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The time evolution of the electron density and the resulting time dependence of

Fourier components of the X-ray polarizability of a crystal irradiated by highly

intense femtosecond pulses of an X-ray free-electron laser (XFEL) is

investigated theoretically on the basis of rate equations for bound electrons

and the Boltzmann equation for the kinetics of the unbound electron gas. The

photoionization, Auger process, electron-impact ionization, electron–electron

scattering and three-body recombination have been implemented in the system

of rate equations. An algorithm for the numerical solution of the rate equations

was simplified by incorporating analytical expressions for the cross sections of all

the electron configurations in ions within the framework of the effective charge

model. Using this approach, the time dependence of the inner shell populations

during the time of XFEL pulse propagation through the crystal was evaluated

for photon energies between 4 and 12 keV and a pulse width of 40 fs considering

a flux of 1012 photons pulse�1 (focusing on a spot size of �1 mm). This flux

corresponds to a fluence ranging between 0.8 and 2.4 mJ mm�2. The time

evolution of the X-ray polarizability caused by the change of the atomic

scattering factor during the pulse propagation is numerically analyzed for the

case of a silicon crystal. The time-integrated polarizability drops dramatically if

the fluence of the X-ray pulse exceeds 1.6 mJ mm�2.

1. Introduction

The first hard X-ray free-electron lasers (XFELs) (Emma et

al., 2010; Ishikawa et al., 2012; Feldhaus et al., 2005; Pellegrini

& Reiche, 2004; Chapman, 2009) are already in operation at

SLAC (USA) and SPring-8 (Japan); other XFEL facilities are

under construction, including the European XFEL at DESY

(Altarelli et al., 2007). These facilities will provide ultra-bright

femtosecond X-ray radiation with unique possibilities to study

the structure of matter with angström resolution on a time

scale of femtoseconds. Most of the current experiments using

FEL radiation focus on single-shot exposure of molecules and

clusters, assuming that structure data can be taken before

sample destruction takes place (Neutze et al., 2000) on a time

scale much larger than the FEL pulse length. Having this

sample destruction in mind, FEL experiments on crystals are

rare at present (Shastri et al., 2001; PSI, 2009). Specific

experimental conditions for FEL experiments have to be

defined in order to solve specific questions of solid state

physics.

At present, crystal diffraction is used for monochromators

or other optical elements. During the first experiments with

XFEL sources it was discovered that the crystal response

known from conventional experiments at synchrotron sources

is maintained as long as the fluence, i.e. the deposited photon
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energy per sample area, is below a certain threshold (Hau-

Reige et al., 2007, 2010). Therefore for current experiments the

crystal is illuminated by a wide beam and the focusing takes

place after monochromatization. However, other experi-

mental scenarios might be realised in future experiments. One

is the photon–photon pump–probe experiment where the

sample is excited by one FEL pulse followed by a second one

after a time span much shorter than the repetition time of the

FEL source. A respective time delay set-up has been proposed

recently, equipped with four crystal reflections (Roseker et al.,

2009). For this experiment it is important to know how both

the pulse shape and the intensity of the delayed pulse differ

from those of the first pulse if a highly intense FEL femto-

second-pulse propagates throughout the crystal (Bushnev et

al., 2011; Shvyd’ko & Lindberg, 2012).

Additional motivation for analysis of the time evolution of

Fourier components of polarizability of the crystal induced by

femtosecond intense X-ray pulse is connected with investiga-

tions of compact XFEL sources on the basis of the femto-

second relativistic electron bunches produced by the laser-

driven accelerators (Nakajima, 2008; Corde et al., 2013). These

bunches can be used to generate coherent X-ray pulses on the

basis of the effect of parametric X-ray beam instability (PXBI)

in crystals (Baryshevsky & Feranchuk, 1984; Leonov et al.,

2013; Baryshevsky et al., 2005). It is well known (e.g. Bary-

shevsky et al., 2005; Akhiezer & Berestetzkii, 1969; Ter-

Mikaelian, 1972) that electromagnetic interaction of the

relativistic electron bunch with the crystal is analogous to

interaction between the crystal and the X-ray pulse with the

same duration and intensity being proportional to the electron

current density. Therefore realisation of the PXBI effect

depends significantly on the evolution of crystal polarizability

during the passage of the electron bunch.

Up to now the interaction of FEL pulses with a crystal has

been described by many authors in terms of X-ray dynamical

theory considering the time delay of the X-ray beam while

propagating through the crystal (Shastri et al., 2001; Shvyd’ko

& Lindberg, 2012; Malgrange & Graeff, 2003) but using time-

independent atomic scattering factors (ASF). However, it was

shown by Hau-Riege (2011) that such an approach remains

valid only in the case of relatively small fluences. In our paper

we will show that the major variation in the crystal polariz-

ability being proportional to ASF originates from the altera-

tion of the ASF as a function of the pulse duration and fluence.

In the femtosecond time range the atomic positions in a

crystal are fixed and the main source of variation is the elec-

tronic excitation and Auger recombination of bound electrons

induced by the X-ray beam. Because the time scale of these

processes is in the same time range as the FEL pulse length,

the population of electronic states of an atom and subse-

quently the atomic form factor become time-dependent.

Under these conditions, conventional theories of X-ray

diffraction that are based on the stationary X-ray suscept-

ibility of the crystal (Authier, 2003) are no longer valid

because of the fast evolution of the electron density in the

crystal. Since the duration �D of the formation of a diffraction

peak, defined by the extinction length Lext (�D � Lext=c ’

10 fs, where c is the speed of light), is comparable with the

duration of the XFEL pulse it is necessary to take into account

the dynamics of electronic redistribution within the atomic

shells. These processes finally result in the time-dependence of

the ASF and the integrated Bragg peak intensity that is

proportional to the square of the Fourier components of the

crystal X-ray polarizability.

The evolution of electron density of an object irradiated by

an XFEL pulse can be described by the solution of rate

equations for the atomic state populations (e.g. Son et al.,

2011; Santra, 2009, and references therein) or by the simula-

tion of microscopic processes in terms of the Monte Carlo

method (Hau-Riege, 2011). An alternative approach is

focusing on the description of the evolution of the electron

plasma that is created in the process of ionizing the atoms (e.g.

Ziaja et al., 2002; Hau-Riege, 2013, and references therein).

Moreover, it was also shown (Gnodtke et al., 2012; Iwayama et

al., 2009; Bostedt et al., 2010; Schorb et al., 2012) that the

ionization dynamics of individual atoms changes substantially

considering the influence of the electron plasma on the time-

dependent evolution of the population probabilities. As a

result, the population of the atomic configurations depends on

the relation between pulse duration and the size of the cluster

on the one hand and the energy distribution of plasma elec-

trons on other (Schorb et al., 2012). Evidently, the latter effect

becomes essential in the case of crystals where the electronic

band spectrum differs substantially from the energy spectrum

of electrons in isolated atoms and molecules.

The specific feature of our approach is based on the

numerical solution of a self-consistent system of master

equations that includes both the rate equations for the

population of bound electrons and the Boltzmann kinetic

equation for the distribution function of unbound (plasma)

electrons generated by the ionization of the atoms during the

pulse propagation in the medium. Such an approach allows

one (i) to trace explicitly the evolution of all possible atomic/

ionic configurations as it is vital for further estimation of the

X-ray diffraction intensities (this means that if one considers

an ion with total charge +1 the diffraction signal is different for

the cases of inner and outer vacancies) and (ii) to take into

account secondary ionization processes and the role of free-

electron plasma in the problem of evolution of atomic states of

the system. The latter part considers the band spectrum of

unbound electrons and additional relaxation, such as the

ionization of the atoms by the electrons, electron–electron

collisions and three-body recombination. The numerical

treatment of these additional processes makes the solution

of the master equations very expensive. Therefore analytical

expressions for the cross sections of all the electron config-

urations in the ions have been derived on the basis of the

effective charge model (ECM) for single-particle atomic

wavefunctions (Feranchuk et al., 2002; Triguk & Fernachuk,

2011). They have been implemented in the numerical algo-

rithm of the solution of the master equations. The developed

software, crystal evolution induced by X-ray (CEIX), is

applicable to various atoms. Its possibilities are demonstrated

for a Si crystal as an example.
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The present paper deals with theoretical investigation of the

electron density evolution of atoms arranged in a crystal and

the estimation of the time-dependence of ASF during the

propagation of an intense XFEL femtosecond-pulse through

the crystal. As shown by Ziaja et al. (2012), the ASF decreases

remarkably during the time of the pulse propagation through

the sample. This means that the conventional linear theory of

diffraction (Shvyd’ko & Lindberg, 2012), assuming a constant

crystal susceptibility, is no longer valid.

We concentrate on the calculation of the population

dynamics of the atomic electronic states considering bound

and unbound electronic states and the resulting time-depen-

dence of the ASF. The time-dependence of the Bragg peak

intensities is estimated from the square of the structure factors

making up the time-dependent ASFs. First of all it is important

to analyze the role of electron density evolution during the

initial stage of X-ray diffraction; therefore we describe Bragg

peak intensities in terms of kinematical theory which is valid

as long as the crystal thickness is smaller than the extinction

length L < Lext � c=!j�gj (where �g is the Fourier component

of the X-ray polarizability of the crystal and ! is the frequency

of X-ray radiation) so that the dynamical effects are negligibly

small. For silicon at 8 keV photon energy Lext = 18.5 mm at the

(111) reflection in Laue geometry, for instance (Stepanov,

undated).

Considering its femtosecond time range, the FEL pulse will

probe a snapshot of the atomic arrangement in the crystal

affected by random displacements of the atoms due to thermal

displacements. We suppose that the respective damping of the

diffraction intensity can be effectively described in terms of

the static Debye–Waller approach, causing a certain reduction

in the Bragg peak intensity. Whereas this part is not consid-

ered in our approach for now, we effectively describe the

evolution of the Bragg peak intensity by considering five

different processes of electron redistribution in the atoms and

their contributions to the ASF. The degree of electron redis-

tribution depends on the pulse length and the pulse intensity,

and becomes essential if the time necessary for complete

ionization of the atoms is of the order of the time necessary to

form the diffraction peak. We show results of numerical

investigations at photon energies of 4 keV and 8 keV, i.e. close

and apart from the Si K-edge, using a pulse length of 40 fs

and a flux of 1012 photons pulse�1 (the fluence being 0.8 and

1.6 mJ mm�2, respectively).

The present paper is organized as follows. x2 and x3 moti-

vate the approximations and introduce the processes consid-

ered for the description of the evolution of the electron

density during the propagation of an XFEL pulse through

a crystal. The complete system of master equations that

describes the ionization dynamics in the crystal and the

algorithm of the numerical solution are described in x4. The

numerical results for the evolution of the electron density

are discussed in x5 followed by a description of the time-

dependence of the diffraction intensities from a Si crystal

described in x6. The influence of the electron density

evolution on formation of the PXBI effect is estimated

briefly in x7.

2. Qualitative analysis

In general, the problem of the propagation of an X-ray pulse

through matter is based on the solution of the system of

Maxwell equations for the X-ray wavefield coupled to the

Schrödinger equation for the quantum states of the electron

subsystem of the crystal. In contrast to the widespread

approximation of linear X-ray optics that treats the electrons

as classical oscillators (Authier, 2003), a quantum theory

approach for the electron density response is required in order

to take into account the variations of the atomic state popu-

lations during the interaction between the X-ray field and the

crystal (Benediktovich et al., 2014).

First of all, let us estimate the effect of an intense X-ray

laser field on a single atom using the parameters of the XFEL

pulse introduced in the EuroXFEL technical design report

(Altarelli et al., 2007).

The electric field strength in the photon pulse can be

evaluated as (Landau & Lifshitz, 1989)

E �
4h- !Nph

�0�d2cT

� �1=2

’ 4� 109 V m�1 < Ea � 5� 1011 V m�1;

ð1Þ

where �0 is the dielectric constant, Ea = m2c3�3=ðh- e0Þ is the

characteristic strength of the atomic field with � being the fine-

structure constant; e0 is the electron charge; d is the photon

beam size; T is the pulse duration; Nph is the number of

photons per pulse; h- ! is the photon energy.

The effect of an alternating laser field on the non-resonant

atomic states is defined by the ponderomotive energy (Popov,

2004),

Up �
e2

0E
2

2m!2
’ 2� 10�9 eV; ð2Þ

that is essentially smaller than the average atomic ionization

potential Ui. The probability of non-resonant ionization of

atoms by a laser field can be calculated on the basis of Popov

(2004). In the considered case the Keldysh parameter

� ¼ Ui=2Up

� �1=2
� 1; ð3Þ

which means that the probability of under-barrier tunneling is

extremely small.

Taking into account (1)–(3), one can conclude that the

atomic wavefunctions represent a good basis set to describe

the atom–field interaction in terms of perturbation theory.

Let us compare the typical structure of the energy spectrum

of electron states in a crystal (Ziman, 1972) with the energy

spectrum of a single atom (Fig. 1a). The overlap of the elec-

tron shells of the atoms in the crystal leads to the formation of

the energy bands ~EEnðpÞ (n is the zone number, p is the quasi-

momentum). The electron states with n � n0 (n0 is the

quantum number of the highest populated energy level for

bound electrons) correspond to the ground state of the system,

the widths of the allowed bands are defined by the exponen-

tially small overlap integrals between neighboring atomic

states (Ziman, 1972), so that the energy levels in every unit cell

are approximately equal to ~EEnðpÞ � En, found at an isolated
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atom. At the same time, the excited states with n > n0

correspond to the conduction band. For these states the

overlap integral is large and the energy spectrum is described

in the framework of the ‘free-electron approximation’ (Ziman,

1972) by ~EEnðpÞ � p2=2m. This behavior is opposite to the case

of an atom in a molecule or a small cluster, where the energy

of the unoccupied states is still sharp. Due to the formation of

the band structure the effective ionization energy that defines

the transition of the electrons from the discrete to the

continuous spectrum becomes a little bit smaller in a crystal

than in a molecular system.

Another important feature of the ionization dynamics in

crystals is the role of the free electrons, which are described

by the distribution function f ðpÞ (Fig. 1b). The characteristic

energy of the free electrons that appear due to the photo-

ionization is defined by the photon energy p2=2m ’ h- ! �
10 keV. The mean free path Rmfp of the electrons of such an

energy in media is defined by the energy loss due to secondary

ionization processes, and according to the NIST Electron

Inelastic Mean-Free-Path database (http://www.nist.gov/srd/

nist71.cfm) it can be estimated as Rmfp � 10 nm. At the same

time, in a crystal with a thickness of the same order of

magnitude as the extinction length L �

Lext the percentage of ionized electrons

that remain within the crystal can be

approximately estimated as

� � 1�
Rmfp

Lext

� �
’ 1; ð4Þ

that is almost a unity. This means that, in

a crystal, a considerable part of the free

electrons contributes to the evolution of

the electron density.

3. Basic assumptions and
justifications

The contribution of free electrons to the

redistribution of the electron density is

essential and needs to take into account

additional elementary processes in

order to define the ionization dynamics

during the interaction of the XFEL

pulse with the crystal (Fig. 2). The

interaction of the XFEL pulse with a

single atom is described by photo-

ionization and Auger processes (Son et

al., 2011) (processes 1 and 2, respec-

tively). In a crystal, the large number of

electrons excited into the conduction

band leads to electron–electron colli-

sions, electron impact ionization of

other atoms, and the reverse process of

a three-body recombination (processes

3 to 5, respectively). A sixth process

is the possibility of induced photo-

recombination (not shown in Fig. 2).

This process is reverse to photoionization, and takes place if

the free electrons of the continuous spectrum become excited

into unoccupied atomic states under the influence of the

electromagnetic field pulse. This process is substantially

resonant and involves free electrons with momenta pr �

½2mðh- !� EnÞ	
1=2. However, numerical results show (see x5

below) that due to the collisions with electrons and atoms the

photoelectrons quickly fill the entire range of the continuous

states (Fig. 4) and, hence, the contribution of the resonant

photorecombination to the kinetic equation for the distribu-

tion function f ðpÞ can be neglected.

In order to find the intensity of a Bragg peak formed by the

XFEL pulse, one has to calculate the crystal X-ray polariz-

ability taking into account the evolution of the electron

density. Following textbooks (e.g. Landau & Lifshitz, 1982)

one has to solve the Maxwell equations for the photon field

(here the Coulomb gauge is used),

r2Aðr; tÞ �
1

c2

@2

@t2
Aðr; tÞ ¼ �

4�

c

@jðr; tÞ

@t
;

rA ¼ 0; ’ ¼ 0;

ð5Þ
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Figure 1
(a) Comparison of energy spectra of the electron states in isolated atoms and atoms in a crystal; (b)
schematic estimation of the role of free electrons in the ionization dynamics. Here f ðpÞ is the
distribution function of the free electrons, Rmfp is the electron mean free path, and Lext is the
extinction length.

Figure 2
Elementary processes that define ionization dynamics in the crystal.



with A and ’ being the vector and scalar potentials, respec-

tively, coupled to the Schrödinger equation for the wave-

functions �aðr; tÞ = �ðr� Ra; tÞ of the electron subsystem of

the atom in the crystal unit cell localized near the point Ra,

ih-
@�aðr; tÞ

@t
¼ ĤH�aðr; tÞ;

ĤH ¼
1

2m
p̂p�

e0

c
Aðr; tÞ

h i2

þ e0VðrÞ;

ð6Þ

where VðrÞ is the part of periodic potential of the crystal

within the considered unit cell.

The induced current density in the matter can be calculated

as the sum over all cells,

jðr; tÞ ¼
X

a

n ie0h-

2m

h
r�
aðr; tÞ�aðr; tÞ ��
aðr; tÞr�aðr; tÞ

i

�
e2

mc
Aðr; tÞ�
aðr; tÞ�aðr; tÞ

o
: ð7Þ

According to the analysis mentioned above, the stationary

single-electron wavefunctions  nðrÞ of the electrons in the

crystal can be used as a basis set for the solution of equation

(6). Let us consider the evolution of the electron state with the

quantum number l and expand the wavefunction as follows,

�aðr; tÞ ¼ Cl lðr� RaÞ þ
P
n 6¼ l

Cn nðr� RaÞ;

Cl;n � Cl;nðRa; tÞ ¼ al;nðRa; tÞ exp �ði=h- ÞEl;nt
� �

;

Aðr; tÞ ¼ Asðr; tÞ exp iðkr� !tÞ½ 	 þ c:c:

ð8Þ

The quantum number n corresponds to the entire set of the

single-electron quantum states including the wavefunctions of

the continuous spectrum. The coefficients al;nðRa; tÞ and the

slope functions Asðr; tÞ (temporal envelope of the pulse)

(Ziaja et al., 2012) are varying due to the atom–field interac-

tion rather slowly in comparison with the atomic frequencies.

In the numerical calculations below, the analytical single-

electron approximation, ECM (Feranchuk et al., 2002; Triguk

& Feranchuk, 2011), is used both for the functions  l;nðrÞ and

the energies El;n of the atomic stationary states. This

approximation is based on the use of hydrogen-like wave-

functions with an effective charge for each orbital so that it

provides an accuracy comparable with the results obtained

by the Hartree–Fock approximation (LANL Atomic Physics

Codes, http://aphysics2.lanl.gov).

The conventional approach of calculating the linear

response of a system (susceptibility) (Batterman & Cole, 1964)

is based on the approximation al = 1 and anðtÞ being calculated

by means of the perturbative solution of equation (6). In the

present case, a lot of atomic transitions are excited at the same

time due to the very strong field. This results in a significant

depopulation of the initial state, which must be taken into

account when calculating the non-linear and time-dependent

response. If one neglects the transitions between different

excited states during the pulse propagation (we assume these

states to be located in the continuous spectrum), a compact

equation for the function anðtÞ can be derived,

anðRa; tÞ ¼ �i
e0

2mc

Zt

�1

dt0AsðRa; t0Þ a0ðRa; t0Þ

� �nðqÞ p̂p exp �ikqð Þ
�� ���0ðqÞ

	 

exp ið!n0 � !Þt

0
� �

;

q ¼ r� Ra; n 6¼ l;

_alalðRa; tÞ ¼ �
e2

0

4m2c2
A
s ðRa; tÞ ð9Þ

�

Zt

�1

dt0 exp i!ðt � t0Þ½ 	Yðt � t0ÞAsðRa; t0ÞalðRa; t0Þ;

with the response function Yðt � t0Þ, which allows one to take

into account the effects of memory and coherence in the atom-

field interaction,

Yðt � t0Þ ¼
X

n

�0ðqÞ p̂p exp ikqð Þ
�� ���nðqÞ

	 

� �nðq

0Þ p̂p exp �ikq0ð Þ
�� ���0ðq

0Þ
	 

� exp �i!n0 t � t0ð Þ

� �
: ð10

The resonant and non-resonant parts should be treated

separately when solving equation (9) for alðtÞ. It can be shown

that in the non-resonant case (!nl 6¼ !) the kernel of the

integral operator (10) is almost local in time because of the

condition !T � 1. Then the decrease of population of the

atomic ground state reduces to the rate equation

_aalðRa; tÞ ¼ �IðRa; tÞ	ðtotÞð!Þ alðRa; tÞ; ð11Þ

where IðRa; tÞ is the XFEL field intensity at the point Ra of the

considered atom and 	ðtotÞð!Þ is the total cross section of

inelastic scattering of the radiation by the atom. This value can

be found experimentally by measuring the intensity-depen-

dent absorption coefficients 
 = nres	
ðtotÞð!Þ (nres is the reso-

nant atom density).

Another approximation is used in the resonant case when

!lnr
� ! for one of the transitions. Then the coupled equations

define the populations of the resonant levels,

i_aalðRa; tÞ ¼ ��!alðRa; tÞ þ UðRa; tÞanr
ðRa; tÞ;

i_aanr
ðRa; tÞ ¼ �ið�=2Þanr

ðRa; tÞ þ UðRa; tÞalðRa; tÞ;
ð12Þ

where �! = !� !lnr
, � is the width of the excited level and

UðRa; tÞ is the coupling function defined as follows,

UðRa; tÞ ¼ �
e0

2mc
AsðRa; tÞ �nr

ðqÞ p̂p exp �ikqð Þ
�� ���lðqÞ

	 

:

Substituting equation (8) into equation (7) and summing over

the periodic coordinates Ra of the crystal, one can find that the

induced current includes only the Fourier component corre-

sponding to the set of the reciprocal lattice vectors h:
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jðr; tÞ ¼
X

h

jh
s ðr; tÞ exp iðkþ hÞr� !t½ 	;

jh
s ðr; tÞ ¼

e0

m�

n
a
0ðr; tÞalðr; tÞ �lðqÞ p̂p exp iðkþ hÞq½ 	

�� ���lðqÞ
	 


�
e0

c
Asðr; tÞ

X
l� lm; j

alðr; tÞ
�� ��2Fl;jðhÞ exp ihRj

� �
ð13Þ

� exp �WðhÞ½ 	

o
;

where � is the unit cell volume and Fl;jðhÞ is the partial atomic

scattering factor that corresponds to the transferred scattering

vector q = h. It is calculated for the state  lðrÞ and the coor-

dinates Rj correspond to various atoms in the unit cell;

exp½�WðhÞ	 is the Debye–Waller factor (Batterman & Cole,

1964).

The sum is calculated over all atoms within the crystal unit

cell and all bound electron states with quantum numbers l� lm

that were occupied in the initial state of the system. The

characteristic time for a change of the atom positions is

defined by the value �ph � 1=!D � 10�13 s (!D is the Debye

frequency) (Landau & Lifshitz, 1982). In the considered case

this time is larger than the pulse duration �ph� �p � 10�14 and

the Debye–Waller factor has the same value as for the static

crystal. So the total scattering factor of the crystal unit cell is

defined as follows,

Fðh; tÞ ¼
X

l� lm; j

alðr; tÞ
�� ��2Fl; jðhÞ exp ihRj

� �
exp �WðhÞ½ 	: ð14Þ

Far from resonance, i.e. far from the K- or L-absorption edges,

the anomalous dispersion term in (13) can be neglected

(Kissel et al., 1995). This means that only the last term in the

induced current density (13) defines the diffraction intensity,

and the time-dependent Fourier-component of the crystal

X-ray polarizability is defined as follows:

�hð!; tÞ ¼ �
4�e2

0

m!2�
Fðh; tÞ: ð15Þ

The main processes that determine the dynamics of the

occupation probabilities and the time-dependence of the

current density via equation (13) are the photoionization and

the Auger effect. Here we assume that the ionized electrons

are described by plane waves and do not contribute to the

periodic susceptibility. However, they can strongly affect the

bound electron population. During the pulse propagation the

inner shells become depleted due to both photon-induced

processes and electron–atom impact ionization.

4. Application of the rate equations for ionization
dynamics in the crystal

In order to solve the evolution problem for the electron

density in the crystal it is convenient to separate the whole

system into three subsystems: the bound electrons (discrete

spectrum), the free-electron gas (continuous spectrum) and

the electromagnetic field.

(i) It has been shown in many papers [for example, Son et al.

(2011), and citations therein] that the most efficient way to

describe the dynamics of the bound electrons is obtained by

studying the time-dependence of any electron configuration

of the atom. Since a set of bound electrons at a given time

represents a certain atomic configuration, their evolution can

be described as time-dependent changes between different

possible configurations. It may start from the neutral atom and

may finish with a fully ionized atom. If one writes P�ðtÞ for the

probability of the � configuration at an arbitrary moment of

time, then the initial condition for this function corresponds to

the case where all atoms are in the ground (neutral) state,

P�ð0Þ ¼ ��;0: ð16Þ

One should also stress the normalization condition for the

whole set of atomic configuration probabilities that should be

fulfilled for any arbitrary moment of time,P
�

P�ðtÞ ¼ 1: ð17Þ

With this definition, the population of the atomic level QlðtÞ =

hjalðtÞj
2
i in the scattering factor (14) averaged over all

configurations is defined as follows,

Fðh; tÞ ¼
P

l� lm; j

QlðtÞFl; jðhÞ exp ihRj

� �
exp �WðhÞ½ 	;

QlðtÞ ¼
P
�

P�ðtÞgl;�jalðtÞj
2;

ð18Þ

where gl;� is the degeneracy of this level in the configuration �.

(ii) Electrons of the continuous spectrum appear due to

photoionization, Auger recombination and electron-impact

ionization. This subsystem can be described in terms of a

classical one-particle distribution function f ðr; p; tÞ normalized

as follows, R
f ðr; p; tÞ dp dr ¼ neðtÞ; ð19Þ

where neðtÞ is the total number of free electrons per unit cell.

This subsystem includes all excited electrons as well because

for any excitation they occupy the conduction bands following

the free-electron approximation for overlapping electron

shells of atoms in a crystal.

At the initial moment of time there are no free electrons,

which corresponds to the following condition,

f ðr; p; 0Þ ¼ 0: ð20Þ

One should also note that although the photoionization cross

section is not isotropic over the ejected electron direction

(Landau & Lifshitz, 1989), the multiple electron–electron

collisions lead to the loss of information about the initial

velocity directions, so that the distribution function f ðpÞ can be

assumed to be isotropic over the momentum variable (Landau

& Lifshitz, 2001).

(iii) The electromagnetic field is described by the wave

packet

Aðr; tÞ ¼ es�ðr; tÞ exp iðkr� !tÞ½ 	;

Iðr; tÞ ¼ j�ðr; tÞj2;
ð21Þ

where Iðr; tÞ is the intensity distribution function. Using the

kinematical approximation of X-ray diffraction, the evolution

of the electromagnetic field is not taken into account.
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Let us consider the general form of the rate equations

describing the atomic population dynamics (Son et al., 2011),

dP�
dt
¼
P

 6¼ �

W
�P
 �W�
P�
� �

; ð22Þ

where P� is the probability of the system occupying a

configuration with index � and W�
 is the probability of a

transition between the configuration � to 
 in unit time.

Transitions between various atomic configurations during

the XFEL pulse propagation are mainly caused by photo-

ionization, Auger decay, electron-impact ionization and three-

body recombination. The photoionization rate is given by

W
ðPhÞ
�
 ðtÞ ¼ 	

ðPhÞ
�
 JðtÞ; ð23Þ

where 	ðPhÞ
�
 is the cross section of the photoionization process

that corresponds to the transition from configuration � to 

and JðtÞ is the photon flux function.

For the time-independent Auger process rate W
ðAgÞ
�
 we use

the expressions given by Son et al. (2011) and Santra (2009)

and modify them with all ionization potentials calculated in

the framework of ECM (Triguk & Feranchuk, 2011).

The electron-impact ionization rate can be deduced on the

basis of a collision integral calculation and has the following

explicit form,

W
ðeiiÞ
�
 ¼

na

2

Z
v3f ðvÞ dv

Z
d	ðeiiÞ

�
 ðv
0jvÞ

dv0
dv0; ð24Þ

where na is the number of atoms per unit cell and the para-

meter dependence of the cross section is organized in the way

ðvfinjviniÞ.

Using the principle of detailed balance (Hau-Riege, 2011;

Landau & Lifshitz, 2001), the rate of the three-body recom-

bination process can be deduced on the basis of the electron-

impact ionization rate,

W
ðtbrÞ
�
 ¼

2�h-

me

� �3
n2

a

2

Z
f ðvÞ dv ð25Þ

�

Z
v0 3

d	 ðeiiÞ

� ðvjv

0Þ

dv
f ½v0

2
� v2
� ð2=meÞE
�	

1=2 dv0;

where E
� is the ionization potential that corresponds to the

transition from configuration 
 to �.

It is important to stress that as long as the rates (24)–(25)

depend on the electron density function (see below), the

subsystems of free and bound electrons are coupled.

The dynamics of the free-electron gas density function is

described by the Boltzmann kinetic equation and has the form

(Landau & Lifshitz, 2001)

df ðr; p; tÞ

dt
¼
@f ðr; p; tÞ

@t
þ vrrrr f ðr; p; tÞ þ Frrrp f ðr; p; tÞ

¼ IB½ f ðr; p; tÞ	: ð26Þ

For simplicity and insight into the ongoing processes, let us

make a number of additional assumptions. First of all, let us

suppose that the system remains homogeneous in the lateral

direction during the field–matter interaction due to the fact

that the beam size in this direction is much larger than the size

of a crystal cell. This means that all functions depend only on z

(the axis parallel to the wavevector) and t; the wavefront itself

depends on the variable z� ct.

Furthermore, the only vector that could cause an anisotropy

in momentum space is the photon momentum, so that the

anisotropy parameter

�a �
kph

pe

�
h- !

mec2

� �1=2

� 0:14� 1; ð27Þ

and due to thermalization the density function can be

considered approximately isotropic over the momentum

directions.

In the non-relativistic case, the net force F acting on an

electron is defined by the uncompensated Coulomb field

created by the other electrons of the continuous spectrum and

the ionized atoms. This force becomes essential if the photon

pulse has left the crystal but can be neglected during the

passage of the pulse through the crystal. Moreover, in the non-

relativistic case with the assumptions mentioned above, the

diffusion term yields

vrrrr f ðr; p; tÞ �
v

c

@f

@t
�
@f

@t
ð28Þ

and can be neglected as well.

As a result of these approximations, one can reduce the

initial Boltzmann equation (26) to the form

@f ðv; tÞ

@t
¼ IB½ f 	: ð29Þ

In the collision integral IB, the following transitions should be

taken into account: (i) electron-impact ionization of atoms

(ions); (ii) three-body recombination; (iii) electron–electron

elastic scattering. The corresponding collision integrals can be

written as

I
ðeiiÞ

B ¼ na

"
1

v2

X
�;


P�

Z
v0

3 d	 ðeiiÞ
�
 ðvjv

0Þ

dv
f ðv0Þ dv0

�
1

2
v f ðvÞ

X
�;


P�

Z
d	 ðeiiÞ

�
 ðv
0jvÞ

dv0
dv0

#
: ð30Þ

In order to derive the three-body recombination collision

integral one can use the principle of detailed balance (Landau

& Lifshitz, 2001), so that the corresponding cross section can

be obtained on the basis of the electron-impact ionization

cross section,

I
ðtbrÞ

B ¼
2�h-

me

� �3

n2
a

(
1

2
v
X
�;


P�

Z
d	 ðeiiÞ


� ðv
0jvÞ

dv0
f ðv0Þ

� f ½v2
� v0

2
� ð2=meÞE
�	

1=2 dv0

�
f ðvÞ

v2

X
�;


P�

Z
v0

3 d	 ðeiiÞ

� ðvjv

0Þ

dv

� f ½v0
2
� v2
� ð2=meÞE
�	

1=2 dv0

)
: ð31Þ
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In order to describe the elastic electron–electron scattering we

implement the scheme of relaxation dynamics for particle

systems with Coulomb interaction as introduced by Mac-

Donald et al. (1957).

It is important to stress again that, due to the dependence of

the collision integrals (30)–(31) on the atomic configuration

the probabilities P� shown in equations (22) and (29) are

coupled and must be solved simultaneously. However, as long

as we use ECM (Triguk & Feranchuk, 2011), all cross sections

introduced in the system of master equations can be calculated

analytically (see Appendix A) with the necessary accuracy.

The latter makes numerical simulations less expensive in time

and resources.

5. Numerical results for atomic populations

In order to simulate the population dynamics we implemented

the algorithm of Morgan & Penetrante (1990) to solve the

Boltzmann equation and the system of rate equations. In order

to check both the validity of the results predicted by ECM and

the stability of the numerical algorithm for solving the system

of master equations, we simulated the atomic dynamics of

carbon gas without taking into account the crystal structure

and contribution of unbound electrons. This system has been

calculated by Son et al. (2011) using a full numerical treatment

in terms of the Hartree–Fock–Slater (HFS) model (LANL

Atomic Physics Codes, http://aphysics2.lanl.gov) (see

Appendix B for details).

The XFEL pulse used for calculations was specified to have

a photon energy of 8 keV, a photon number of 1012 per pulse,

beam size of 1 mm � 1 mm (thus the fluence being

1.6 mJ mm�2), Gaussian shape with full duration of 40 fs (13 fs

FWHM). All calculations have been performed for the

example of a silicon crystal.

The energy of the Si K-line (1.8 keV) is more than four

times smaller than the photon energy of 8 keV, resulting in a

non-resonant photon-to-atom interaction. In order to estimate

the electron density evolution for a photon energy closer to

the silicon K-edge, where non-resonant effects could become

non-negligible, we performed additional simulation for a

4 keV pulse with the same characteristics as defined above

(the fluence being 0.8 mJ mm�2 in this case).

Fig. 3 shows the probability of finding differently ionized

ions in the silicon crystal as a function of time. It shows that

the number of neutral atoms decreases during the time of

interaction between the photon pulse and the crystal. At

8 keV photon energy the population probability decreases

almost to zero by the end of the pulse and for the 4 keV case

it decreases completely to zero already at half of the pulse

length. The latter is remarkable considering the fact that the

pulse energy is about 2.2 keVabove the threshold of atomic K-

shell ionization. Here most of the populated states are +6 and

+7 at the end of the pulse. In the non-resonant case at 8 keV

the interaction between the XFEL pulse and the electron

subsystem of the atom is weak, so that the atoms are not so

deeply ionized and the mostly populated states are ions with

+1, +2 and +3 ionization charges.

Fig. 4 shows the distribution of kinetic energy of the free

electrons as a function of time. At 8 keV, i.e. in the non-

resonant case, one can see three vivid energy bands varying in

time: the top band (at about 6 keV) describes the energy of

the photoelectrons, the middle band (about 1.3 keV) corre-

sponds to the energy of the Auger electrons, and the range

close to zero energy describes the secondary electrons that

appear due to the electron-impact ionization process. In

contrast to this, the 4 keV result shows a broad spectrum

corresponding to the photo (both spikes at about 2.0 keV and

3.8 keV) and Auger (middle spike at about 1.3 keV) electrons.

Additionally the bands are broadened due to the fact that

every step of ionization is accompanied by a certain decrease

of the ionization potential and subsequently a reduction of the

energy of every successive photoelectron. Moreover, the free

electrons undergo elastic and inelastic scattering, which also

results in a broadening of the energy distribution.

Fig. 5 shows the total number of free electrons per atom in

the crystal unit cell and the contribution of the different

ionization channels in time. One can conclude that, in both

cases, the near-resonant and the non-resonant one, the elec-
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Figure 3
Atomic population probabilities for Si crystal as a function of time: (a) 8 keV pulse, (b) 4 keV pulse.



tron-impact ionization channel plays the dominant role for the

creation of free electrons. The respective yield of free elec-

trons via this process for the 8 keV case is almost seven times

higher than those of photoionization and Auger processes. For

the 4 keV case the relative contribution of the electron-impact

ionization channel is about four times larger than that of the

photoionization and Auger recombination but in absolute

numbers two times larger than for 8 keV photons.

6. Evolution of the atomic scattering factor

The most relevant quantity for the formation of the diffraction

peak is the average value ASF �FFðq; tÞ describing the number

of scattering electrons as a function of the momentum transfer

q = sin =�, where  is the scattering angle and � is the photon

wavelength. The statistical character of the ionization

processes means that the ASF at a moment of time t is a

random value which depends on the probabilities of finding a

certain electron configuration of the atom P�ðtÞ. Let us define

the amount of the average ASF �FFðq; tÞ and its standard

deviation �Fðq; tÞ as follows,

�FFðq; tÞ ¼
P
�

F�ðqÞP�ðtÞ;

�Fðq; tÞ ¼ F 2ðq; tÞ � �FF 2
ðq; tÞ

� �1=2
;

F 2ðq; tÞ ¼
P
�

F 2
� ðqÞP�ðtÞ;

ð32Þ

where F�ðqÞ is the stationary ASF value for the atomic

configuration � at the momentum transfer q. Since the

anomalous dispersion term is omitted we do not consider the

energy range close to the exact resonance energy.

The calculation of the ASF value with probabilities P�ðtÞ

related to one cell is performed by use of the ergodic

hypothesis (Landau & Lifshitz, 2001) for the statistical

ensemble of the atoms in the whole crystal. It is also supposed

that the fluctuations of the ASF for atoms in different cells are

not correlated. In this case the ASF dispersion contributes

only to the X-ray diffuse scattering background and does not
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Figure 4
Free electron density as a function of time and energy: (a) 8 keV pulse, (b) 4 keV pulse.

Figure 5
Contribution of different channels and total yield of free electrons per atom: (a) 8 keV pulse, (b) 4 keV pulse.



change the intensity of the coherent diffraction peak (Lorenz

et al., 2012).

Because the free-electron distribution is broad in real space

the value of the ASF mainly depends on the number of bound

electrons in the atoms/ions. Fig. 6 shows the alteration of this

number during the pulse length. It becomes evident that atoms

lose about seven bound electrons in the near-resonant case,

whereas in the non-resonant case the drop is less than three

electrons per atom.

Fig. 7 shows the ASF values as a function of momentum

transfer, q, for three cases: the neutral free atom and the time-

averaged ASF after the passage of the 4 keV and 8 keV XFEL

pulses. We find a significant reduction in the ASF in the near-

resonant (4 keV) case over all values of q. On the other hand,

the drop in the ASF is small in the non-resonant case (8 keV)

and is substantial at low q values only.

The properties of the ASF are studied in more detail for two

different diffraction peaks: the 220 Bragg peak at q = 0.26 Å�1

and the 222 Bragg peak at q = 0.31 Å�1 that are affected by

changes in both the valence and core shells.

Fig. 8 shows the time evolution of the ASF at the q position

of the 220 and 222 Bragg reflections as a function of photon

energy between 4 keV and 12 keV. Without interaction with

the XFEL pulse the ASF is about 9.0 for both 220 and 222

Bragg peaks for all photon energies (these cases do not differ

qualitatively but we have considered them in order to analyze

stability of the algorithm). This value drops during the time of

interaction of the XFEL pulse with the crystal. The amount of

this drop increases with decreasing energy difference to the K-

absorption edge. At 4 keV the total ASF decreases by 50%

during the XFEL pulse of 40 fs. The inset of Fig. 8 shows the

drop for the 4 keV pulse case with and without the contribu-

tion of the free electrons. It becomes evident that the free

electrons contribute by about 20% to the time-dependent

drop of the ASF. At the same time, the 8 keV pulse causes less

photoionization damage, so that the ASF drop is less than

10% for the mentioned reflections.

The critical point of X-ray diffraction with XFEL pulses is

to find the photon intensity that initiates complete ionization

of the atom during a time faster than that necessary for the

formation of the diffraction peak, i.e. faster than the pulse

time. This threshold intensity can be determined using the

numerical results shown in Fig. 9. It shows the flux dependence

of both reflections and their standard deviation. It becomes

evident that the form factor drop is dramatic if the fluence

exceeds 1.6 mJ mm�2.

In the framework of the kinematical theory, the diffraction

peak intensity is defined by the square of the ASF from all

atoms (Landau & Lifshitz, 2001). In the case of XFEL pulse

diffraction, it is the fluctuating value that should be averaged

for all configurations,

�RRðq; tÞ �
P

a

P
b

FaðqÞF



b ðqÞ exp iqðRa � RbÞ
� �� �

; ð33Þ

where the symbol h. . .i means the average over all config-

urations defined in the formula (30) and the summation is
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Figure 6
Average number of bound electrons per atom as the function of time: (a) 8 keV pulse, (b) 4 keV pulse.

Figure 7
ASF as a function of q for the conventional case and after the passing of
8 keV and 4 keV pulses.



performed over the coordinates Ra;Rb of the same atoms with

ASF FaðqÞ in all unit cells of the crystal.

It was mentioned above that the average ASF is supposed

to be the same for all unit cells and its fluctuations are not

correlated. This allows one to use the formula

FaðqÞF



b ðqÞ
	 


¼ �FFðq; tÞ �FF 
ðq; tÞ þ�2Fðq; tÞ�ab;

�RRðq; tÞ � j �FFðq; tÞj2
���P

a

exp iqRað Þ

���2 þ N�2Fðq; tÞ;
ð34Þ

where N is the total number of unit cells in the crystal.

The first term in (34) defines the coherent diffraction

intensity in accordance with the identity (Ziman, 1972)

�RRðq; tÞ �
P

h

�RRðh; tÞ�q;h � N 2
P

h

j �FFðh; tÞj2�q;h: ð35Þ

This value is proportional to N 2 and is significantly larger than

the diffuse scattering background defined by the ASF fluc-

tuations in the second term in (34).

Compared with the intensity of conventional diffraction, the

change of diffraction intensity induced by an XFEL pulse

R0ðhÞ can be characterized by the value

R

R0

ðNph; !Þ ¼
1

R0ðhÞ

Z1
�1

IðtÞ �RRðh; tÞ dt; ð36Þ

that is a function of the number of photons in the pulse Nph

(photon flux) and their frequency !; the intensity slope

function IðtÞ is defined in (21); R0ðhÞ � Rðh;�1Þ.
As was shown above, the standard deviation of a Bragg

reflection is significantly less than the average ASF, so the

expression (36) can be written as follows,

R

R0

ðNph; !Þ �
1

jF0ðhÞj
2

Z1
�1

IðtÞj �FFðh; tÞj2 dt: ð37Þ

Figs. 10 and 11 show the dependence of this ratio as functions

of photon energy and fluence. Fig. 10 demonstrates that the

diffraction intensity decreases in a non-linear manner if the

photon energy approaches the Si K-edge. The deviation from

unity is about 5% for 8 keV and reaches about 20% at 4 keV

and will decrease further for energies closer to the K-edge

energy. The calculation of the fluence dependence of R=R0 at

8 keV demonstrates a dramatic drop if the fluence exceeds

1.6 mJ mm�2 (see above).

7. Estimation of the role of electron density evolution in
the formation of the PXBI effect

It is also important to estimate the influence of electron

density evolution on the conditions of the PXBI effect
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Figure 8
Evolution of the average ASF �FFðh; tÞ (a, b) and its standard deviation �Fðh; tÞ (c, d) as functions of the photon energy. Inset: evolution of the average
ASF �FFðh; tÞ and its standard deviation �Fðh; tÞ without (red line) and including (black line) the contribution of free electrons for the 4 keV case. (220)
and (222) reflections are considered.



mentioned in x1. The characteristic value of the gain G for

PXBI was calculated previously (Baryshevsky & Feranchuk,

1984; Leonov et al., 2013; Baryshevsky et al., 2005) for a crystal

with the static X-ray polarizability and was defined by the

following formula,

G ½cm�1
	 ¼

Q!Bj�hð!BÞj

j cos 2Bj
1=2

 �1=4

; ð38Þ

with

Q �
2�e2

0

h- c

j�0j
2h- !B

cE
ne;

where !B; B is the Bragg frequency and angle correspond-

ingly connected with the reciprocal lattice vector h; ne is the

particle density in the bunch of the electrons with energy E.

Threshold electron current for PXBI was estimated as jth �

108 A cm�2 if the crystal length L � 1 cm.

Integral loss �E of the total energy of the bunch due to the

electromagnetic interaction between relativistic electrons of

research papers

IUCrJ (2014). 1, 402–417 A. Leonov et al. � Time dependence of X-ray polarizability 413

Figure 9
Dependence of the average ASF (a, b) and its standard deviation (c, d) on the fluence of the XFEL pulse at 8 keV photon energy.

Figure 10
Integral intensity of the XFEL pulse diffraction compared with the
conventional low energy diffraction as a function of photon energy with
1012 photons per pulse.

Figure 11
Integral intensity of the XFEL pulse diffraction compared with the
conventional low energy diffraction as a function of fluence with 8 keV
photon energy.



the beam and the crystal with atomic charge Za can be esti-

mated on the basis of the Bethe formula (Landau & Lifshitz,

1982),

�E �
4�Z2

ae4
0

mc2�
NeL lnðE=mc2Þ; ð39Þ

where Ne is the number of electrons in the bunch.

It corresponds to the effective fluence �,

� �
4�Z2

ae4
0

mc2�Se

NeL lnðE=mc2Þ; ð40Þ

where Se is the transversal section square of the bunch.

The condition for the PXBI threshold current will be

fulfilled if we choose Ne = 109, Se = 25.0 mm2, E = 200 MeV,

that corresponds to the electron bunches produced by the

laser-driven accelerators (Nakajima, 2008; Corde et al., 2013).

Then in the case of a Si crystal one can estimate from (40)

� � 2:8� 10�2 mJ mm�2:

This value is less than the threshold fluence for the essential

drop of the polarizability (Fig. 11). However the secondary

electrons produced by ultrarelativistic particles in the crystal

may lead to substantial increase of the effective fluence in

comparison with the estimation (40). It means that dynamics

of the PXBI effect from the bunch should be considered

taking into account the evolution of the electron density in the

crystal. We suppose to analyze this case in a separate paper.

8. Discussion and conclusions

A numerical algorithm and software were developed for

calculation of the X-ray polarizability of a crystal and

diffraction intensity during the propagation of an intense

XFEL femtosecond-pulse through a crystal. Together with

photoionization and Auger processes we considered addi-

tional processes related to the free electrons generated in the

conduction band of the solid state.

The results of the present paper lead to the following

general conclusions:

According to Fig. 5, the role of the free electrons is domi-

nant via the process of electron impact ionization.

According to Fig. 10, our approach remains valid for photon

energies about 2 keV above the K-edge. However, in order to

make the simulation more precise and avoid additional errors,

the accuracy of the photoionization cross sections within the

ECM should be improved for this energy region. For silicon

this may happen at a photon energy of 2.5 keV. Further

decrease of the photon energy will result in a decrease of the

ionization potential up to the value where the ionization

potential becomes deeper than the photon energy itself, where

single-photon transitions from the K-shell become forbidden.

Generally, the approach to the solution of the rate equations

becomes invalid in close vicinity to the exact resonance. Here,

one should use the density matrix method in order to take into

account both diagonal and non-diagonal elements for the

solution of the evolution problem. A more exact treatment in

terms of quantum mechanics is needed in order to consider

quantum coherence effects (Rabi oscillation) that are

expected if the photon energy exactly matches the energy of

transition. The coherence effects become significant only if

equation (9) is non-local in time, i.e. if Yðt � t0Þ has a signifi-

cant time spread in comparison with the pulse duration, or,

turning to the frequency domain, if Yð!Þ is sharp in compar-

ison with the spectral width of the pulse slope function. In this

case the resonance can take place and the system of equations

(10) and (12) should be used to calculate the amplitudes.

However, if the frequency of the X-ray pulse corresponds to

the transition to the continuous part of the spectrum, Yð!Þ
covers a wide range of the X-ray frequency that is broader

than the spectral width of the pulse slope function. Then non-

Markovian effects can be neglected, and we come to the rate

equations in the form (11) for the occupation probabilities.

The general result of our numerical investigation consists of

the predicted time dependence of the atomic form factor. As

shown in Fig. 8, the ASF decreases during the propagation of

the intense XFEL pulse through the crystal. This results in a

drop in the diffraction intensity and in the decrease of the

crystal polarizability components �h during the pulse propa-

gation. Due to photoionization and other processes, the

amount of this drop at the end of the pulse increases if the

photon energy approaches the K-resonance and can reach

50% already at 4 keV. Therefore an X-ray scattering experi-

ment using intense XFEL femtosecond-pulses cannot probe

the ground-state electron density of a crystal. Using XFEL

pulses the measured ASF will always be smaller than the form

factor measured with conventional synchrotron radiation. The

deviation of the measured electron density from the ground-

state electron density increases for photon energies closer

to the K-resonance. However, major changes of diffraction

intensity are expected above a certain threshold of pulse

fluence. This threshold can be extracted from Fig. 11 and is

supposed to be close to 1.6 mJ mm�2 using a focus spot of

�1 mm � 1 mm. This is remarkable because diffraction is still

possible in spite of the fact that this value is much greater than

those found in experiment (Hau-Riege et al., 2007, 2010;

Chalupsky et al., 2009). As seen in Fig. 10, this threshold

decreases with decreasing photon energy, and has to be

considered using a photon energy close to the K-edge. In this

case the possibility of the PXBI effect from the electron

bunches should be investigated additionally.

APPENDIX A
Cross-sections calculation

We have calculated all necessary cross sections by means of an

analytical model of an atom with effective charges (Triguk &

Feranchuk, 2011) for each shell. The simplest one is the photo-

ionization cross section that can be written in atomic units as

(Santra, 2009; Landau & Lifshitz, 1989)

	ðPhÞ
nl ð!; pÞ ¼

2

3

��!

p
gnl

X
lj ¼ l 1

l>
2l þ 1

�
Rþ1
0

r3RnlðrÞRplj
ðrÞ dr

����
����

2

; ð41Þ
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where � is the fine-structure constant, ! is the photon

frequency, p = ½2mðh- !� "nlÞ	
1=2 is the momentum of the

photoelectron, and "nl and gnl are the ionization potential and

the occupation number of the ðnlÞ-subshell, respectively.

Within the framework of ECM, the hydrogen-like wave-

functions for discrete [RnlðrÞ] and continuous [RplðrÞ] spectra

were used,

RnlðrÞ ¼ Nnl

2Znlr

n

� �l

exp � Znlr=nð Þ
� �

� F �nþ l þ 1; 2l þ 2; 2Znlr=nð Þ;

Nnl ¼
1

ð2l þ 1Þ!

ðnþ lÞ!

2nðn� l � 1Þ!

 �1=2
2Znl

n

� �3=2

; ð42Þ

RplðrÞ ¼ Nplð2prÞl expð�iprÞFði�þ l þ 1; 2l þ 2; 2iprÞ;

Npl ¼
Z

ð2l þ 1Þ!

8�

�½1� expð�2��Þ	

� �1=2Yl

s¼ 1

ðs2 þ �2Þ
1=2;

� � Z=p; ð43Þ

with Z and Znl being the total charge and effective charge of

the ðnlÞ-subshell, respectively. These values are calculated by a

universal formula derived by Triguk & Feranchuk (2011). One

should note that for numerical simulation the integrals in (41)

with the functions (42)–(43), and hence the photoionization

cross section, can be calculated analytically.

To calculate the electron-impact ionization cross section

and consider the three-body recombination process we use the

binary-encounter dipole model (Kim & Rudd, 1994; Kai,

2010) with all ionization potentials being calculated within the

framework of ECM.

APPENDIX B
Justification of the validity of ECM

In order to justify the validity of ECM we performed a set of

numerical simulations for the atomic carbon system. As a first

test, we compared the photoionization cross sections predicted

by ECM with the results obtained by the HFS model. The

comparison is shown in Fig. 12; both have the same functional

behavior. The slight shift between the ECM and HFS values

occurs due to the fact that for reasons of simplicity we made

a rough estimation for the continuous spectrum radial wave-

function.

Calculations of the normalized ASF for certain atomic

configurations (neutral, single core-hole and double core-hole

states of carbon) by ECM are shown in Fig. 13. One can

conclude that these quantities are in very good agreement

with the results shown in Fig. 1 of Son et al. (2011) over the

whole range of the momentum transfer values.

Figs. 14 and 15 show the results of the simulation of the

electron dynamics in carbon for the cases of pulses of 8 keV

and 12 keV. Our data are in good agreement with the results

shown in Figs. 2 and 3 of Son et al. (2011). However, one

should note that there is a small shift between the corre-

sponding extrema of atomic population probabilities [see

Figs. 15 and 3 of Son et al. (2011)] caused mainly by the fact

that we implemented smaller values for the photoionization

cross sections for the reason mentioned above.

The good agreement with the results of HFS for carbon

justify the validity of our code for the case of silicon that will

be considered below.
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Figure 12
Photoionization cross section for the 1s shell of neutral carbon calculated
using the HFS approach (black line) and ECM (red line).

Figure 13
Normalized [in accordance with Son et al. (2011)] atomic scattering factor
for neutral (black line), single core-hole (red line) and double core-hole
(blue line) states of carbon [the agreement with Son et al. (2011) is very
good].
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1768–1770.

Santra, R. (2009). J. Phys. B, 42, 023001.
Schorb, S., Rupp, D., Swiggers, M. L., Coffee, R. N., Messerschmidt,

M., Williams, G., Bozek, J. D., Wada, S.-I., Kornilov, O., Möller, T. &
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