pelt, D. M., Batenburg, K. J. & Sethian, J. A. (2018). J. Imaging, 4, 128.

Pelt, D. M. & Sethian, J. A. (2018). Proc. Natl Acad. Sci. USA, 115,
254–259.
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