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The aim of this article is a general description of the so-called Patterson-function

direct methods (PFDM), from their origin to their present state. It covers a 20-

year period of methodological contributions to crystal structure solution, most

of them published in Acta Crystallographica Section A. The common feature of

these variants of direct methods is the introduction of the experimental

intensities in the form of the Fourier coefficients of origin-free Patterson-type

functions, which allows the active use of both strong and weak reflections. The

different optimization algorithms are discussed and their performances

compared. This review focuses not only on those PFDM applications related

to powder diffraction data but also on some recent results obtained with

electron diffraction tomography data.

1. Introduction

Patterson-function direct methods (PFDM) are those direct

methods (DM) extracting the phase information directly from

the non-origin part of the experimental Patterson-type func-

tion. Although the first method of this category was described

quite early by Rius (1993), the fact that PFDM lie halfway

between traditional DM and Patterson deconvolution

methods is surely one of the reasons why they are not as

popular as other structure solution methods. The aim of the

present article is to provide a comprehensive description of

the advances in PFDM during the last 20 years and, at the

same time, to introduce a rational classification and consistent

nomenclature for their different variants. This clarification

should help to increase their dissemination and to promote

their wider use. PFDM are extremely simple both theoretically

and computationally, and are especially well suited to such

problems where not only the strong but also the weak inten-

sities are accessible from the experiment. This comprises most

applications to materials science dealing with crystalline

matter. Although the present contribution focuses on the

phasing of powder X-ray diffraction (PD) and electron

diffraction (ED) data of inorganic materials, most of the

results can be applied to any kind of material.

2. Patterson-function direct methods based on q2

Before starting with the description of PFDM, a short intro-

duction to the quantities involved in their definition is in

order. In this review, for simplicity, an equal-atom crystal

structure belonging to space group P1 with N atoms in the unit

cell is assumed. In addition, bold letters denote complex or

vector quantities, while standard text indicates the corre-
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sponding moduli (amplitudes). The observed quantities are

the normalized E amplitudes, i.e. the F structure factor

amplitudes corrected for fall-off in sin �/� (mainly due to the

atomic form factor evolution and to the atomic thermal

vibration; � is half the diffraction angle and � is the incident

wavelength). For an arbitrary H reflection, the corresponding

E amplitude is given by

EH ¼
IH

hIishell

� �1=2

; ð1Þ

and can be derived from the measured intensity I and the

average intensity in the corresponding reciprocal-space shell,

hIishell. A Fourier synthesis with the E values as Fourier

coefficients yields the sharpened electron density distribution

(�) of the crystal. The E values are complex quantities with

their amplitudes known but with their associated phases, ’,

lost during the diffraction experiment. Especially relevant for

the development of DM was the derivation of the probability

distribution of the structure factor (s.f.) amplitudes by Wilson

(1949), in which he assumed that the atomic positions were

random variables with uniform distribution throughout the

unit cell. Written in terms of E, the probability distribution is

(for P1 symmetry)

P1ðEÞ ¼ 2E exp �E 2
� �

; ð2Þ

with the moments of P1(E) being hE 2
i = 1 and hEi = 0.9, and

with associated variance

�2
E ¼ hE

2i � hEi2: ð3Þ

The basic assumption made, i.e. that all points in the unit cell

have the same probability of hosting an atom, constitutes the

‘randomness’ condition. An important property of equation

(2) is that P1(E) is independent of the number of atoms N in

the unit cell. Physically, the E values represent the amplitudes

of a hypothetical unit cell consisting of point atoms with a

scattering power equal to 1/(N)1/2. Consequently, the ampli-

tude of the s.f. of �2, G = Gexp(i ), is given by the simple

relationship

G ¼ E=ðNÞ1=2: ð4Þ

In view of equation (4), G can also be considered experi-

mentally accessible, so that both E and G can be used inter-

changeably.

2.1. The calculated structure factor amplitudes

If � represents the subset of refined phases belonging to the

h reflections with large E values, then the G(�) amplitudes of

the squared structure can be expressed in terms of the Fourier

coefficients Eexp(i’) by Fourier transforming �2(�) =

�(�)��(�) and posterior multiplication with exp(i �H), i.e. by

means of the summation

GHð�Þ ¼
1

V

X
h

EhEH�h exp i  �H þ ’h þ ’H�hð Þ
� �

; ð5Þ

with

 H ¼ phase of
1

V

X
h

EhEH�h exp i ’h þ ’H�hð Þ
� �( )

: ð6Þ

The equal-peak condition is implicit in the squaring operation,

whereas positivity is forced if  h and ’h are equated (only for

strong reflections), i.e. by assuming that �2(�) is directly

proportional to �(�) (Sayre, 1952). However, the randomness

condition is not included in the squaring operation and hence

will depend on each particular phasing method. Traditional

DM procedures were not especially robust regarding this

condition, as proved by the frequently occurring uranium-

atom solution. For a long time, this solution represented a

serious DM limitation and it is characterized by the appear-

ance of an outstanding strong peak in the Fourier map.

Although the equal-peak and positivity conditions are not

violated, this solution is clearly wrong.

2.2. The origin-free modulus sum function (SM)

A Fourier synthesis with the G amplitudes as coefficients

yields the modulus synthesis (M) of �2, which is a Patterson-

like synthesis with a dominant origin peak. Similarly, a

synthesis with coefficients G 2 yields the true Patterson func-

tion, P, of �2. If the strong origin peak is removed from M, the

non-origin peaks become dominant. If M 0 denotes M with no

origin peak, the phasing residual

RMð�Þ ¼ V

Z
V

M 0 �M 0ð�Þ½ �
2

dV; ð7Þ

will measure, as a function of �, the discrepancy between

observed and calculated M 0 over the whole unit cell. The

Fourier coefficients of M 0(�) are GH(�)� hG(�)i, which can

be derived from equation (5). By applying the Fourier theory,

RM(�) can be worked out to (Appendix A)

RMð�Þ ¼ KM þ NH�
2
Gð�Þ � 2

X
H

GH � hGið ÞG�Hð�Þ; ð8Þ

where GH � hGi are the Fourier coefficients of the observed

M 0. The first term, KM, is a phase-independent quantity. The

second term, �2
Gð�Þ, is the variance of the probability distri-

bution of the G(�) amplitudes that can also be assumed to be

phase-independent for � sets satisfying the equal-atom and

randomness conditions (irrespective of the correctness of �).

In general, these two assumptions are valid because the equal-

atom condition is implicit in the squaring operation and

because, by only considering the non-origin peaks of the

modulus function (which correspond to interatomic vectors

ranging over the whole unit cell), randomness is favoured.

Consequently, minimizing R is essentially equivalent to

maximizing the third term of equation (8), the so-called origin-

free modulus sum function

SMð�Þ ¼ 2
X

H

GH � hGið ÞG�Hð�Þ ¼ maximum; ð9Þ

which, after replacing G�H(�) by equation (5), becomes
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SMð�Þ ¼
2

V

X
H

X
h

GH � hGið ÞE�hEh�H

� exp i ’�h þ  H þ ’h�Hð Þ
� �

: ð10Þ

The SM sum function [originally called ZR in Rius (1993)]

represents one of the last advances in reciprocal-space DM.

Since the true � corresponds to a maximum in SM(�), a

simple method for its maximization is needed. For this

purpose, the order of the double summation in equation (10) is

changed, so that it becomes

SMð�Þ ¼ 2
X

h

E�h exp i’�hð ÞQhð�Þ; ð11Þ

with Qh(�) being

Qhð�Þ ¼
1

V

X
H

GH � hGið ÞEh�H exp i  H þ ’h�Hð Þ
� �

: ð12Þ

If �sq
M denotes the Fourier synthesis with coefficients

(GH � hGi)exp(i H), equation (12) can also be expressed as

the Fourier coefficient of the �sq
M � � product function, i.e.

Qhð�Þ ¼

Z
V

�sq
M � � exp i2�hrð Þ dr: ð13Þ

By following Debaerdemaeker et al. (1985), the maximum of a

functional like SM can be found by solving the condition for an

extremum, i.e. by making

@SMð�Þ

@’h

¼ 0 8 h 2 �: ð14Þ

If this condition is applied to equation (11), a tangent formula

(TF) is obtained which provides the new phase estimates

’h ¼ phase of Qh �oldð Þ
� 	

: ð15Þ

Depending on whether Qh is expressed in terms of the  and ’
phases [equation (12)] or as a function of �sq

M [equation (13)],

two different optimization algorithms result: (i) the sequential

SM tangent formula (S-TF algorithm) based on phase invar-

iants, and (ii) the parallel SM tangent formula (S-FFT algo-

rithm) based on Fourier transforms. For simplicity, the

subscripts of S (i.e. M or P) have been omitted from the

general algorithm designation.

In equation (9), the experimental quantities are the

amplitudes. However, for certain applications it can be desir-

able to work directly with intensities. That this is feasible can

be easily shown by considering the physical meaning of SM(�)

in equation (9), which corresponds to the integral

V

Z
V

M 0Mð�Þ dV: ð16Þ

It is known that the principal differences between Patterson

and modulus functions are the relative heights between origin

and non-origin peaks. If the origin peaks are suppressed, the

resulting P 0 and M 0 functions may be regarded as proportional

by a factor close to two (Rius, 2012b). Consequently, maxi-

mizing equation (16) is equivalent to maximizing the integral

V

Z
V

P 0Mð�Þ dV; ð17Þ

or in terms of the respective Fourier coefficients

SPð�Þ ¼
2

N

X
H

IH � hIið ÞG�Hð�Þ; ð18Þ

since G2
H �G2 ¼ ðIH � IÞ=N. Notice that the Qh(�) expres-

sions, equations (12) and (13), are also valid for SP simply by

replacing (GH�G) by G2
H �G2 and �sq

M by �sq
P , respectively. SP

is particularly useful for powder diffraction (PD), because

working with experimental intensities simplifies the manip-

ulation of overlapped intensities.

2.3. Phase refinement algorithms based on S

2.3.1. Sequential application of the tangent formula with
phase invariants (S-TF algorithm). One possibility of maxi-

mizing the SM sum function is by means of the iterative

application of the tangent formula of equation (15) with Qh

given in terms of the phases of equation (12). In practice, the

H summation (involving all reflections) is split into two

separate sums: the K one (strong reflections) and the L one

(weak reflections). Only for the K sum is no distinction made

between the  and ’ phases. This causes the three summands

having phase invariants ’�h + ’K + ’h�K, ’K + ’�h + ’h�K and

’�h + ’h�K + ’K to have the same �3hK phase sum. Conse-

quently, they can be replaced in the sum by

1

3

�
E�h EK � hEið ÞEh�K þ EK E�h � hEið ÞEh�K

þ E�h Eh�K � hEið ÞEK

	
exp i�3hKð Þ

¼ XhKE�hEKEh�K exp i�3hKð Þ; ð19Þ

where

XhK ¼ 1�
hEi

3

1

E�h

þ
1

EK

þ
1

Eh�K

� �
; ð20Þ

and Qh becomes

Qhð�Þ ¼
1

VðNÞ1=2

X
K

XhKEKEh�K exp i ’K þ ’h�Kð Þ
� �

þ
1

V

X
L

GL � hGið ÞEh�L exp i  L þ ’h�Lð Þ
� �

:

ð21Þ

According to equation (14), phases refined with the tangent

formula of equation (15) will lead to an extremum in SM, i.e. to

a large maximum or a large minimum. However, since for

strong reflections S-TF makes  and ’ equal, only positive

solutions are possible. In the S-TF algorithm the TF is applied

in sequential mode. This means that, once a new ’h estimate is

calculated with equation (15), its value is immediately

replaced in �. The updated � is then used to compute the

phase estimate of the next reflection. This process is repeated

until all h reflections in � have been treated and no significant

phase variations are observed. Before starting a new iteration

cycle, the  phases of the weak reflections are updated using
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equation (6) (for strong reflections this is done automatically,

because  and ’ are considered equal). This means that the

S-TF algorithm is essentially a two-stage process in which the

estimates of the ’ and  phases are updated alternately.

S-TF is very effective, easy to apply, and makes no use of

any Fourier synthesis. It is ideal for solving small-molecule

crystal structures. However, for crystal structures with a large

number of atoms in the asymmetric unit (>500 atoms) the

total number of terms in the L summation becomes prohibi-

tive. The introduction of a higher cut-off value, Emin , for large

E values reduces the number of invariant terms at the cost of

lowering the accuracy of the calculated G(�). To check the

efficiency of the S-TF algorithm, the phasing power of S-TF

was compared with the power of the traditional TF (Karle &

Hauptman, 1956), strengthened with information on the most

reliable negative quartets. For crystal structures with no fixed

space group origin, the success rate of S-TF was one order of

magnitude higher (Table 1) (Rius et al., 1995; Sheldrick, 1990).

In retrospect, one possible explanation for the late

discovery of PFDM can be found in the leading role played by

the integral

Zð�Þ ¼

Z
V

�ð�Þ3 dV; ð22Þ

in the development of DM (Cochran, 1955). It can easily be

shown that this integral is closely related to the sum functionZ
V

M Mð�Þ dV; ð23Þ

since both give similar values (in both expressions the weak E

values play no role). However, conceptually, both are

completely different. While further progress from Z is not

evident, the sum function of equation (23) can evolve to the

SM function of equation (11). The reason why the latter

represents an improvement is explained intuitively in Fig. 1.

At the beginning of this article it was stated that the first

PFDM was published in 1993. This is only partially true,

because the most reliable negative quartets (Schenk, 1973;

Giacovazzo, 1976) can also be derived from Patterson-func-

tion arguments, i.e. by expressing the integral

Z
V

P 0 Pð�Þ dV; ð24Þ

as a function of the � phases. Since the non-origin parts of the

modulus and Patterson functions of �2 can be considered

proportional, maximizing the integral of equation (24) is

equivalent to maximizing equation (16), so that in this case Qh

takes the form (Rius, 1997)

Qhð�Þ

¼
1

V2N

X
k

X
l

XhklEkElEh�k�l exp i ’k þ ’l þ ’h�k�lð Þ
� �

;

ð25Þ

where
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Table 1
Comparison of success rates (%) for two tangent formula algorithms
based on phase relationships.

(a) S-TF with a varying number of strong reflections. (b) Traditional TF (Karle
& Hauptman, 1956), complemented with the most reliable negative quartets
(values taken from Sheldrick, 1990). S-TF is clearly superior, especially for
space groups having the origin floating at least in one direction.

Code Reference
Space
group N (a) (b)

BHAT Bhat & Ammon (1990) Pc 200 42.5–71.5 0.26
HOPS Jones et al. (1992) R3 1000 9.6–13.7 0.56
MBH2 Poyser et al. (1986) P1 300 39.0–67.6 4.7
LOG Jones et al. (1980) P212121 108 5.3–6.2 2.1
SUOA Oliver & Strickland (1984) P212121 188 0.4–1.8 0.06
PEP1 Antel et al. (1990) P212121 340 0.08–0.2 0.01

Figure 1
Physical interpretation of the SM function of equation (9). (a) Calculated
modulus function M expressed in terms of the true � (line) and
corresponding observed origin-free modulus function M 0 (dots). (b) The
M 0M(�) product function. Since M 0 has no origin peak, the peaks of the
product function are evenly distributed along the unit cell (all interatomic
peaks contribute). If the origin peak were present, it would play a
dominant role in the product function, so that a solution of � giving rise
to a single very strong peak in the E map would be a positive maximum of
equation (23).



Xhkl ¼
1

3
E2
�hþk þ E2

�hþl þ E2
kþl

� �
� 1; ð26Þ

and h, k, l and �h, �k, �l belong to the subset of strong

reflections and Xhkl involves both strong and weak reflections.

Notice that Xhkl becomes clearly negative only when the three

squared amplitudes in equation (26) correspond to weak

reflections. One immediate difference between equations (21)

and (25) is that the estimation of a new phase with equation

(25) requires the lengthy calculation of a double summation.

In addition, manipulation of the mixed terms in Xhkl is far

from trivial.

One year after the introduction of S-TF, the first paper on

the Shake-and-Bake phasing method was published (DeTitta

et al., 1994). It represented a radical change in DM philosophy,

since it combined phase refinement in reciprocal space with

Fourier filtering, thus exploiting the considerable computing

power already available at that moment. In this way the trend

towards the uranium-atom solution of traditional reciprocal

DM was compensated by the periodic reintroduction of

randomness during the direct-space stage by picking up the N

largest Fourier peaks. This new way of preserving randomness

did not rely on the weak reflections. This circumstance proved

particularly useful in the solution of e.g. anomalous scatterer

substructures in macromolecules. However, when weak

reflections are available (as in PD or ED applications), PFDM

are highly competitive. As will be shown in the next section,

PFDM can also be optimized entirely in direct space (S-FFT

algorithm), so that if necessary they can also be strengthened

by Fourier filtering.

Between the publications of the S-TF and S-FFT algorithms,

14 years elapsed. During this period some new PD applica-

tions of S-TF were explored. One example is the crystal

structure solution of the layered zeolite-like silicate RUB-15

of the formula TMA8[Si24O52(OH)4]�20H2O from laboratory

PD data (TMA = tetramethylammonium cation; Oberhage-

mann et al., 1996). At that time it was still a common belief

that DM needed intensity data at atomic resolution to be

successful. However, the determination of RUB-15 demon-

strated that, if the electron density of the main building

elements can be roughly approximated at moderate resolution

to broad spherical peaks (dmin’ 2 Å), DM will work. In RUB-

15, both the SiO4 and TMA tetrahedra were handled in this

way (Fig. 2). This approach allowed the solution of a series of

layered zeolite-like compounds at moderate resolution in

collaboration with the Institute for Mineralogy of the Ruhr

University Bochum (Gies et al., 1998).

Another important result was the demonstration that S-TF

can be applied to PD data of hemihedral compounds (Rius et

al., 1999). This was confirmed by solving the crystal structures

of: (i) the CAH10 binding phase in high-alumina cement

(space group P63/m; Guirado et al., 1998), and (ii) aerinite, a

natural blue pigment employed in some Catalan romanesque

mural paintings (space group P3c1; Rius et al., 2004). Both

crystal structures had resisted multiple attempts at solution

worldwide.

In the literature there are various methods of combining

information from multiple PD patterns, e.g. by making use of

the anisotropic thermal expansion of a material (Shankland et

al., 1997). In the particular case of zeolites, the information

contained in the powder patterns of the as-synthesized and

calcined forms can easily be exploited in a two-stage proce-

dure (Rius-Palleiro et al., 2005). In the first stage, the template

molecule is located by combining isomorphous replacement

with S-TF at very low resolution (dmin’ 3.2 Å), whereas in the

second stage, the framework atoms are found by again

applying the S-TF algorithm but now strengthened with the

information coming from the located template molecules

(dmin ’ 2.21 Å). This procedure was applied to the solution of

the ITQ-32 zeolite (Cantı́n et al., 2005).

All the S-TF applications described so far use the resolved

reflections exclusively (except for hemihedral symmetries,

where the intensities of systematically overlapping reflections

were equidistributed and treated as resolved), so that strictly

speaking these may be regarded as single-crystal applications.

However, the solution of the triclinic crystal structure of

tinticite, a partially disordered phosphate mineral, required a

more sophisticated S-TF procedure in which not only the

phases were refined but also the estimated intensities of the

severely overlapped peaks (dmin ’ 2.3 Å) (Rius, Torrelles et

al., 2000). In the best E map, the broad spherical peaks

corresponding to the [FeIIIO6] octahedra and to the phosphate

tetrahedra (the latter with partial occupancies) showed up

clearly (Rius, Loüer et al., 2000). In spite of this success, the

refinement often had stability problems, undoubtedly due to

the inaccurate intensity estimation of overlapping reflections

from a limited number of invariant terms.

2.3.2. Parallel application of the tangent formula via
Fourier transforms (S-FFT algorithm). Historically, the devel-
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Figure 2
RUB-15 layered silicate solved by assuming Ibam symmetry (a = 27.91, b
= 8.41, c = 11.52 Å). Superimposed Fourier sections (y/b = 0.00–0.45)
show the silicate sheets normal to [001]. The phases were obtained by
S-TF from laboratory PD data at moderate resolution (d� 2.2 Å). At this
resolution, the tetrahedral Si units appear as spheres. The tetramethyl-
ammonium molecules are placed on the mirror planes.



opment of the S-FFT algorithm is related to the 23rd

European Crystallographic Meeting in Leuven (2006). On the

occasion of that meeting, Professor Baerlocher (ETH, Zurich)

showed to the author the potential of charge-flipping when

applied to PD (Baerlocher et al., 2007; Palatinus, 2013).

Spurred on by this result, the rationale behind charge-flipping

was sought. During this search it was found that SM can also be

maximized by Fourier methods (Rius et al., 2007). In contrast

with the S-TF algorithm, where the new ’h are estimated

sequentially, the S-FFT algorithm determines the new ’h (the

Fourier transforms of �sq
M�) in parallel, i.e. from a unique �old.

A second important difference between the two algorithms is

that in S-FFT the alternating update of the  and ’ phases is

done in completely separate stages (no explicit use is made of

the equality between  and ’). The two stages of one iteration

cycle are (Fig. 3)

Stage 1 : ’initial þ observed E! � ðstoredÞ ! �2
!  :

Stage 2 : þ observed ðG� hGiÞ ! �sq
M ! �sq

M�! ’new:

Since the TF refinement leads to an extremum in SM and the

condition  h = ’h is not applied during the refinement, it can

produce either � or �� as valid solutions when starting from

random phases.

The algorithm works quite well with single-crystal data of

small- and medium-sized structures at atomic resolution. The

stability of the algorithm is reflected in the fact that no elec-

tron-density modification is required after each refinement

cycle, e.g. there is no need to suppress negative values or for

periodic reintroduction of randomness in � by selecting the N

highest peaks in the Fourier map (and posterior recalculation

of � from these peaks). It is clear that, for small crystal

structures, the phase refinement efficiencies of S-TF and

S-FFT must be similar. Table 2 compares the respective effi-

ciencies for a selection of representative compounds.

2.3.3. The S-FFT algorithm extended to non-positive
definite q. Some first applications of the S-TF algorithm to

non-positive definite density functions in difference structures

and in reconstructed surfaces (by using in-plane X-ray

diffraction data) can be found in Rius et al. (1996) and Pedio et

al. (2000), respectively. However since, for these particular

applications, the S-FFT algorithm is much simpler and more

accurate (all phase invariants are implicitly taken into

account), only S-FFT is considered here. In all situations so far

discussed, it has been assumed that � is positive definite, so

that G, as given by equation (4), corresponds to the amplitude

of the squared structure �2. However, there are certain

situations where positivity of � is violated. Neutron diffraction

data from compounds with negative scatterers are typical

cases (Table 3). In such cases, the corresponding nuclear

density function (still designated by �) consists of positive and

negative scatterers, so that the G values derived from equation

(4) are no longer the s.f. amplitudes of �2 but of the so-called

‘squared-shape structure’, in which the atomic peaks have the
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Table 2
Comparison of the S-FFT and S-TF phase refinement algorithms for different compounds (data resolution limit in the 0.85–1.04 Å d spacing interval).

As expected, both S-FFT and S-TF algorithms yield similar success ratios, although S-TF is much more efficient in computing time (for small molecules).

Code Unit-cell content Space group No. of refined phases No. of solutions S-FFT/S-TF No. of trials (cycles)

PGE2a C20H32O5 P1 161 21/25 25 (11–37)
MBH2b C45H72O9 P1 580 24/24 25 (15–70)
TVALc C108H180N12O36 P1 1043 23/25 25 (19–54)
NEWQBd C96H80N8O20 P1 as P1 663 24/25 25 (21–60)
GOLDMAN2e C224H128 Cc 607 25/25 25 (16–45)
BHATf C20H16N20O36F8 Pc 285 11/16 25 (24–49)
HOV1g Pr56Ni32Si36 C2/m as Cm 518 22/25 25 (14–67)
MUNICH1h C160H128 C2 352 2/2 50 (18–55)
BIHi C56B36H152O12N4S8 P21/c as Pc 661 25/25 25 (10–20)
CORTISONj C84H112O20 P212121 247 6/14 50 (17–47)
BNAk C40B36H100O12S8Na4 Pnma, P212121 303 5/7 25 (9–12)
WINTER2l C110H178N22O32Cl12 P21 1045 6/1 25 (30–53)
TOTCm C198H216O36 P61 301 20/25 25 (17–51)
TUR10n C180H288O24 P6322 160 6/8 50 (20 fixed)
BEDo C208H208N32O32 I4 285 8/8 25 (18–50)
ALFA1p C328O110N65H500 P1 3772 3/† 360 (88–179)

References: (a) DeTitta et al. (1980); (b) Poyser et al. (1986); (c) Smith et al. (1975); (d) Grigg et al. (1978); (e) Irngartinger et al. (1981); (f) Bhat & Ammon (1990); (g) Hovestreydt et al.
(1983); (h) Szeimies-Seebach et al. (1978); (i) Teixidor et al. (1991); (j) Declercq et al. (1972); (k) Teixidor et al. (1990); (l) Butters et al. (1981); (m) Williams & Lawton (1975); (n)
Braekman et al. (1981); (o) Sheldrick et al. (1978); (p) Privé et al. (1999). † The S-TF refinement with the same control parameters was not carried out due to the large number of
triplets generated.

Figure 3
Iterative S-FFT phase refinement procedure. The initial phase values (’)
are combined with the experimental E amplitudes to give the initial �
values (upper right corner). The  phases are obtained by Fourier
transforming �2. Combination of  with the experimental (G � hGi)
gives the Fourier coefficients of the �sq

M synthesis. The new structure factor
estimates Q are obtained by Fourier transforming the ��� product
function.



shape they have in �2 but preserve the signs they have in �. As

was shown by Rius & Frontera (2009), the S-FFT algorithm

can cope with non-positive definite � by simply introducing in

equation (13) an m mask calculated according to the following

scheme

mðrÞ ¼ 1 if �ðrÞ> t�ð�Þ;

¼� 1 if �ðrÞ< � t�ð�Þ;

¼ a if j�ðrÞj � t�ð�Þ;

ð27Þ

where t ’ 2.5, and a is a random value between �1 and 1. The

introduction of m into equation (13) yields the extended Q

values, i.e.

Qhð�Þ ¼

Z
V

�sq
M �m exp i2�hrð Þ dr: ð28Þ

The viability of the algorithm was checked thoroughly with

calculated data sets from organic compounds. Fig. 4 repro-

duces the Fourier map obtained by processing the intensity

data of TVAL (triclinic modification of valinomycin) with the

extended S-FFT (Karle, 1975; Smith et al., 1975).

From the tests performed on a variety of organic

compounds it was concluded that the extended S-FFT algo-

rithm has a lower convergence rate than the unextended

S-FFT (approximately two to three times for the studied test

cases), so that the number of refinement cycles has to be

increased. This is the price that the extended form has to pay

for not including the positivity (or, better, the equal-sign)

constraint.

For inorganic compounds no significant difference in

convergence speed was detected. A perovskite-related

compound containing the strong negative neutron scatterer

Mn illustrates how the extended S-FFT works (Table 3). The

intensities used in the calculations were extracted from the

observed powder diffraction pattern by redistributing the

global intensities of the overlapping peaks according to the

calculated individual intensities (Frontera et al., 2004). The

success rate is three from a total of 25 trials (Rius & Frontera,

2008).

Another important situation where negative peaks appear

in the Fourier map is in the solution of difference structures.

An example of this type of application can be found in Rius &

Frontera (2008).

3. Cluster-based Patterson-function direct methods for
powder data

3.1. Definition of atomic, experimental and effective
resolutions

In contrast with other crystal structure determination

methods, the experimental information used by DM is

generally limited to the set of measured intensities. This is why

it is very important that the data set is almost complete and

atomic resolution is reached (only then will the atomic peaks

show up clearly separated in the Fourier map). The experi-

mental resolution of a powder pattern is defined by the 2�
value beyond which no more diffraction peaks appear. It is

normally expressed in terms of the corresponding d-spacing

value (dmin). The experimental resolution depends mainly on

the crystallinity of the material, e.g. materials with small

domain sizes have broad diffraction peaks, so that peaks and

background are difficult to separate at high 2�. Also important

for the application of DM to PD is the effective resolution
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Table 3
Application of the extended S-FFT algorithm to neutron diffraction data
of the perovskite-related compound with unit formula (Bi0.75Sr0.25)MnO3.

Crystal data: a = 5.499, b = 7.770, c = 5.542 Å, space group Imma, Z = 4. Phase
refinement gives a large negative peak for Mn in the E map, as expected for a
negative scatterer (Fermi lengths for Bi, Sr, Mn and O are, respectively, 0.853,
0.702, �0.373 and 0.580).

Atom Relative height x/a y/b z/c Site

Bi,Sr 1000 0 1
4 0.9974 4e

Mn �579 1
2 0 0 4b

O1 474 1
2

3
4 0.0501 4e

O2 409 1
4 0.0275 1

4 8g

Figure 4
Application of the extended S-FFT phase refinement algorithm to
intensities of TVAL calculated (a) with 50% randomly assigned negative
scattering factors and (b) with all atomic scattering factors of one of the
two symmetry-independent molecules made negative. Atoms with
negative refined densities are depicted in grey. The peak search was
performed on the Fourier map computed with the phases from the
extended S-FFT.



concept (Fig. 5). Since traditional DM use only the intensities

from resolved reflections (which are highly dependent on the

amount of peak overlap), the pattern region with useful

information is reduced. The d-spacing corresponding to the

upper 2� limit of this region gives the effective resolution

(deff). Very often the effective resolution is much less than the

experimental one, which hampers the successful application of

DM. However, if DM are modified in such a way that clusters

of intensities can be treated, the effective resolution of the

pattern increases and deff and dmin become more similar. The

introduction of ‘model-free pattern matching’ greatly facili-

tated the partition of powder patterns into sequences of

cluster intensities (Pawley, 1981; Le Bail et al., 1988). The

inclusion of the cluster information in the structure determi-

nation process yields better resolved peaks in the intermediate

Fourier syntheses. Summarizing, in the same way that the

Rietveld method allows one to take advantage of the whole

experimental resolution of the powder pattern during the

refinement, cluster-based DM allow one to increase the

effective resolution during the solution process, so that it

comes much closer to the experimental one.

3.2. The cluster-based SP function for PD

When PFDM are applied to powder data, the smallest unit

of intensity information is the total intensity of each group of

unresolved reflections (cluster). The two quantities that

specify an arbitrary j cluster are:

the total intensity; Dj ¼
X
kðjÞ

mk Ek
2; ð29Þ

the total number of reflections; nj ¼
X
kðjÞ

mk; ð30Þ

where m are the multiplicities of all symmetry-independent

reflections. In view of equations (29) and (30), if H is an

arbitrary reflection of this cluster, the equidistributed intensity

for H is

IH ¼
Dj

nj

; ð31Þ

so that hIi, its average taken over all reflections, is equal to

hE 2
i = 1.

In the cluster-based SP of equation (18), the observed

intensities for overlapping reflections are simply their equi-

distributed values (Rius, 2011). This is the best approximation

to the experimental Patterson function. Notice also that the

origin peak can be removed exactly. The refinement of the �
subset of phases (strong reflections) is achieved by maximizing

SP with the S-FFT algorithm. � is updated from cycle to cycle

and at the end of each trial the cluster-based figure of merit

RV ¼ 100

P
j

Dj

� �1=2
� Djð�Þ
� �1=2




 



P

j

Dj

� �1=2
; ð32Þ

is computed. The solution with the smallest RV value is taken

as the correct one. To handle PD data, the following modifi-

cations in the S -FFT phase refinement algorithm are neces-

sary (Fig. 6):

(i) The coefficients (G� hGi) in stage 2 must be replaced by

the (G2
� hG2

i) ones, so that stage 2 in x2.3.2 becomes  +

observed (G2
� hG2

i)! �sq
P ! �sq

P �! ’new.

(ii) Those � values below t�(�) are made zero.

(iii) The calculation of the Fourier coefficients (Q) of the

product function �sq
P � is performed either by direct Fourier

transformation (FT) or by structure factor calculation (SFC)

from the N highest peaks in �sq
P � (Fig. 6). The periodic

calculation of the structure factors from the N peaks is carried

out to ensure the fulfilment of the randomness condition.

(With single-crystal data this step is normally not necessary).

(iv) The intensities of overlapping reflections are re-

distributed according to
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Figure 5
Schematic powder pattern divided into clusters of unresolved reflections.
In contrast with traditional DM which only use resolved reflections (low
effective resolution), cluster-based DM can process the information of
the high-angle region of the pattern. In this way the effective resolution
approaches the experimental one.

Figure 6
Iterative SP-FFT phase refinement procedure for powder data. Only the
differences with respect to the already described S-FFT algorithm are
indicated (Fig. 3). Initial phase values (upper right corner) are combined
with weighted experimental and extrapolated amplitudes to give the
initial � values (upper right corner). The Fourier coefficients of the �sq

P

synthesis are obtained by combining the experimental (IH � hIi)
intensities with the  phases. The new structure factor estimates are
alternatively obtained either by Fourier transforming ��� (FT) or directly
from the N top-ranked Fourier peaks (SFC) of ���. For overlapped
reflections, E2

H values are updated every cycle [tH is the intensity
redistribution coefficient calculated according to equation (33), which
ensures the constancy of the global cluster intensity].



E2
HðnewÞ ¼

njQ
2
HP

kðjÞ

mkðjÞQ
2
kðjÞ

2
64

3
75 IH ¼ tH IH: ð33Þ

The physical meaning of the cluster-based SP function can be

best understood by writing it in terms of the cluster intensities.

In view of the proportionality between the integrals of equa-

tions (17) and (24), SP in equation (18) may be assumed to be

proportional to

SPð�Þ /
1

N

X
H

IH � hIið ÞG2
�Hð�Þ; ð34aÞ

so that by equation (31) it follows

SPð�Þ /
1

N

X
H

DjðHÞ

njðHÞ

� hIi

" #
G2
�Hð�Þ

¼
X

j

1

nj

Dj Djð�Þ � hIi
X

j

Djð�Þ; ð34bÞ

and SP essentially corresponds to the sum of the products of

the observed and calculated cluster intensities, divided by the

number of reflections contributing to each cluster. As long as

� fulfills the general properties of the electron-density

distribution (positivity, randomness, atomicity), the second

sum in equation (34b) can be regarded as constant during the

phase refinement.

3.3. Examples of application of the cluster-based S-FFT
algorithm

Retrospectively, the development of the cluster-based

S-FFT algorithm was greatly facilitated by the release of some

high-quality PD patterns of organic compounds collected by

Dr Gozzo for the Summer School on ‘Structure Determina-

tion from PD Data’ organized at the Swiss Light Source in

2008. These patterns had been measured with the novel

Mythen-II microstrip one-dimensional detector (Schmitt et al.,

2004). For a detailed study of the SP function with powder

data, the pattern of (S)-(+)-ibuprofen was selected (Freer et

al., 1993). The monoclinic unit cell contains two symmetry-

independent molecules, giving rise to a cyclic hydrogen-

bonded dimer with the formula C26H16O4 (Fig. 7). The

intensities were extracted by pattern matching using DAJUST

(dmin = 1.10 Å for � = 1.0 Å) (Vallcorba et al., 2012). Details of

the peak profiles are given in Fig. 8. The extracted cluster

intensities (total number of reflections is 1009) were processed

by the XLENS_PD6 program, which has the cluster-based

S-FFT implemented (downloadable from http://departments.

icmab.es/crystallography/software). During the phase refine-

ment, chemical constraints were applied every second refine-

ment cycle. Seven trials out of 25 were successful (50 cycles

per trial). All correct solutions developed the complete

structural model. Some relevant details of the model extracted

from the Fourier map are listed in Table 4 (Rius, 2011).

In spite of being relatively new, the cluster-based S-FFT

algorithm has already solved some rather difficult unknown

crystal structures from conventional laboratory PD data, e.g.

those of the highly hydrated minerals sanjuanite, Al2(PO4)-

(SO4)(OH)�9H2O, Z = 4, space group P21/n (Colombo et al.,

2011), and sarmientite, Fe2
3+(AsO4)(SO4)(OH)�5H2O, Z = 4,

space group P21/n, V = 1156 Å3 (Colombo et al., 2014), or the

triclinic crystal structure of a new partially deprotonated

mixed-valence manganese(II,III) hydroxide arsenate related

to sarkinite (de Pedro et al., 2012). Cluster-based S-FFT has

also determined the frameworks of hybrid materials like

calcium hydroxyphosphonoacetates (Colodrero et al., 2011),

magnesium tetraphosphonate (Colodrero et al., 2012) or

calcium glyceroxide, an active phase for biodiesel production

under heterogeneous catalysis (León-Reina et al., 2013). Due

feature articles

IUCrJ (2014). 1, 291–304 Jordi Rius � Patterson-function direct methods 299

Figure 7
Perspective view, along the b axis, of the monoclinic unit cell of ibuprofen
(Freer et al., 1993), with atomic positions taken directly from the cluster-
based DM Fourier map (a = 12.46, b = 8.03, c = 13.53 Å, � = 112.95	, V =
1246 Å3). There are two symmetry-independent molecules which form a
dimer. Image created with Mercury (Macrae et al., 2008).

Figure 8
Whole-profile refinement without a structural model for intensity
extraction; portion of the ibuprofen powder pattern centred at d ’
1.10 Å to show peak overlap. Only the pattern information above dmin =
1.10 Å (< 2� ’ 54	) was processed by XLENS_PD6 (Rius, 2011). Plot
created with WinPLOTR (Roisnel & Rodrı́guez-Carvajal, 2001). Widths
of Lorentzian profiles in full width at half-maximum (FWHM) are 0.014,
0.023, 0.031 and 0.040	 for respective d spacings > 10, 2.5, 1.5 and 1.1 Å;
overlap criterion < 0.5 FWHM.



to the presence of the organic part, synchrotron radiation is

preferred for hybrid materials. This normally gives higher

experimental resolution (compared with laboratory data),

which helps to develop the complete crystal structure model at

the end of the phase refinement stage.

4. The d recycling method

4.1. The calculated q (based on the d function)

The � recycling method is an extremely simple phasing

method. It is based on a function �M, which is the convolution

of P 0 (of the true structure) with a phase synthesis. Experi-

mentally, �M is computed with the Fourier syntheses

�MðrÞ ¼
1

V

X
H

EH � hEið Þ exp i’Hð Þ exp �i 2�Hrð Þ; ð35Þ

and consists of maxima at the atomic positions and noise in

between. According to Rius (2012a), the strength of �M at the

rk atomic positions can be approximated, for an equal atom

structure, by

�M rkð Þ ffi
1

2K
� rkð Þ; ð36Þ

with

K ¼
1

hEi
: ð37Þ

Independently, the variance of �M only depends on the

amplitudes and is given by

�2
M ¼

1

V2

X
H 6¼0

EH � hEið Þ
2: ð38Þ

The fact that �2
M is independent of the phase estimates allows

one to fix a threshold value before the structure is solved

(Rius, 2012a). In practice, the threshold value � = t�M with t’

2.5 works well for eliminating noise. In this way an m mask can

be created, which will be 0 or 1 depending on whether the

corresponding �M value is below or above �. By multiplying

�M by this mask and considering equations (36) and (37), the

desired approximation to � is obtained

�Cð�Þ ¼ 2K�Mm; ð39Þ

which must be always positive and uses the known E magni-

tudes (Rius, 2012b).

4.2. The phasing residual and the algorithm

If �(r) represents a positive definite density function of the

crystal, e.g. the electron density or the electrostatic potential

(in this second case only for structure solution purposes), it

will be assumed that the condition

�ðr;�Þ ¼ �Cðr;�Þ ¼ �ðrÞ 8 r 2 V; ð40Þ

is only fulfilled for the true � values. The discrepancy between

�(r,�) and �C(r,�) can be measured through the residual

R�ð�Þ ¼

Z
V

�� �C

� �2
dV; ð41Þ

extended over the whole unit cell of volume V, where for

clarity the r and � symbols have been omitted in the inte-

grand. By working out the squared binomial, and since the

integral of �2 over the unit cell is phase-independent (it

corresponds to the value of the Patterson function at the

origin and is equal to 1/V
P

HEH
2), minimizing R� is equivalent

to maximizing the integral

S�ð�Þ ¼

Z
V

2 � �C � �C
2

� �
dV; ð42Þ

which in view of equations (37) and (39), and because m = m2,

reduces, after some algebraic manipulation, to

S�ð�Þ ¼ 2

Z
V

�X�C dV; ð43Þ

wherein �X corresponds to

�X ¼ �’ þ � 1�
1

hEi

� �
: ð44Þ

Here, �’ denotes the phase synthesis, i.e. a Fourier synthesis

with the same phases as � but with constant amplitudes (in this

case unity). In view of this, it follows from equation (44) that

the Fourier coefficients of �X are

XH ¼ 1þ EH 1�
1

hEi

� �� �
exp i’Hð Þ: ð45Þ

The dependence of the modulus of X on the amplitude E is of

a linear type (Fig. 9). By expressing �X in equation (44) as a

Fourier synthesis, equation (43) transforms into

S�ð�Þ ¼ 2
X

H

X�HQHð�Þ; ð46Þ

with

QHð�Þ ¼
1

V

Z
V

�Cðr;�Þ exp i 2�Hrð Þ dr: ð47Þ

Equation (46) is formally equivalent to equation (11), except

for the fact that the summation extends over all H reflections,

not just the strongest ones (Rius, 2012b). Consequently, the
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Table 4
Bond lengths (Å) obtained by applying the cluster-based S-FFTalgorithm
to powder diffraction (PD) data and by least-squares refinement from
single-crystal (SC) data.

Bonds have been grouped into types: (i) average C—C bond lengths from PD
and SC (the former are longer by a factor of 1.035, which may be attributed to
the non-inclusion of H atoms in DM); (ii) single and double C—O bonds are
correctly assigned with similar average lengths, 1.30 (PD) and 1.27 Å (SC); (iii)
distances between hydrogen-bonded O atoms are practically coincident.

Bond type PD SC

C—C (single bond) (14�) 1.56 (9) 1.51 (3)
C—C (phenyl ring) (12�) 1.43 (8) 1.38 (2)
C—O (’ single bond) (2�) 1.50 (3) 1.32 (1)
C—O (’ double bond) (2�) 1.09 (6) 1.21 (1)
O� � �O (hydrogen bonds) (2�) 2.66 (1) 2.65 (1)



new phase estimates can also be derived by applying a tangent

formula, namely

’H ¼ phase of QH �oldð Þ
� �

: ð48Þ

The general scheme of the � recycling phasing procedure is

described in Fig. 10. As indicated by the structure factor

calculation (SFC), the Enew
H structure factors are computed

from the N largest peaks found in �C [equation (39)]. The new

� set is then used to update �M. This procedure is applied

cyclically until convergence is reached. Convergence is

controlled by measuring the correlation Corr between the

experimental E and the updated Enew with the expression

Corr ¼

P
EHEnew

H

� �2

P
E2

H

� � P
Enew

H

� �2
h i

8<
:

9=
;

1=2

: ð49Þ

4.3. Application to ED tomography data

Frequently, natural and synthetic phases only appear as sub-

micrometric crystals, too small for collecting single-crystal

X-ray data even with synchrotron radiation. Normally, struc-

tural information from these phases is obtained from PD,

which combines easy sample preparation (also under non-

ambient conditions) with fast acquisition systems and sophis-

ticated analytical methods. Nevertheless, PD suffers from

various limitations which may be caused by the sample [(i)

sufficient sample must be available; (ii) the sample must be an

almost pure phase; (iii) for nanocrystals, peak broadening due

to the particle size reduces the effective data resolution range]

and/or by the crystal structure itself [(i) indexing of unit cells

with long axes is not always trivial; (ii) systematic overlap is

present in high-symmetry space groups, especially in cubic

ones; (iii) accidental overlap may be severe for low-symmetry

space groups]. In addition, identification of the space group

for crystalline phases affected by pseudo-symmetry can be

problematic even for good PD data [see, for example, Birkel et

al. (2010) and Rozhdestvenskaya et al. (2010)]. The main

advantage of electron diffraction (ED) is the ability to collect

single-crystal data from nanometric volumes. This is possible

because electrons can be deflected and focused in quasi-

parallel probes with a diameter of 10–30 nm and because the

interaction with matter for electrons is much stronger than for

X-rays, allowing a good signal-to-noise ratio even for

diffraction from nanovolumes of crystalline material. Two of

the principal problems of ED, i.e. dynamic effects and

incomplete data sets, are minimized by measuring off-zone.

This is the basis of the automated diffraction tomography

(ADT) data collection strategy (Kolb et al., 2007, 2008). In

ADT, the ED patterns are acquired by rotating around an

arbitrary tilt axis (not corresponding to a specific crystal-

lographic orientation) in sequential steps of 1	 within the full

tilt range of the microscope. The physical limit affecting the

sample rotation gives rise to incomplete data sets, i.e. to a

missing wedge. The precession ED technique (PED) is used to

integrate the intensity between steps. Recently, an alternative

technique called rotation ED (RED) has been introduced for

this purpose (Zhang et al., 2010). Of course, there are also

disadvantages with ED. For certain compounds, radiation

damage is still a limiting problem. In general, organic and

hybrid materials are more beam-sensitive than inorganic

materials. The application of � recycling to PED/ADT inten-

sities from inorganic materials was recently analyzed by Rius

et al. (2013) with some interesting results: (i) scaling with the

Wilson plot procedure is accurate; (ii) � recycling is particu-

larly robust against missing data; (iii) unlike X-rays, where

Corr [equation (49)] clearly discriminates the correct solution,

the final Corr values with PED/ADT data tend to be similar

for correct and wrong solutions. To circumvent this difficulty,

the � recycling phasing stage always terminates when a preset

number of cycles is reached, and continues with conventional

Fourier recycling methods. Convergence during Fourier

recycling is controlled by the RCC residual,

RCC ¼ 1000 1�

P
FHFc;H

� �1=2
h i2

P
FH

P
Fc;H

8><
>:

9>=
>;; ð50Þ

which is free from scaling factors. RCC is always a very reliable

figure of merit and for X-rays values between 5–30 indicate
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Figure 9
Linear dependence of X upon E in equation (45) for a P1 equal-atom
crystal structure.

Figure 10
Schematic description of the �M recycling phasing procedure. Starting
random phase values are fed in at the upper right corner. For PED/ADT
intensity data, iteration stops when a preset number of cycles is reached.
The meaning of the different symbols is explained in the text (SFC =
structure factor calculation). For �P recycling, the E� hEi coefficients are
replaced by E2

� hE2
i and the M subscript by P.



correct solutions; for PED/ADT data, essentially correct

solutions are found between 15 and 60, although RCC values

up to 80 can be reached, especially if the data are affected by

large thickness variations and/or by residual dynamic scat-

tering, if missing organic parts of the structure are not

included in the calculation of the intensities, or if the measured

data fail to produce well shaped peaks in the Fourier map.

It goes without saying that the possibility of solving crystal

structures from phases only detected by TEM is very impor-

tant in many research fields. For example, it is expected that

many new mineralogical species can be found. In a recent

collaboration with Kolb’s group at the University of Mainz, �
recycling has solved, from PED/ATD data, the crystal struc-

ture of a new porous Bi sulfate mineral appearing only as a

tiny crystalline fragment (�0.15 � 0.15 � 0.2 mm) displaying

no net cleavage planes (Capitani et al., 2014). The crystal

structure is hexagonal and the unit-cell content is

[Bi8.18Te0.82(OH)6O8(SO4)2]0.91+
�0.91S2

� with Z = 2 (Fig. 11).

Some relevant experimental details are: dmin = 1.0 Å, number

of measured (unique) reflections = 2748 (452), Requiv = 23.57,

data completeness = 100%; � = 0.0197 Å, T = 93 K. The

structure model obtained from � recycling was complete and

can be described as a self-assemblage of Bi clusters giving rise

to a one-dimensional porous material with the disulfide anions

inside the channels. Figures of merit for the last refinement

cycle are R1 = 0.2173 for 332 Fobs > 4�(Fobs) and 0.2373 for all

452 data, i.e. of the same order as the R value between

symmetry-equivalent reflections (SHELX97; Sheldrick, 2008).

Finally, it is worth mentioning that the O atoms could be

located in the presence of the extremely heavy Bi atoms (Z =

83), a consequence of the slower scattering-power increase

with atomic number compared with X-rays.

5. Conclusions

Currently, the application of DM has reached maturity. This

means that, for an ideal single-crystal intensity data set,

phasing is a rather straightforward process. However, the

situation changes for inaccurate or incomplete data sets, a

circumstance which occurs with increasing frequency in

materials science, especially when small crystalline volumes

are being analyzed. To deal with these situations, not only

robust but also simple DM procedures are required which can

process, in a unified manner, partial information coming from

different sources, e.g. transmission microdiffraction, electron

diffraction, powder diffraction, grazing-incidence diffraction.

Due to their simplicity, PFDM are ideal candidates for such

types of applications which also benefit from rapidly evolving

instrumental capabilities.

APPENDIX A
Simplification of the RM(U) expression

Written in terms of the Fourier coefficients of M 0, the integral

of equation (7) is equivalent to

RMð�Þ ¼
X

H

GH � hGið Þ
2

� 2
X

H

GH � hGið Þ G�H �ð Þ � hGð�Þi
� �

þ
X

H

G�Hð�Þ � hGð�Þi
� �2

: ð51Þ

If KM = �H(GH � G)2, then

RMð�Þ ¼KM � 2
X

H

GH � hGið ÞG�Hð�Þ

þ 2
X

H

GH � hGið ÞhGð�Þi

þ
X

H

G�Hð�Þ � hGð�Þi
� �2

: ð52Þ

By transforming the sums into averages (NH = number of

reflections), the last two summations reduce to
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Figure 11
Crystal structure of the porous Bi sulfate mineral of the Alfenza mine
(Crodo, Italy) solved by � recycling from PED/ADT data (Capitani et al.,
2014). Crystal data: a = 9.5 (2), c = 15.4 (3) Å, V = 1200 Å3, space group
P62c. (a) Bi sulfate cluster with the formula [Bi8.18Te0.82-
(OH)6O8(SO4)2]0.91+ (hydroxyl groups are at the corners and the long
cluster dimension is along c). (b) Self-assembly of Bi sulfate clusters gives
rise to a porous framework, which is held together by (i) hydrogen bonds
between hydroxyl groups and sulfate ligands; and (ii) weak Bi—O bonds
(the coordination polyhedra of both symmetry-independent Bi3+ cations
are pentagonal bipyramids). The disulfide anions in the one-dimensional
channels (appearing in the Fourier synthesis) help to stabilize the
structure.



2hGð�Þi
X

H

GH � 2hGi
X

H

hGð�Þi þ
X

H

G 2
�Hð�Þ

� 2hGð�Þi
X

H

G�Hð�Þ þ NHhGð�Þi
2

¼ 2NHhGð�ÞihGi � 2NHhGihGð�Þi þ NHhG
2ð�Þi

� 2NHhGð�Þi
2
þ NHhGð�Þi

2

¼ NHhG
2
ð�Þi � NHhGð�Þi

2

¼ NH�
2
Gð�Þ: ð53Þ

Finally, replacement of the last two last sums in equation (52)

by equation (53) leads to the simplified RM(�) expression

RMð�Þ ¼ KM � 2
X

H

GH � hGið ÞG�Hð�Þ þ NH�
2
Gð�Þ: ð54Þ
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Rius, J., Loüer, D., Loüer, M., Galı́, S. & Melgarejo, J. C. (2000). Eur.

J. Mineral. 12, 581–588.
Rius, J., Miravitlles, C. & Allmann, R. (1996). Acta Cryst. A52, 634–

639.
Rius, J., Miravitlles, C., Gies, H. & Amigó, J. M. (1999). J. Appl. Cryst.
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(1995). Acta Cryst. A51, 268–270.

Rius, J., Torrelles, X., Miravitlles, C., Ochando, L. E., Reventós, M. M.
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