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Macromolecular crystallography contributes significantly to understanding

diseases and, more importantly, how to treat them by providing atomic reso-

lution 3D structures of proteins. This is achieved by collecting X-ray diffraction

images of protein crystals from important biological pathways. Spotfinders are

used to detect the presence of crystals with usable data, and the spots from such

crystals are the primary data used to solve the relevant structures. Having fast

and accurate spot finding is essential, but recent advances in synchrotron

beamlines used to generate X-ray diffraction images have brought us to the

limits of what the best existing spotfinders can do. This bottleneck must be

removed so spotfinder software can keep pace with the X-ray beamline hard-

ware improvements and be able to see the weak or diffuse spots required to

solve the most challenging problems encountered when working with diffraction

images. In this paper, we first present Bragg Spot Detection (BSD), a large

benchmark Bragg spot image dataset that contains 304 images with more than

66 000 spots. We then discuss the open source extensible U-Net-based spotfinder

Bragg Spot Finder (BSF), with image pre-processing, a U-Net segmentation

backbone, and post-processing that includes artifact removal and watershed

segmentation. Finally, we perform experiments on the BSD benchmark and

obtain results that are (in terms of accuracy) comparable to or better than those

obtained with two popular spotfinder software packages (Dozor and DIALS),

demonstrating that this is an appropriate framework to support future exten-

sions and improvements.

1. Introduction

Macromolecular crystallography (MX) remains the primary

method used to determine high-resolution 3D structures of

proteins. Drug design projects rely mostly on crystallography

because it is an unmatched fast and reliable method for well

studied systems. In order to determine the 3D crystal structure

of a protein that is expressed and purified at the desired purity

and concentration, one has to crystallize the sample (Yin et al.,

2014; Teplitsky et al., 2015; Nam, 2023; Henkel et al., 2023),

collect diffraction data from the crystal, reduce the data, and

solve the structure using either experimental phasing methods

or the molecular replacement method.

The complexity of structural biology projects is increasing,

and this often results in the use of more challenging crystals

from which to collect diffraction data. This means that more

crystals have to be tested before the best one(s) are used for

data collection. Many crystallographic studies require several

visits to synchrotron facilities for data collection to ensure the

best outcome. ‘Best’ means sufficient data for a structure

https://doi.org/10.1107/S1600576724002450
https://journals.iucr.org/j
https://scripts.iucr.org/cgi-bin/full_search?words=Bragg%20Spot%20Finder&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=BSF&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=Bragg%20Spot%20Detection&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=Bragg%20Spot%20Detection&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=BSD&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=Bragg%20reflections&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=weak%20intensities&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=weak%20intensities&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=machine%20learning&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=filtering&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20diffraction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20diffraction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=microbeams&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=diffraction%20spot%20search&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=real%20time%20processing&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:jjakoncic@bnl.gov
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576724002450&domain=pdf&date_stamp=2024-04-26


solution at the desired resolution with corresponding electron

density maps displaying features supporting conclusive results.

This is where fast spotfinders are employed, when searching

for crystals of best diffraction volumes from a large crystal in

what is called rastering experiments. In a rastering experiment

(grid scan), the sample is translated and X-ray diffraction data

are collected at every grid point. The diffraction patterns are

analyzed by the fast spotfinder application and a heat map is

computed and displayed. Similarly to a cartographic heat map,

the intensity of the colored heat map is proportional to a

factor that has been selected by the end user: the number of

reflections, the total intensity, the resolution or a scoring

factor. Users select the best area of the sample for data

collection by reviewing diffraction data for each point of the

map with a strong signal. This process is automated for

automated workflows. The sample is then centered and data

collection for structural analysis is executed; complete data-

sets are analyzed using several available data reduction

programs and workflows.

All data reduction programs used for processing complete

datasets made of contiguous diffraction images contain a

spotfinder. The spotfinder is used initially to locate Bragg

reflections for pattern indexing. This is the step where the

geometry of the experiment and the location of the reflections

on the detector plane are used to estimate the crystal

symmetry and the cell parameters. Indexing is then used to

predict more reflections and cycles of refinement are used to

refine as many parameters as possible according to the posi-

tions of all found reflections.

Spot finding is based on the approaches established when

film was digitized with drum scanners (Kabsch, 1977).

Although experimental collection for structural analysis might

still be achieved from a scan of a single large crystal, our

concern is primarily with the more challenging cases of small

crystals or the use of microbeams to probe larger non-uniform

crystals. The software for spot finding in current use derives

from XDS (Kabsch, 2010), LABELIT, DISTL, cctbx.spot-

finder and DIALS spotfinder (Sauter et al., 2004, 2013; Zhang

et al., 2006; Parkhurst et al., 2015), Dozor (Melnikov et al.,

2018), HKL-2000 (Minor et al., 2002), CrystFEL (White et al.,

2012), and other packages. For more on the complex history of

X-ray crystallography including spot finding, see Harry

Powell’s 2017 review (Powell, 2017).

However, in all of these cases, focusing on spot finding prior

to integration, real time feedback was not a required built-in

feature. Additionally, a minimum number of reflections is

required for successful indexing.

In a rastering experiment, one tries to minimize the energy

dose deposited on the sample and maximize the potential

number of reflections by rotating the sample by a minute

amount (50 to 200 millidegrees is the typical range). However,

we found that collecting stills – where the crystal is not

rotated, only translated – gives a better chance for optimal

crystal locations for crystals smaller than the footprint of the

beam (10 mm or less). This results in a lower number of

reflections meeting the Bragg condition or in only partial or

weak reflections. The weakest reflections are those with a

minimum of one count in each peak pixel above the local

background. Since the purpose of rastering is to find the

crystal(s), it is also often the case that very few reflections are

observed.

In short, the ideal spotfinder should be fast enough to keep

up with the fastest data collection rate (about 1000 FPS for a

4–15 megapixel area detector) while being sensitive enough to

detect a single low-resolution weak reflection. Since the idea is

not to overexpose the samples, one can imagine a workflow

where, if the initial grid scan returned an empty map, one

could repeat that grid scan with a significantly higher trans-

mitted flux.

Currently, two existing applications are in particularly

heavy use at synchrotron beamlines, dials.find_spots_server/

_client (DIALS) (Zhang et al., 2006; Winter et al., 2018; Sauter,

2011) and Dozor (Melnikov et al., 2018). Many factors impact

the actions necessary to optimize or tune the parameters of

any spot finding algorithm. First and foremost are the char-

acteristics of the X-ray source and of the X-ray detector. In

this case, the data were collected at AMX – the highly auto-

mated macromolecular crystallography (17-ID-1) beamline at

National Synchrotron Light Source II (Schneider et al., 2022).

Our benchmarking at AMX indicated that DIALS provides

false positives as well as undercounted reflections (DIALS

does not offer optimal detection of Bragg reflections). When

ice rings are present, ice ring filtering may require a second

software pass which further increases delays. Ideally, an

optimal Bragg spot finder would not require manual tuning of

parameters such as the number of pixels in a spot, i.e. the

minimum pixel count. We also found that Dozor, though it can

keep up with real time feedback, at times fails to detect weak

reflections (Bragg reflections very close to the local average

background) and in such cases returns an empty heat map.

Some of the necessary spot finding parameter settings can

be derived from the known average characteristics of the

relevant beamline in advance (such as background related to

sample environment). Some can be determined dynamically

during one or more data collection passes, and some are

determined after the fact by careful manual or algorithmic

examination of experimental datasets. One of the main

reasons to use AI techniques is that it can make important

tuning decisions on the fly.

Here we are exploring the potential exploitation of a

machine-learning (ML) or artificial intelligence (AI) applica-

tion to overcome some of the limitations of DIALS and

Dozor. The value of AI for spot finding with a reference

dataset was established by Ke et al. (2018) in an XFEL

context. This reference dataset has also been used by Rahmani

et al. (2023) and Nawaz et al. (2023). Our focus is on reliability

and speed in a synchrotron context for optimal crystal

detection using rastering, which differs from the XFEL

context. It is important to make the new spotfinder faster so it

can keep up with new upcoming detectors at 2000 FPS for a

15 MP detector. Integrating detectors with significantly

improved framing rates (Grimes et al., 2023) will require

dedicated hardware solutions based on field-programmable

gate arrays (FPGAs).
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In the following we discuss the spotfinder Bragg Spot Finder

(BSF), which in its present form is based on U-Net, a

convolutional neural network for biomedical image segmen-

tation (Ronneberger et al., 2015). BSF is supported by the

Bragg Spot Detection (BSD) benchmark image dataset

containing more than 300 images with more than 66 000 spots.

2. Collecting the BSD dataset

In this section, we outline the BSF data collection pipeline,

including image capturing and annotation generation, and list

the statistics of the BSD dataset.

2.1. Image capturing

AI/ML applications need large training sets that represent a

vast array of data that have been observed. This is to develop

an unbiased application trained on all possible data. This is an

extremely difficult goal to achieve. AI/ML software develop-

ment needs training data for which the expected results have

been clearly established – what we call the ground truth. To

provide the training data needed, we used real diffraction data

from AMX. The primary scientific mission of AMX is to

support routine structure determination for the most chal-

lenging projects using automated data collection for all

samples. The beam size is 7 � 5 mm, the photon flux is 4.5 �

1012 photons s� 1 and the area detector is a Dectris Eiger X

9M, running at 200 Hz for most rastering experiments. These

beam parameters are amongst the best worldwide and allow

the study of weakly diffracting crystals, measuring 5 mm in the

longest dimension. As a result, we have access to a very broad

range of diffraction frames in terms of qualitative and quan-

titative parameters, and a very broad range of samples yielding

a wide variety of diffraction patterns. The average oscillation

width per frame for rastering and for data collection is 0.1�,

and the common range in use is 0.05–0.2�. AMX staff flagged

diffraction patterns deemed useful for building up the two

datasets used to develop the BSF application to represent the

broadest possible data: the training set and the testing set.

Diffraction data with the following features were flagged and

saved: diffraction with ice rings or strong ice rings; diffraction

to very high resolution; diffraction from very large cell para-

meters, weakly diffracting samples or multiple lattices;

diffraction patterns with no protein crystal diffraction; aniso-

tropic diffraction; diffraction from samples with very high

mosaicity, elongated spots, large spots or very low mosaicity;

diffraction from uniform crystals displaying sharp reflections;

and, when possible, combinations of these features. The

diffraction frames from rastering experiments and from data

collection experiments were saved. A total of 304 diffraction

frames were used for this study.

2.2. Annotation generation

Once the frames are selected, they go through a semi-

automated process that executes the two most commonly used

applications, dials.find_spots and Dozor, using default and/or

optimized parameters. A duplicate from the Dozor applica-

tion with an output file that can be read by the ADXV (Arvai,

2021) application is also generated. ADXV is a diffraction

image viewer that can also open a spot file for manual

inspection, including manual addition and removal of reflec-

tions. This was used for all training set diffraction images to

generate a ground truth. The ground truth was generated by

expert crystallographers with a collective experience of 34

years. Each inspected about half of the total number of

diffraction frames to be analyzed. They used ADXV to

manually inspect the frames and remove or add Bragg

reflections, adjusting the image contrast so that the best

contrast was used to generate the best Bragg reflection

assignments on all the frames (304 in total: 245 for training and

59 for testing). It took on average 5 min per frame for the

manual annotation and was performed locally to maximize

image quality as opposed to relying on remote connection

applications that typically compress video feeds.

2.3. Overview of the BSD dataset

The BSD dataset contains 304 high-resolution (3269 �

3110) images with manual annotations (spot point coordinate

positions) and software (Dozor and DIALS) predictions. We

split off 20% of the images for the evaluation, leading to 245

and 59 for training and test sets, respectively. Table 1

summarizes some statistics of the BSD dataset.

3. Methods

3.1. Problem formulation

We formulate the spot detection problem as an image

segmentation task and the goal is to segment an image into

two categories, namely foreground spots and background. Fig.

1 shows the pipeline of BSF, which includes data pre-proces-

sing, U-Net for image segmentation and post-processing.

3.2. Data pre-processing

The dataset is stored in .cbf files, so first we convert them

into grayscale images. Because of memory issues and the size

of the high-resolution (3269 � 3110) images in the dataset, we

cut images into patches of 512 � 512 before feeding them into

the model, which performs patch-level spot segmentation. The

ground truth annotations of the BSD dataset are the spot

point positions. For the segmentation task, we need to

generate mask annotations. Specifically, we generate a

diamond-shaped mask with a radius of 10 pixels centered at

the ground truth spot position.

3.3. U-Net for image segmentation

In this section, we present an overview of our backbone

model performing spot segmentation on Bragg spot images.
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Table 1
Dataset statistics.

Splits No. of images No. of spots

Train 245 52870

Test 59 14766



We adopted U-Net (Ronneberger et al., 2015) as the backbone

and the details of our U-shaped model architecture are shown

in Fig. 2.

As shown in Fig. 2, the input image patch X 2 RH�W�d (H =

W = 512 are the width and height of the image patch, and the

initial feature dimension d = 1) is fed into the encoder. It first

performs convolution operations that increase the feature

dimension of X from 1 to 64. The output is then passed to a

pooling layer that performs a down-sampling process to

decrease the size by 2, leading to a new X 2 RH=2�H=2�64. The

encoder will repeat the convolution and pooling operations

three times and obtain the feature map X 2 RH=8�H=8�256 in

the bottleneck layer. The bottleneck layer has another

convolution layer to further increase its feature dimensions

from 256 to 512. Then it will be passed to the decoder which

employs up-sampling to increase its size by 2 and convolution

operations to reduce its feature dimensions. The output of the

decoder will be X 2 RH�W�128, which is the same size as the

input image patch but with 128 feature dimensions. After-

wards, a classifier that consists of a fully connected layer with a

rectified linear unit activation (Nair & Hinton, 2010) is

adopted to generate the final prediction map M 2 RH�W�1.

Finally, the prediction map is mapped into a probabilistic

classification map P 2 RH�W�1 using a sigmoid function:

SigmoidðxÞ ¼
1

1þ ex
: ð1Þ

Each value in the classification map P represents its prob-

ability of being part of foreground spots. The overall model

can be expressed as
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Figure 2
Our U-shaped model architecture for image segmentation which consists of a set of convolutions, up/down sampling and a fully connected classifier, as
detailed in Section 3.3.

Figure 1
Overview of the BSF method.



P ¼ Sigmoid½U-NetðXÞ�: ð2Þ

We train the U-Net model using focal loss (Lin et al., 2017),

L ¼ Focal lossðP; P̂; �; �Þ; ð3Þ

where P is the estimated probability mask of the model for the

foreground spots, P̂ is the ground truth label, and � and � are

tunable weights to handle class imbalance and hard sample

issues.

3.4. Post-processing

The outputs from the U-Net model cannot be directly used

as the final predictions since it only makes patch-level

segmentation predictions. In addition, some original inputs

include artifacts arising from a foreign origin (ice rings, small

molecules) generating diffracted intensities. For example, we

can observe from Fig. 3(a) that there are some artifacts in the

ice ring regions (elongated and twisted reflections) and the U-

Net predictions will have a large number of false-positive

predictions (predicting artifacts as spots) around ice ring

regions. Moreover, if spots are densely distributed (small

distance between spots), the model will predict a large spot

instead of distinguishing them [shown in Fig. 3(b)]. Therefore,

we designed a three-step post-processing to generate the final

spot detection results based on the U-Net outputs.

(1) We reconstruct the whole image from all 512� 512 pixel

patches by stitching the patches to match their positions in the

original image.

(2) For spots whose area is larger than the threshold �area1,

we adopt a watershed algorithm (Kornilov & Safonov, 2018) to

split predicted large spots into smaller sub-spots and then

mask out the predicted spots whose area is smaller than �area2.

(3) We remove the predicted spots whose centers are

located within a small distance of each ice ring (explained in

Section 3.5).

We can observe the effectiveness of our post-processing

from Fig. 3, where we split large-spot predictions into multiple

smaller ones and remove false positives in the ice ring regions.
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Figure 3
Our BSF spot predictions with and without any post-processing. Without post-processing, we can observe that the model (a) predicts some artifacts
around the ice ring as spots (in green) and (b) detects a large region with multiple spots as a single spot (in green).



3.5. Ice ring spot removal

We perform post-processing to remove detected spots

within known ice rings. Specifically, we calculate the ice ring

positions on the basis of the experimental geometry (known

resolutions, rotation axis, sample-to-detector distance,

detector specifications and X-ray beam parameters of the ice

rings). The ice ring center is recorded and its ‘radius’ in the

image can be calculated as follows:

radius ¼ D tan 2 arcsin
W

2Rr

� �� �

; ð4Þ

where D is the detector distance to the sample, W is the X-ray

wavelength, and Rr is a known and fixed ice ring resolution.

After obtaining all ice ring positions, we mask out the

predicted spots whose distance in pixels to the nearest ice ring

is smaller than a pre-defined threshold �ring. In addition, we

remove the predicted spots whose distance to the beam center

is smaller than a threshold �beam.

In practice, the detector orientation is not perfectly

perpendicular to the incoming beam and has a tilting angle, as

shown in Fig. 4. This will cause an ice ring distortion effect so

the ice ring will be an ellipse rather than a circle. As a result,

the ice ring spot removal will remove the true positives while

leaving the false positives unchanged. Therefore, we perform a

tilted detector calibration on the image based on the detector

orientation.

Assuming we have a point p0 = (x0, y0) in the image plane of

the tilted detector (D1), we first transform the point from the

2D image space of D1 to the point p1 = (x1, y1, z1) in the 3D

space of D1 (z = 0 in the D1 coordinate system). Given the

ideal detector (D2) orientation �n2 ¼ ð0; 0; 1Þ and tilted

detector (D1) orientation �n1 ¼ ðnx; ny; nzÞ, we can calculate

the rotation matrix based on the Rodrigues rotation formula

(Galois, 1846):

RðD1!D2Þ
¼ I þ ½v�� þ ½v�

2
�

1 � c

s2

� �

; ð5Þ

½v��¼
def

0 � vz vy

vz 0 � vx

� vy vx 0

0

@

1

A; ð6Þ

where v ¼ �n1 � �n2, s = ||v|| and c ¼ �n1 � �n2. Then, we apply the

rotation transformation on the point p1 and obtain the point p2

in the 3D space of the ideal detector (D2):

p2 ¼ p1RðD1!D2Þ
: ð7Þ

Finally, we apply the perspective projection on p2 = (x2, y2, z2)

to obtain the point p3 = (x3, y3) in the 2D image plane of the

tilted detector:

x3 ¼
Dx2

D � z2

; y3 ¼
Dy2

D � y2

; ð8Þ

where D is the detector distance to the sample. We now have

the mapping between a point p0 on the tilted detector and the

corresponding point p3 on the ideal detector; we can either

transform the spot position or distort the ice ring position, and

then perform the ice ring spot removal.

In Fig. 5, we show the calibration results and observe that

the calibrated new ice rings correspond better to the calcu-

lated ice rings and are now closer to the false-positive

predictions.

4. Experiment

We performed an experimental assessment on the BSD

dataset and compared our results with the predictions of two

commonly used software packages: Dozor and DIALS.

4.1. Evaluation metrics

We adopt the recall rate (Rec), precision rate (Pre) and F1

score to evaluate our model:

Pre ¼
Ntp

Ntp þ Nfp

; ð9Þ
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Figure 4
Illustration of the tilted detector and the ideal detector.



Rec ¼
Ntp

Ntp þ Nfn

; ð10Þ

F1 ¼ 2
Pre Rec

Preþ Rec

� �

; ð11Þ

where Ntp is the number of correctly detected spots, Nfp is the

number of incorrectly detected spots and Nfn is the number of

missed spots. We regard the predicted spot as a correct

prediction if the distance between the center of a predicted

spot and the ground truth annotation position is less than the

threshold r = 10 pixels.

4.2. Implementation details

In the experiment, we set the number of hidden units in

different layers of U-Net to 64, 128 and 256. The thresholds for

post-processing �ring, �beam, �area1 and �area2 were set at 3, 60,

400 and 60, respectively. The direction vector of the tilted

detector is �n1 ¼ ð0:007671; � 0:007374; 0:999943Þ. The batch

size was set to 8 and we trained our model using the Adam

optimizer (Kingma & Ba, 2014) with a learning rate of 1 �

10� 3. It takes about 3 h using a single Tesla V100 16 GB GPU

to train the model.

4.3. Results and comparisons

We compared our BSF model with two commonly used

software packages, namely Dozor and DIALS, as shown in

Table 2. The image-level metrics are based on Ntp, Nfp and Nfn

for each image and then we take the average over all images,

while the spot-level metrics are based on Ntp, Nfp and Nfn of all

the test set data. In the spot-level comparison, our model

results in significantly higher performance compared with

DIALS on all metrics, and we observe a higher F1 score and

recall rate compared with Dozor. In particular, BSF has a

higher recall rate than both Dozor and DIALS, which means

that it can correctly detect more spots. The precision rate of

our model is lower than that of Dozor; data-driven artifacts

(e.g. ice rings) in the images will cause our model to incorrectly

classify artifacts spots, leading to a high number of false
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Table 2
Experimental comparisons with Dozor and DIALS.

The best results are shown in bold.

Spot level Image level

Methods Recall Precision F1 score Recall Precision F1 score

Dozor 0.859 0.935 0.895 0.784 0.884 0.822

DIALS 0.487 0.759 0.593 0.376 0.782 0.466
BSF 0.897 0.904 0.900 0.906 0.897 0.899

Figure 5
Effect of tilted detector calibrations on images for false-positive spot removal. The ice rings obtained with the tilted detector calibration are more
accurate.



positives. In terms of the F1 score, our model outperforms

both DIALS and Dozor. Finally, in the image-level compar-

ison, our model has better results than DIALS and Dozor

predictions for all metrics, which shows the robustness of the

BSF model. From a user perspective, BSF provides consistent

predictions on images with partial or weak reflections.

4.4. Ablation study

We also performed in-depth ablation studies to evaluate the

effectiveness of the proposed pre- and post-processing stra-

tegies (we only report the spot-level metrics). Table 3 shows

the performance using different radii to generate ground truth

masks, from which we can observe that both overly large and

overly small radii will affect the model performance, leading to

lowered performance. We experimentally found that radius =

10 gives the best results. We further verified the effectiveness

of the proposed post-processing, including the large-spot

splitting (LSS), ice ring spot removal (IRSR) and tilted

detector calibration (TDC); the results are shown in Table 4.

We observed that only using LSS does not improve the model

performance because, without any further false-positive spot

removal, splitting large spots into sub-spots generates many

new false-positive spots. The IRSR by itself provides limited

improvement, but it can improve the F1 score by a large

amount when combined with LSS. Finally, the TDC further

increased the F1 score by generating more accurate ice rings

for IRSR.

4.5. Qualitative examples

To illustrate the spot detection quality of the proposed

method, we visualized some qualitative examples and
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Table 3
Experiment results using different radii to generate segmentation masks.

Radius Recall Precision F1 score

4 0.562 0.865 0.714

7 0.885 0.848 0.866
10 0.897 0.904 0.900
13 0.898 0.864 0.881

Table 4
Effectiveness of the proposed post-processing.

LSS IRSR TDC Recall Precision F1 score

No No No 0.943 0.798 0.864

Yes No No 0.938 0.796 0.861
No Yes No 0.886 0.853 0.869
Yes Yes No 0.898 0.876 0.887
Yes Yes Yes 0.908 0.891 0.899

Figure 6
Qualitative examples of BSF (left) and Dozor (right). Dozor has many more false-negative predictions (in green). Full-resolution figures are included in
the supporting information: the top left corner, BSD image bsd_000010_301, processed with BSF in Fig. S1; the top right corner, BSD image
bsd_000010_301, processed with Dozor in Fig. S2; the bottom left corner, BSD image bsd_000023_18, processed with BSF in Fig. S3; the bottom right
corner, BSD image bsd_000023_18, processed with Dozor in Fig. S4.

http://doi.org/10.1107/S1600576724002450


compared them with detection results from the Dozor appli-

cation (shown in Fig. 6). We observed that our model detected

harder-to-detect spots and gave fewer false negatives. In

particular, Dozor cannot detect spots in the top images

(images with partial reflections or weak reflections) while our

model misses a single spot. In the bottom images, our model

gave fewer false negatives and detected more true spots than

Dozor, though it had more false-positive spots and mis-

classified some artifacts as spots. Moreover, we find that some

false positives in our predictions may be true positives due to

the incorrect human annotation as shown in Fig. 7. One

possible reason could be that we annotate the ground truth

spots according to the predictions of the Dozor software, so

some spots that are not detected by Dozor are ignored by us as

well. Dozor predictions are carefully analyzed by hand; expert

crystallographers add and remove reflections as needed,

generating the best possible annotated frames, with the caveat

that minor errors might be introduced.

4.6. Discussion and future work

We observe from Table 2 that, although our model has a

high recall rate and outperforms both software models in

terms of precision and F1 score, the improvement is limited

when compared with Dozor. Moreover, in the bottom part of

Fig. 6, there are still some unresolved false positives generated

by our model, which is consistent with the relatively low

precision rate in Table 2. Therefore, there is still room for

improvement in our model, where we plan to adopt different

deep-learning backbones [e.g. DepLab (Chen et al., 2018) and

ResUNet (Zhang et al., 2018)] and include more expert

knowledge into the post-processing processes for false-

positive removal. In addition, the speed of our model is four

images per second, which cannot keep pace with the real time

data collection rate. We plan to use teacher–student frame-

works and adopt ‘knowledge distillation’ (Xie et al., 2018) to

improve the performance of fast and light-weight neural

networks in our future work.

From the end-user perspective, that of a protein crystal-

lography beamline instrumentation scientist at a synchrotron

facility or of a structural biologist requiring access to protein

crystallography instrumentation, ignoring good spots lying

close to ice rings, though not ideal, is an acceptable solution

while performing rastering experiments. In a rastering

experiment, users rapidly scan the sample and analyze each

frame using the spotfinder. Since a large fraction of the protein

crystals, especially when studying challenging projects, diffract

to a relatively low resolution of 4 Å or lower and the first ice

ring appears at 3.9 � 0.07 Å, this ultimately results in no

penalty. However, for samples diffracting to higher resolution,

reflections lining up with the ice rings will be ignored, resulting

in under-counting of the true number of reflections. Since

rastering is designed to locate the best diffracting regions, any

sample penalty for under-counting reflections in ice ring

regions is the same for all frames and has the same impact on

all images, resulting in unnoticeable differences. In other

words, ignoring good reflections in ice ring regions has no

impact on the rastering experiments. Note that spot finding

and spot predictions used for data integration have other

requirements when it comes to reflections in ice rings.

A common workflow followed by many crystallography

groups accessing synchrotron facilities is to screen dozens to
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Figure 7
Examples of incorrect false negatives in our predictions. We can observe that four incorrect false-positive spots marked with yellow diamonds
surrounded by purple circles should have been marked as true-positive spots; the error is probably due to incorrect labelling.



hundreds of initial crystals to identify conditions yielding

protein diffraction, and then perform rounds of optimization

of the initial crystallization conditions to yield higher-resolu-

tion diffraction suitable for structure solution at the desired or

best achievable resolution. The initial step in this workflow

relies on screening many potential samples, using rastering

with a step size as small as or smaller than the crystal size to

search for large-molecule (macro-molecule) diffraction

(Bragg spots), a promising sign for potential improvement

downstream of the workflow. These promising crystals often

yield only a few reflections. Sometimes they diffract well

enough for successful indexing but rarely for successful

complete data collection and analysis. For many projects, it is

key to detect these rare crystals with a few spots sooner so that

there is the potential for optimization. Many groups return to

steps upstream of this workflow to modify the construct so that

they express and purify more stable entities when all crystal-

lization trials appeared to fail. A spotfinder with increased

sensitivity will increase the likelihood and speed in obtaining

structural information by allowing detection of weak diffrac-

tion in the early steps of the workflow.

BSF has the potential to noticeably improve crystal detec-

tion and the best diffracting volume from large crystals,

especially for crystal samples with weak reflections. To further

improve outcomes from rastering experiments, we will use

coordinates derived from the BSD dataset output reflections

and attempt to index each pattern to potentially improve the

BSD results after extending reflection positions from calcu-

lated predictions. For these results, indexing and additional

reflections will be used to improve heat maps and the like-

lihood for optimal data collection.

4.7. Availability of BSD data and BSF code

The BSD dataset, consisting of 304 diffraction images from

rastering experiments, is available on Zenodo (https://doi.org/

10.5281/zenodo.10667264); details of the dataset are included

in the Zenodo dataset description. BSF code is available at

GitHub (https://github.com/DJX1995/BraggSpotFinder).

5. Conclusions

In this work, we present a new Bragg spot detection dataset

called BSD, which builds on high-resolution images. We

provide a detailed data collection process and present the

dataset statistics and BSF, a strong baseline AI spotfinder for

efficient Bragg spot detection. BSF contains image pre-

processing, a U-Net backbone for image segmentation and

carefully designed post-processing steps, including LSS using a

watershed algorithm, IRSR and TDC. Experiments on the

BSD dataset show that BSF gives a better performance than

two popular software packages (Dozor and DIALS),

demonstrating that this is an appropriate framework within

which to support future extensions and improvements.

Detectors are becoming faster, and beamlines brighter,

allowing faster rastering with step sizes as small as 0.5 mm from

crystals as small as 0.5 mm. An improved sensitivity spotfinder

that can run as fast as new detectors is required. This will truly

unleash the full potential that can be achieved in these new

facilities. In return, it will speed up potential discoveries

relying on macromolecular crystallography. However it will

require improvements to keep up with detector speeds.
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