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The reticular theory of twinning gives the necessary conditions on the lattice

level for the formation of twins. The latter are based on the continuation, more

or less approximate, of a substructure through the composition surface. The

analysis of this structural continuity can be performed in terms of the

eigensymmetry of the crystallographic orbits corresponding to occupied

Wyckoff positions in the structure. If G is the space group of the individual

and H a space group which fixes the twin lattice obtained as an intersection of

the space groups of the individuals in their respective orientations, then a

structural continuity is obtained if (1) the eigensymmetry of an orbit under G

contains the twin operation; (2) the eigensymmetry of a union of orbits under G

contains the twin operation; (3) the eigensymmetry of a split orbit under H

contains the twin operation; or (4) the eigensymmetry of a union of split orbits

under H contains the twin operation. The case of the twins in melilite is

analysed: the (approximate) restoration of some of the orbits explains the

formation of these twins.

1. Symbols

(a, b, c): basis vectors of the unit cell.

a, b, c: length of basis vectors.
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A: coordinates of the ith crystallographically inde-

pendent atom Ai.

G: space group of the individual, G = { g1, g2, . . . }, with g1 = 1

the identity element of G.

Oi: orbit of ri under G, Oi = {ri, g2ri, . . . } = {ri
1, ri

2, . . . } with ri
k

= gkri for gk 2 G.

Oij: splitting of the orbit Oi under the action of a subgroup of

G.

m(Oi): multiplicity of the orbit Oi, defined as the number of

equivalent points in the conventional unit cell of G.

(P, p): matrix-column pair representing a change of basis;

composed of a 3 � 3 matrix P and a 3 � 1 column p.

T : matrix representation of the twin operation in the basis of

the twin.

Si: site-symmetry group of ri.

H: space group associated with the structure of the twin.

EðOiÞ: eigensymmetry of the orbit Oi.

2. Introduction

A twin is a heterogeneous crystalline edifice composed of two

or more homogeneous crystals of the same phase with
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different orientation related by a twin operation, i.e. a crys-

tallographic operation mapping the orientation of one indi-

vidual onto that of the other(s) (Friedel, 1904, 1926, 1933). A

twin element is the geometric element in direct space (plane,

line, centre) about which the twin operation is performed.

Twins can be classified from the genetic viewpoint in three

categories:

(1) Transformation twins, which form during a phase tran-

sition leading to a loss of point symmetry.

(2) Mechanical twins, which form as the result of a

mechanical action (typically, an oriented pressure) on the

crystal.

(3) Growth twins, which form during crystal growth, either

at the nucleation stage or by oriented attachment (for a

review, see Nespolo & Ferraris, 2004a).

For cases (1) and (2), the cause of the formation of the twin

is known. For the growth twins the formation can be a

response to a mistake in the normal crystal growth of the

individual or the random association of two or more crystals

with different orientation (non-equivalent under the

symmetry group of the crystal). This category of twins appears

not only during the formation of a natural crystal but also

during the synthesis of artificial crystals.

The interface that separates the individuals represents a

discontinuity for at least a sub-structure. This heterogeneity

gives rise to serious problems in the structural study of

materials and biomaterials and it represents an obstacle for

structural investigations as well as for crystal engineering and

material design. For example:

(a) The potential technological applications are hindered by

the presence of twinning (e.g. the piezoelectric effect is

reduced or annihilated).

(b) The presence of twinning reduces the amount of details

that can be obtained from a structural study, especially for

samples with large unit cells (for example, macromolecules)

for which the resolution that can be achieved is already limited

by the size of the unit cell.

From the viewpoint of the material scientist and of the

crystal grower, the development of a synthesis protocol

capable of reducing, if not suppressing, the formation of twins

is an important goal. To reach this aim a detailed under-

standing of the formation mechanism of twins is of paramount

importance.

A prerequisite for the formation of a twin is a partial

structural continuity through the interface. In fact, without any

structural continuity the edifice built by the individual crystals

would be unstable or simply not form at all; a complete

structural continuity is the feature of a single crystal; in a twin

a part of the structure has to continue, more or less unper-

turbed, across the interface. This atomic continuity implies the

continuity of a sub-lattice. In fact, the lattice represents the

periodicity of the crystal pattern and the continuity of a sub-

lattice is a necessary condition for the continuity of a sub-

structure. The reticular approach abstracts from the structure

and estimates the lattice restoration by the twin operation in

terms of the twin index and the obliquity. A good restoration

of the lattice is a necessary but not sufficient condition to

obtain a good structure restoration. The latter would enhance

the reticular theory to conditions which are structurally

necessary for the formation of twinned crystals. A general

theory on this has not been developed yet.

Extensive research from the lattice viewpoint during more

than a century led to the reticular theory developed by Bravais

(1851), Mallard (1885) and Friedel (1904, 1926), based on the

existence of a common (sub)-lattice in the three dimensions of

the crystallographic point space (note however the special

case of monoperiodic twins reported by Friedel, 1933). The

common (sub)-lattice, called the twin lattice (Donnay, 1940), is

based on the twin element (twin plane or twin axis) and the

lattice element (line or plane) that are mutally (quasi)-

perpendicular. The twin lattice LT is defined by these two

elements (hkl)T and [uvw]T. When the two elements are

reciprocally perpendicular one speaks of twin lattice

symmetry (TLS: Donnay & Donnay, 1974) and the two

elements are symmetry elements for LT. Otherwise one speaks

of twin lattice quasi symmetry (TLQS: Donnay & Donnay,

1974); the two elements are only pseudo-symmetry elements

for LT. The degree of pseudo-symmetry corresponds to the

deviation from the perpendicularity condition and is measured

by the angle ! called the obliquity.1 The twin index n is the

inverse of the fraction of lattice nodes restored by the twin

operation and corresponds to the ratio between the volumes

of the primitive cells of the twin and the individual, n = V(LT)/

V(Lind). Friedel gave as empirical limits for the occurrence of

twins n � 6 and ! � 6. Twins falling within these limits are

called Friedelian twins (Nespolo & Ferraris, 2005). The

frequency of occurrence of a twin depends on the degree of

lattice restoration: the lower the twin index and the obliquity,

the better is the lattice restoration and the higher is the

probability that the twin actually occurs. This relation between

the occurrence frequency of twins and the values of n and ! is

an empirical observation, based, however, on the extensive

study of twins over more than a century. It shows the necessary

(not sufficient) character of the lattice restoration. Never-

theless some twins with higher index are known that violate

the empirical limits: they are called non-Friedelian twins

(Nespolo & Ferraris, 2005). These twins seem to contradict the

general conclusion that a high degree of lattice restoration is a

necessary condition for a twin to form. However, in most cases

they can be explained by the fact that two or more sublattices

contribute to the lattice quasi-restoration. When all the

concurrent sublattices are taken into account, the necessary

conditions are no longer contradicted. The interpretation of

the occurrence of this kind of twins is the object of the hybrid

theory of twinning (Nespolo & Ferraris, 2005), which repre-

sents an extension of the reticular theory and measures the

lattice quasi-restoration in terms of an effective twin index nE

(Nespolo & Ferraris, 2006), a real number defined as the ratio

between the lattice nodes of the individual and the lattice

nodes belonging to any of the quasi-restored sublattices. In the
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1 For manifold twins (i.e. twins in which the twin operation is higher than
twofold), a zero-obliquity TLQS may occur. In this case, a different parameter
is necessary to measure the deviation from the exact restoration of lattice
nodes, like the twin misfit introduced by Nespolo & Ferraris (2007).



case of a single quasi-restored sublattice, this coincides with

the classical twin index; otherwise it is lower. In the few

examples which are neither explained by the classical reticular

nor by the hybrid theory of twinning, the possibility of a wrong

choice of the twin element has to be considered (reflection

twins in place of rotation twins or vice versa). This indeed

resolves the apparent contradiction of a higher frequency of

twins with higher index than twins with a lower index observed

in some cases like the staurolite twins. The Saint Andrews

cross twin of staurolite, with index n = 12, is more frequent

than the Greek cross twin with index n = 6 (Nespolo &

Ferraris, 2007). These twins are often reported as reflection

twins on (031) and (231), respectively, but experimental

studies have shown (Hurst et al., 1956) that this interpretation

is incorrect and that they actually are rotation twins. For the

Saint Andrews cross twin (n = 12), the correct choice of the

twin element as a line shows the existence of two lattice planes

quasi-perpendicular to it and correspondingly two sublattices

are quasi-restored by the twin operation. This gives an effec-

tive index nE = 6.0 and as a consequence the Saint Andrews

twin is brought back into the Friedelian limits. The

occurrence frequency no longer contradicts the necessary

condition of a good lattice restoration (Nespolo &

Ferraris, 2009).

The reticular theory of twinning can only provide partial

prerequisites for the formation of twins, which are governed

by the structure. More conclusive conditions can only be

obtained by the analysis of the structural coherence at the

interface, but such an analysis reduces to a case-by-case a

posteriori study of known twins. Our purpose is to develop a

general structural theory of twinning to predict the structu-

rally necessary conditions for the formation of twins in a

general way through an algebraic algorithm. A twin fulfilling

these conditions can form (and may even be likely to form),

but does not necessarily have to form. Indeed, a growth twin is

a ‘mistake’ originated by defects or perturbation of growth

conditions and does not correspond to the thermodynamically

most stable situation (Buerger, 1945). Donnay & Curien

(1960) were the first to suggest the application of the analysis

of the eigensymmetry of crystallographic orbits, in the case of

pyrite and digenite, which led to the introduction of a

restoration index for a subset of atoms (Takeda et al., 1967).

This subset must be quasi-continuous across the interface,

otherwise the interface would be incoherent, the contact

between the individuals would be unstable and the twin would

not form. Under the action of the space group G, each atom in

a crystal is repeated in space to form a crystallographic orbit

O, i.e. O is the set of all atoms obtained under the symmetry

operations of the space group G. The eigensymmetry E(O) of

the orbit may be a supergroup of G or coincide with it;

accordingly, crystallographic orbits are classified in three types

according to the relation between G and E:

Characteristic orbit: G = E.

Non-characteristic orbit: G � E but TG = TE .

Extraordinary orbit: TG � TE , a special case of non-char-

acteristic orbit defining a superlattice (smaller unit cell) with

respect to G.

Here TE and TG are the translation subgroups of E and G,

respectively. When G � E, an operation t belonging to E but

not to G may map the orientation of crystal 1 onto that of

crystal 2 and may thus serve as twin operation.

3. Crystallographic orbit approach to the analysis of
structural continuity in twins

Depending on the nature of the twin operation, twins can be

classified into three categories:

(1) twins by reflection;

(2) twins by rotation;

(3) twins by inversion.

An inversion twin is always by (pseudo)-merohedry, i.e. it

corresponds to twin index n = 1 and does not give rise to a

sublattice, because the whole lattice of the individual is

(quasi)-restored. For a twin with index n > 1, the twin

operation is not about a lattice direction, which makes its

matrix representation non-integral with respect to the basis of

the individual. By expressing the twin operation in the basis of

the twin, its representation becomes integral again.

The reticular theory of twinning shows that an exact

restoration of the lattice is not an absolute condition for the

twin to form, a limited departure from the restoration,

measured by the obliquity or the twin misfit, being the rule

rather than the exception. In the same way, we can expect that

a limited departure from structural continuity at the interface

does not represent a hindrance to twin formation. In the

following, all the occurrences of ‘restoration’ should thus be

read as ‘restoration or quasi-restoration’. As a consequence,

the eigensymmetry of an orbit has to be taken with some

degree of tolerance: a pseudo-eigensymmetry will result in

quasi-restoration. The choice of this tolerance has clearly

important consequences on the conclusions one may draw

about the structural quasi-continuity. Choosing a too small

tolerance may lead to a relatively good coherence at the

interface being overlooked; a too large tolerance would have

no real physical meaning. Clearly, the tolerance has to be

chosen keeping in mind the atomic size: it is greater for a large

atom than that for a small one. As a rule of the thumb, about

50% of the atomic diameter (i.e. the radius: ionic, covalent or

atomic depending on the type of bond) seems a reasonable

figure.

Let (hkl)T and [uvw]T be the mutually (quasi)-perpendi-

cular plane and direction which define the cell of the twin

lattice. Let v1 and v2 be two vectors defining a two-dimensional

unit cell in (hkl)T. The three linearly independent vectors v1,

v2 and [uvw]T form the twin basis, denoted by (abc)T, which is

related to the basis (abc)I of the individual by the basis

transformation P:

ðabcÞIP ¼ ðabcÞT : ð1Þ

Lind and LT have a common origin: there is thus no vector

part in the relation between the two references. Given the

coordinates (xyz)I of an atom in the individual basis, the new

coordinates (xyz)T of this atom in the twin basis are obtained

by the relation:
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Each atom with coordinates ri generates a crystallographic

orbit Oi with eigensymmetry EðOiÞ under the action of the

symmetry operations of the space group G. If the orbit is non-

characteristic, its eigensymmetry group EðOiÞ may contain the

twin operation t, in which case the orbit is restored by the twin

operation. This cannot be true for all the orbits, otherwise t

would belong to the space group of the individual and the

structure would be a single individual and not a twin. When

the orbit is not fully restored, a subset of atoms belonging to

the orbit can instead be restored. This subset is defined by a

subgroup H of G obtained by intersecting the space groups of

the individuals. Since the twin index is n > 1, H is a proper

subgroup of G, the translation subgroup of H is a subgroup of

index n in the translation subgroup of G.

Let G be the space group of one of the individuals of a

twinned crystal. The twin operation t maps the first individual

to the second individual (assuming, for ease of description, the

case of a twofold twin) and the space group of the second

individual is the conjugate group t Gt�1. In addition, the twin

operation t maps the lattice L of the first individual to the

lattice tL of the other individual and the intersection

LT :¼ L \ t L is the twin lattice. Since tLT = t L \ t2L = t L \ L

= LT, the twin operation fixes the twin lattice. The space group

H compatible with the twin lattice is the intersection of the

space groups of the two individuals, written with respect to the

twin basis, i.e. H = G \ t Gt�1. The subgroup H is uniquely

determined; it consists of those isometries which fix both

individuals separately. In particular, its translation subgroup

T H consists of the translations by vectors from the twin lattice

LT. The above relation is easily generalized to twin operations

higher than twofold by replacing L1 \ L2 = L \ tL with \iLi =

\i tiL1.

To find the elements of H, let Wi, wi be the linear and

translation parts of a symmetry operation of the first indivi-

dual, written with respect to the twin basis, i.e. (Wi, wi) 2

P�1
GP. Since the linear parts of a space group act on its

translation lattice, the elements belonging to H necessarily

have an integral linear part Wi. Moreover, if (Wi, wi) belongs

to the intersection, the conjugate (Wj, wj) = T (Wi, wi)T
�1

must be an element of the form (W 0i , w0i) 2 P�1
GP. Choosing an

element (W 0i , w0i) with W 0i = Wj, one finally has to check

whether wj � w0i 2 LT. Since the translations in H are by

vectors in LT, two elements (Wi, wi) and (Wi, w0i) with the same

linear part can only belong to H if wi � w0i 2 LT. This means

that for a given element (Wi, wi) of P�1
GP one has to check

elements of the form (Wi, wi + v) for coset representatives v of

L with respect to LT.

The study of the orbit behaviour in the twin basis is char-

acterized by the subgroupH and the matrix P. Considering the

group–subgroup related space groups G � H, atoms which are

symmetrically equivalent under G, i.e. belong to the same orbit

of G, may become non equivalent under H (splitting of crys-

tallographic orbits), and/or their site-symmetry group S can be

reduced (Wondratschek, 1993). Let Oi be an orbit under G, [Si,

m(Oi)] the site symmetry group and the multiplicity of the

orbit with respect to the conventional cell of G, and let [Sij,

m(Oij)] be defined correspondingly for a split orbit Oij under

H, the double index indicating the original orbit under G

(index i) as well as the number of split orbits stemming from it

under restriction to H (index j).

In the case of splitting, the orbit Oi = {gkri, gk 2 G} is divided

into two or more orbits of H, with the same/or reduced site

symmetry group S and a multiplicity equal or lower than

m(Oi). The atoms belonging to Oi have P�1:gk:ri as coordi-

nates in the twin basis. The possibilities of the splitting of the

orbit Oi are described by the following relations:

i½ � ¼
Xk

j¼1
Rj; Rj ¼

S Oið Þ
�� ��
S Oij

� ��� �� ð2Þ

where [i] is the finite index of H in G, Rj is the ratio of the

order of the site-symmetry groups of the orbits Oi and Oij in G

and in H, respectively, and k is the number of orbits in H

stemming from Oi in H (Wondratschek, 1993).

The atomic restoration by the twin operation can finally be

realised in four cases.

(1) The orbit Oi is non-characteristic and its eigensymmetry

EðOiÞ contains the twin operation t. In this case, P = I, where I

is the identity matrix.

(2) The union of two or more orbits has an eigensymmetry

which is higher than that of any of the orbits of the union. This

may in particular happen in presence of a specialized metric

corresponding, exactly or approximately, to a higher crystal

family. In this case, if the twin operation is included in this

higher eigensymmetry the set of atoms belonging to the union

is restored although each orbit, taken separately, is not. The

union can obviously be formed only from atoms with inter-

changable roles in the structure. For example, the union of

orbits defined by crystallographically different types of

oxygen, or of atoms having the same coordination environ-

ment although a different chemical species. Clearly, the fact

that a different atom occurs in the same coordination on the

opposite sides of the interface does not affect the structural

continuity, especially if the atomic size is not extremely

different. The choice of the orbits to be considered in the

union must thus rely on the analysis of the structural roles of

these orbits. From a formal viewpoint, the restoration occurs if

t belongs to EðUGÞ where UG = [iOi and i spans the orbits

which are not restored by t and are occupied by atoms with

similar structural role. Here again, P = I.

(3) When neither the orbits Oi nor their union UG is

restored, a split orbit Oij underH may be restored by the twin

operation t if its eigensymmetry EðOijÞ contains t.

(4) As in case (2) above, for orbits Oij whose EðOijÞ does not

contain the twin operation t, the union UH = [ijOij, defined on

the same criteria as UG, has to be considered. The restoration

of a union of orbits under H may in particular happen when

the sublattice fixed by H has a specialized metric corre-

sponding, exactly or approximately, to a higher crystal family.
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Cases (1) and (3) could of course be subsumed under cases

(2) and (4) as unions of a single orbit or split orbit, but we

emphasize the importance of these cases by discussing them

separately.

The actual analysis performed is exactly the same no matter

whether the group considered is G orH and whether we work

on a single orbit or a union of orbits. Let K be a general

notation for either G orH and O a general notation for one of

Oi, Oij, UG or UH. If O is restored by the twin operation t, then

the eigensymmetry EðOÞ is a supergroup of K containing t.

Such an orbit which belongs to the substructure continuing

across the interface of the twin structure that is invariant

under the twin operation explains (in part) the formation of

the twin.

Because the eigensymmetry of (split) orbits or unions

thereof is often approximate and as a consequence the

restoration is imperfect, we need a quantitative measure for

the degree of restoration. Let dmin be the minimal distance

between the position to which a chosen atom in O is mapped

under the twin operation t and the atoms in O. If t 2 EðOÞ, then

dmin = 0 for all atoms in O. If t is only a pseudo-symmetry of O,

then dmin > 0 and its value is a measure for the degree of quasi-

restoration.

The advantage of dealing with split orbits under the inter-

section group H = G \ tGt�1 is that the value of dmin is the

same for all atoms in a split orbit under H, as is shown by the

theorem in the Appendix A.

Let O1 be an orbit O in the first individual, O2 the corre-

sponding orbit generated by the twin operation t in the second

individual. The application of the twin operation t to O1

generates O2. For a fixed orientation of the twin element, the

formation of a twin may result in a variable degree of atomic

restoration depending on the position of the twin element in

the unit cell, i.e. depending on which atoms are exposed to the

surface or close to it. Since twinning is a point group

phenomenon that occurs at a macroscopic level, the orienta-

tion of a twin element only determines the linear part of the

twin operation, but not its translational part, corresponding to

the position of the twin element. On the other hand, the

operation which restores an orbit acts on the structure, at the

microscopic (atomic) level and may well also contain an

intrinsic translational part (glide or screw component). In

other words, the twin operation one observes macroscopically

as well as in the diffraction pattern as the overlap of differ-

ently oriented reciprocal lattices, can be realised at the atomic

levels at different locations and with or without an intrinsic

translation. This realisation of the twin operation is hereafter

called a restoration operation. In order to find the possible

restoration operations, one starts with the intersection group

H and determines its minimal supergroups which contain an

operation with the required linear part. However, dealing with

split orbits for the intersection subgroup H simplifies the

analysis drastically. For a single split orbit and pairs of split

orbits one simply checks whether the (pseudo-) eigensym-

metry contains an operation of the same type as the twin

operation and with its geometric element parallel to that of the

twin element. The eigensymmetry analysis then provides the

location of the twin element and the nature of the restoration

operation.

O1 is restored if t 2 E(O1) or if dmin is lower than a certain

threshold which depends on the atomic size (being smaller for

smaller atoms). When comparable degrees of restoration are

obtained for different locations of the twin element, the

probability of twin formation is higher because the twin can

form at different stages of crystal growth, corresponding to

different atomic surfaces exposed when the twin formation

starts. In the opposite case, a higher probability of formation

corresponds to the occurrence of a stacking defect, during

crystal growth, on a surface corresponding to more restricted,

possibly unique, locations of the twin element.

4. Case study: the melilite twins

Melilite is a group of sorosilicate minerals with general

formula X2YZ2O7 with X = Ca, Na, Sr, K in octahedral

coordination, Y = Mg, Al, Fe, B in tetrahedral coordination

and Z = Si, Al again in tetrahedral coordination. These

minerals crystallize in space groups of type P�4421m with X and

Z in Wyckoff positions 4e, Y in Wyckoff position 2a and

oxygen atoms distributed over three different Wyckoff posi-

tions, 2c, 4e and 8f, respectively. We have analysed the struc-

ture reported by Bindi & Bonazzi (2005) for which a =

7.826 (1), c = 5.004 (1) Å. The atomic coordinates are given in

Table 1, together with an analysis of the quasi-restoration of

each orbit. This analysis has been performed with the

PSEUDO program (Capillas et al., 2011) at the Bilbao Crys-

tallographic Server (Aroyo et al., 2006). Given the difference

in the dimensions of the cations and the anions, a tolerance of

1 Å for the former and 1.5 Å for the latter has been used to

evaluate the pseudo-eigensymmetry.

Two twins in melilite are reported by Deer et al. (1997), with

reflections in {001} and {100} as twin operations: both are twins

by merohedry so that LT coincides with Lind. The analysis has

to be performed on planes, not on forms, and for this reason in

the following the planes (001) and (100) are used; the result is

obviously exactly the same if another plane from the same

form is used. Since the twins are by merohedry, the intersec-

tion group H = G \ tGt�1 coincides with the group G of the

individual which is of type P�4421m (No. 113). The minimal

supergroups containing symmetry operations with the

required linear parts are (all symmetry operations are

expressed with respect to the standard setting of P�4421m):

(1) P4/mbm (No. 127), with the symmetry operation m x,y,0

for the (001) twin and b 1
4,y,z for the (100) twin;

(2) P4/nmm (No. 129), with n(1
2,

1
2,0) x,y,0 for the (001) twin

and m 0,y,z for the (100) twin;

(3) P42/mnm (No. 136), with m x,y,14 for the (001) twin and

n(0,12,
1
2)

1
4,y,z for the (100) twin;

(4) P42/ncm (No. 138), with n(1
2,

1
2,0) x,y,14 for the (001) twin

and c 0,y,z for the (100) twin.

The last two columns in Table 1 give the respective

restoration operations contained in the eigensymmetry of the

different orbits.

Both (001) and (100) twins are by merohedry, with the

whole lattice restored by the twin operations. The degree of
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structural restoration is the same for both twins, since the

minimal supergroups of P�4421m containing a restoration

operation for one of the twins also contain one for the other

twin. All cation orbits are approximately restored by a

reflection located at the origin for the (001) twin and by a b-

glide reflection shifted 1
4 from the origin for the (100) twin, with

displacements ranging from 0 (perfect restoration) to

0.6415 Å. On the other hand, all anions are quasi-restored by a

reflection shifted 1
4 from the origin for the (001) twin and by an

n-glide reflection shifted 1
4 from the origin for the (100) twin,

with displacements between 0.0580 and 0.6956 Å. The two

further possible restorations for O3 correspond to different

pseudo-eigensymmetries but the much higher value of dmin

makes their contribution hardly significant.

More recently, a further reflection twin, on (1�220), has been

reported in melilite by Bindi et al. (2003). The restoration

under the action of the twin operation has to be checked in G =

P�4421m for each orbit Oi [this is easily done by inspecting Table

1: EðOÞ never contains m½1�220�] as well as for the union UG of

atoms with similar structural role, i.e. Y and Z, which are both

in tetrahedral coordination, and the three types of oxygen

atoms (Table 2). Neither EðOiÞ nor EðUGÞ contain m½1�220� as a

proper or pseudo-symmetry which therefore does not restore

any orbit or union of orbits under G. The next step is to check

for the restoration of split orbits under H.

In a tetragonal lattice, a plane (hk0) is exactly perpendicular

to the direction with the same indices [hk0]; the direction ½1�220�

is therefore exactly perpendicular to the twin plane, which can

thus also be indicated as m½1�220�. This perpendicularity imposed

by the metric of the lattice is known as intrinsic TLS or iTLS

(Nespolo & Ferraris, 2006). Twinning is by reticular poly-

holohedry, with twin index n = 5 (for details, see Nespolo &

Ferraris, 2004b). The two shortest in-plane directions are [210]

and [001] so that the transformation from the basis of the

individual to that of the twin, see equation (1), is immediately

obtained as follows:

abcð ÞI

1 2 0
�22 1 0

0 0 1

0
@

1
A ¼ abcð ÞT :

Applying the inverse transformation, the twin plane in the

basis of the twin lattice becomes (100) or m[100], equation (10):

P�1
1
�22
0

0
@

1
A

I

¼

1=5 �22=5 0

2=5 1=5 0

0 0 1

0
@

1
A

1
�22
0

0
@

1
A

I

¼

1

0

0

0
@

1
A

T

so that the matrix representation T of the twin operation t in

the twin basis is simply:

T ¼

�11 0 0

0 1 0

0 0 1

0
@

1
A:

In our case, H = G \ tGt�1 = P�44, a = 17.4995, c = 5.0040 Å: in

fact, neither the 2-fold axis nor the reflection plane contained

in G fix the twin lattice, whereas the �44 axis does fix it and is

common to G and tGt�1.
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Table 2
Analysis of the eigensymmetry of UG, G = P�4421m.

UG EðUGÞ ðP0ij; p0kijÞ
�1

½1�220�EðUGÞ

Y[Z P4/mbm (I | 000) ½1�220�; =2
O1[O2 P42/mnm (I | 01

2
1
4) ½1�220�; =2

O1[O3 P42/mnm (I | 01
2

1
4) ½1�220�; =2

O2[O3 P42/mnm (I | 01
2

1
4) ½1�220�; =2

O1[O2[O3 P42/mnm (I | 01
2

1
4) ½1�220�; =2

Table 1
Atomic coordinates of melilite (after Bindi & Bonazzi, 2005) and analysis of the quasi-restoration of each orbit.

The orbit (pseudo)-eigensymmetry is given as the minimal distance between atoms quasi-restored by the twin operations. This distance coincides with the degree of
pseudo-symmetry (�max) obtained by PSEUDO (Capillas et al., 2011) as the maximal distance between atoms produced by the additional symmetry operations of
EðOÞ. (P, p) is the matrix-column pair relating the coordinate system of G to that of EðOÞ. The restoration operations are given with respect to the coordinate system
of G.

Site
Wyckoff
position Coordinates EðOÞ (P, p)

d min

(Å)
Restoration operations
for (001) twin

Restoration operations
for (100) twin

X 4e 0.3316(1) P4/mbm (I | 000) 0.0651 m x,y,0 b 1
4,y,z

0.1684(1)
0.5065(2)

Y 2a 0 P4/mmm 1 1 0 j0
�11 1 0 j0

0 0 1 j0

0
@

1
A

0 m x,y,0 b 1
4,y,z

0
0 n(1

2,
1
2,0) x,y,0 m 0,y,z

Z 4e 0.1399(2) P4/mbm (I | 000) 0.6415 m x,y,0 b 1
4,y,z

0.3601(1)
0.9359(3)

O1 2c 0.5 P4/nmm (I | 1
4

3
40) 0 n(1

2,
1
2,0) x,y,0 m 0,y,z

0
0.1805(9) I4/mmm (I | 01

2
1
4) 0.6956 m x,y,14 n(1

2,
1
2,0) x,y,0 n(0,12,

1
2)

1
4,y,z m 0,y,z

O2 4e 0.1408(5) P42/mnm (I | 01
2

1
4) 0.0580 m x,y,14 n(0,12,

1
2)

1
4,y,z

0.3592(5)
0.2558(9)

O3 8f 0.0795(6) P42/mnm (I | 01
2

1
4) 0.3643 m x,y,14 n(0,12,

1
2)

1
4,y,z

0.1868(5) P42/ncm (I | 1
4

3
4

1
4) 1.2422 n(1

2,
1
2,0) x,y,14 c 0,y,z

0.7864(6) P4/nmm (I | 1
4

3
40) 1.2443 n(1

2,
1
2,0) x,y,0 m 0,y,z



Let m(Oi) be the multiplicity of each orbit Oi in G, i 2{1, 2,

..6}, and let ni be the number of the atoms of the orbit Oi in the

unit cell of the twin lattice. Then:

ni ¼ jPj:mðOiÞ

where |P| is the determinant of the transformation matrix P.

The number of atoms ni, equivalent under G, is divided in the

twin basis on s non-equivalent subsets of atoms under the

subgroup H: each subset corresponds to a split orbit Oij

indexed by s and such that:Xs

j¼1
m Oij

� �
¼ Pj jm Oið Þ ¼ ni:

The restoration of a split orbit Oij is realised when EðOijÞ

contains a restoration operation with linear part m[100]T
. The

extensions of P�44 (No. 81) containing such an operation are

P�44m2 (No. 115), P�44c2 (No. 116), P�44b2 (No. 117) and P�44n2

(No. 118); the corresponding restoration operations are m

0,y,z, c 0,y,z, b 1
4,y,z and n(0,12,

1
2)

1
4,y,z, respectively. To evaluate

whether a split orbit under H = P�44 is quasi-restored by the

operation in G, one checks whether one of these four opera-

tions maps a split orbit either to itself or to another split orbit

of the same type (within the accepted tolerance). This is what

is displayed in Tables 3–8. It turns out that the reflection

located in the origin gives by far the best restoration results,

therefore we will only discuss the restoration by the operation

m 0,y,z.

The atoms of type X in Wyckoff position 4e for G = P�4421m

fall under the action of the subgroupH into five split orbits in

Wyckoff position 4h forH = P�44, each having four atoms in the

unit cell of the twin lattice. The split orbit X1 is almost

perfectly restored (with a deviation of 0.03764 Å), X4 and X5

are also quasi-restored with a much larger but still acceptable

deviation (0.8617 Å).

The atoms of type Y in Wyckoff position 2a fall into four

split orbits, two of which have four atoms in the twin cell and

the other two a single atom. The two split orbits with a single

atom in the twin cell are perfectly restored; the split orbit Y4 is

quasi-restored to the split orbit Z3 with a deviation of

0.6493 Å. This is an admissible replacement, since both the Y

and the Z atoms are in tetrahedral coordination.

The atoms of type Z in Wyckoff position 4e fall again into

five split orbits each having four atoms in the twin cell. Besides

the split orbit Z3 which is interchanged with Y4, three more

split orbits are approximately restored (with deviations

between 0.5621 and 0.9793 Å).

The oxygen atoms in Wyckoff position 2c fall into two orbits

with four atoms in the twin cell and one orbit with two atoms

in the twin cell. The split orbit with two atoms is exactly

restored, the other two split orbits are only quasi-restored

when the threshold for anions is relaxed to 1.5 Å (deviations

1.1740 and 1.3402 Å) and one may doubt whether these are

still meaningful for the formation of the twin. The oxygen

atoms in Wyckoff position 4e fall into five split orbits (each

having four atoms in the twin cell). The split orbits O25 and O22

are approximately restored to themselves (with deviations of

0.5432 and 0.9856 Å), the orbit O24 is quasi-restored to the

split orbit O34 belonging to the oxygen atoms in Wyckoff

position 8f (with deviation 0.4103 Å) and the remaining two

orbits are quasi-restored to different split orbits with devia-

tions between 1 and 1.5 Å. Finally, the oxygen atoms in

Wyckoff position 8f fall into ten split orbits with four atoms
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Table 5
Analysis of the split orbits Zj stemming from Z under H = P�44.

Same conventions as in Table 3.

Orbit Coordinates
Wyckoff
positions

Restoration
operation

Restored
to

dmin

(Å)

Z1 0.88394, 0.12798, 0.9359 4h m Z1 0.7061
Z2 0.08394, 0.52798, 0.9359 4h m Z2 0.9793
Z3 0.28394, 0.92798, 0.9359 4h m Y4 0.6493

b Y3 0.6493
Z4 0.68394, 0.72798, 0.9359 4h –
Z5 0.48394, 0.32798, 0.9359 4h m Z5 0.5621

Table 4
Analysis of the split orbits Yj stemming from Y under H = P�44.

Same conventions as in Table 3.

Orbit Coordinates
Wyckoff
positions

Restoration
operation

Restored
to

dmin

(Å)

Y1 0, 0, 0 1a m Y1 0
b Y2 0

Y2 0.5, 0.5, 0 1c m Y2 0
b Y1 0

Y3 0.2, 0.4, 0 4h b Z3 0.6493
Y4 0.9, 0.3, 0 4h m Z3 0.6493

Table 3
Analysis of the split orbits Xj stemming from X under H = P�44.

A split orbit Xj is quasi-restored to a split orbit Xk (which may be the same as
Xj) by a twin operation if the approximate eigensymmetry E of the union
Xj[Xk contains (with dmin within the accepted tolerance) one of P�44m2, P�44c2,
P�44b2 or P�44n2, corresponding to the admissible restoration operations m 0,y,z,
c 0,y,z, b 1

4,y,z and n(0,12,
1
2)

1
4,y,z, which are abbreviated as m, c, b and n in the

tables.

Orbit Coordinates
Wyckoff
positions

Restoration
operation

Restored
to

dmin

(Å)

X1 0.99896, 0.16632, 0.5065 4h m X1 0.0364
X2 0.19896, 0.56632, 0.5065 4h –
X3 0.39896, 0.96632, 0.5065 4h –
X4 0.79896, 0.76632, 0.5065 4h m X4 0.8104
X5 0.59896, 0.36632, 0.5065 4h m X5 0.8617

Table 6
Analysis of the split orbits O1j stemming from O1 under H = P�44.

Same conventions as in Table 3. The restorations with dmin below 1 Å are
highlighted in bold.

Orbit Coordinates
Wyckoff
positions

Restoration
operation

Restored
to

dmin

(Å)

O11 0.5, 0, 0.1805 2g m O11 0
n O11 0.6956

O12 0.1, 0.2, 0.1805 4h m O21 1.3402
c O36 0.5632
b O34 1.4183
n O35 1.2773

O13 0.3, 0.6, 0.1805 4h m O35 1.1740
b O36 0.2527
n O21 1.3251



each. Besides the split orbit O34 that is interchanged with O24,

the two orbits O310 and O38 are quasi-restored to themselves

with low deviations (0.1946 and 0.3283 Å). Six more of these

split orbits are quasi-restored with higher deviations (between

1 and 1.5 Å).

Table 9 shows a summary of the above analysis, where we

see that the percentage of atoms quasi-restored by the

reflection is much better than for the three glide reflections.

The fact that 68% of the cations and 37% of the anions are

restored within 1 Å is a strong justification for the occurrence

of this twin.

In Figs. 1 and 2 we display views of the twin cell. Figs. 1(a)

and 2(a) show all atoms, and Figs. 1(b) and 2(b) the quasi-

restored atoms. Fig. 1 is a view along the c axis, i.e. the

direction of the fourfold rotoinversion axis contained in the

subgroup H; Fig. 2 is along the normal of the (111) plane.

5. Conclusions

The reticular theory of twinning represents an elegant and

general approach for estimating the probability of the occur-

rence of a twin. However, because it provides a necessary

condition only on the lattice level, its application as an a priori

predictive tool is limited: while a low lattice restoration clearly

indicates low probability of formation, a high lattice restora-

tion is indicative, but not conclusive, of a probable occurrence.

The analysis of the eigensymmetry of the crystallographic

orbits corresponding to occupied Wyckoff positions is the key

for obtaining a quantitative estimation of the structural

restoration realised by the twin operation(s) and for obtaining

structurally necessary conditions enhancing the reticular

conditions for the twin formation. The example of melilite is

particularly instructive. The (001) and (100) twins are both

twins by merohedry and from the reticular viewpoint both

twins should have a high probability of occurrence. As a

matter of fact, the structural restoration is also fairly good,

although the cations and anions require different locations of

the twin element. The ð1�220Þ twin, despite a twin index of 5, also

leads to a relatively high degree of atomic restoration, which

explains the occurrence of this twin.

The approach we have developed in this article opens new

perspectives in the study of twins and is currently being

applied to other known examples.
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Table 7
Analysis of the split orbits O2j stemming from O2 under H = P�44.

Same conventions as in Table 3.

Orbit Coordinates
Wyckoff
positions

Restoration
operation

Restored
to

dmin

(Å)

O21 0.88448, 0.12816, 0.2558 4h m O12 1.3402
m O31 1.4748
c O21 0.3182
n O13 1.3251

O22 0.08448, 0.52816, 0.2558 4h m O22 0.9856
c O32 1.0051
b O37 1.2569
n O22 1.3950

O23 0.28448, 0.92816, 0.2558 4h m O36 1.4560
c O38 1.1174
b O35 1.1016
n O32 1.4935

O24 0.68448, 0.72816, 0.2558 4h m O34 0.4103
c O24 1.0825
b O39 1.3750
n O36 1.4279

O25 0.48448, 0.32816, 0.2558 4h m O25 0.5432
c O35 1.1363
c O310 1.4764

Table 9
Summary of the percentage of atomic quasi-restoration by the ð1�220Þ twin
plane in melilite for the admissible restoration operations (expressed in
the basis of the twin).

The values in parentheses are obtained by also taking into account the oxygen
atoms restored with a degree of approximation between 1 and 1.5 Å. In the
unit cell of the twin lattice, there are 20 cations of type X, 10 cations of type Y,
20 cations of type Z and 70 oxygen atoms, thus in total 120 atoms.

Restoration
operation %X %Y %Z % cations %O % all atoms

m 0,y,z 60 60 80 68 37 (94) 50 (83)
c 0,y,z 0 0 0 0 23 (91) 13 (53)
b 1

4,y,z 0 60 20 20 11 (80) 15 (55)
n(0,12,

1
2)

1
4,y,z 0 0 0 0 20 (89) 12 (52)

Table 8
Analysis of the split orbits O3j stemming from O3 under H = P�44.

Same conventions as in Table 3.

Orbit Coordinates
Wyckoff
positions

Restoration
operation

Restored
to

dmin

(Å)

O31 0.94118, 0.06916, 0.7864 4h m O21 1.4748
c O31 0.4452
b O310 1.0048
n O310 1.4670

O32 0.14118, 0.46916, 0.7864 4h m O32 1.0794
c O22 1.0051
b O38 1.3284
n O23 1.4935

O33 0.34118, 0.86916, 0.7864 4h m O39 1.2177
c O37 1.1345
n O33 0.7824

O34 0.74118, 0.66916, 0.7864 4h m O24 0.4103
c O39 1.3239
b O12 1.4183

O35 0.54118, 0.26916, 0.7864 4h m O13 1.1740
m O35 1.4413
c O25 1.1363
b O23 1.1016
n O12 1.2773
n O38 1.4677

O36 0.89444, 0.20938, 0.7864 4h m O23 1.4560
c O12 0.5632
b O13 0.2527
n O24 1.4279

O37 0.09444, 0.60938, 0.7864 4h c O33 1.1345
b O22 1.2569
n O37 0.5190

O38 0.29444, 0.00938, 0.7864 4h m O38 0.3283
c O23 1.1174
b O32 1.3284
n O35 1.4677

O39 0.69444, 0.80938, 0.7864 4h m O33 1.2177
c O34 1.3239
b O24 1.3750
n O39 0.3764

O310 0.49444, 0.40938, 0.7864 4h m O310 0.1946
c O25 1.4764
b O31 1.0048
n O31 1.4670



APPENDIX A
Theorem. Assume2 that t is the twin operation such that t2 is

an element of G. Let Oij be a split orbit under the intersection

groupH = G \ tGt�1 and let x be the position of an atom in Oij.

Let x0 be the position of the atom in the structure closest to the

mapped position t(x) of x under the twin operation, thus dmin =

kt(x) � x0k. Then the value of dmin is the same for every atom

in Oij, i.e. the distance of the image of any atom in Oij under t

to the closest atom position in the structure is always dmin.

Moreover, if the position x0 belongs to the split orbit Oi0j0,

then the closest atoms to the mapped split orbit t(Oij) all

belong to Oi0j0. In particular, if one atom of Oij is exactly

research papers

IUCrJ (2014). 1, 39–48 Mohamed Amine Marzouki et al. � Structural continuity in twinned crystals 47

Figure 1
View of the unit cell of the twin lattice of melilite along the c axis. The
atoms of type X (mainly calcium in our example) are coloured light blue,
the atoms of type Y (mostly magnesium) in orange, the atoms of type Z
(mainly silicon) dark blue and the oxygen atoms are in red. (a) View of all
atoms in the cell and (b) the quasi-restored atoms.

Figure 2
View of the unit cell of the twin lattice of melilite along to the (111) plane:
(a) all atoms in the cell, (b) the quasi-restored atoms.

2 This includes the twin operation of a twofold twin as well as twin operations
of higher order about symmetry elements for the individual, like a fourfold
rotation about a twofold symmetry axis or a sixfold rotation about a threefold
symmetry axis. For details, see Nespolo (2004).



restored to an atom in Oi0j0, then the full split orbit Oij is

mapped to the full split orbit Oi0j0 under the twin operation.

Proof: Let x be the position of an atom in Oij, let x0 be the

position of the atom in the structure closest to t(x) and let the

split orbit to which x0 belongs be Oi0j0. If y is the position of

another atom in Oij, then there is a symmetry operation h inH

mapping x to y. Since t is a twofold twin operation, one has

tht�1
2 tGt�1

\ t2Gt�2 = tGt�1
\ G = H and hence tht�1 = h0 2

H. This means that th = h0t and thus mapping y = h(x) by the

twin operation t gives t(y) = th(x) = h0t(x). If one defines y0 =

h0(x0), then from the fact that h0 is an isometry and thus

preserves distances, it follows that kt(y) � y0k = kh0t(x) �

h0(x0)k = kh0[t(x) � x0]k = kt(x) � x0k = dmin. Since h0 is an

element of H, it follows that Oi0j0 contains an atom with

distance dmin to y. The same argument applied with the roles of

Oij and Oi0j0 interchanged now shows that the structure can not

contain an atom closer to t(y) than y0, because that would

result in an atom with distance less than dmin to t(x).

Remark: The above proof is easily generalized to the case of

a k-fold twin. In this case, the intersection subgroup has to be

chosen asH = G \ tGt�1
\ t2Gt�2

\ . . . \ t k � 1
Gt�(k � 1). Then

the crucial argument in the proof that tht�1 = h0 2 H remains

valid.
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Friedel, G. (1926). Leçons de Cristallographie. Nancy, Paris,
Strasbourg: Berger-Levrault.

Friedel, G. (1933). Bull. Soc. Fr. Miner. 56, 262–274.
Hurst, V., Donnay, J. D. H. & Donnay, G. (1956). Mineral. Mag. 31,

145–163.
Mallard, E. (1885). Bull. Soc. Fr. Miner. 8, 452–469.
Nespolo, M. (2004). Z. Kristallogr. 219, 57–71.
Nespolo, M. & Ferraris, G. (2004a). Eur. J. Mineral. 16, 401–406.
Nespolo, M. & Ferraris, G. (2004b). Acta Cryst. A60, 89–95.
Nespolo, M. & Ferraris, G. (2005). Z. Kristallogr. 220, 317–323.
Nespolo, M. & Ferraris, G. (2006). Acta Cryst. A62, 336–349.
Nespolo, M. & Ferraris, G. (2007). Acta Cryst. A63, 278–286.
Nespolo, M. & Ferraris, G. (2009). Eur. J. Mineral. 21, 673–690.
Takeda, H., Donnay, J. D. H. & Appleman, D. E. (1967). Z.

Kristallogr. 125, 414–422.
Wondratschek, H. (1993). Mineral. Petrogr. 48, 87–96.

research papers

48 Mohamed Amine Marzouki et al. � Structural continuity in twinned crystals IUCrJ (2014). 1, 39–48

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5001&bbid=BB24

