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Crystallographic auto-indexing algorithms provide crystal orientations and unit-

cell parameters and assign Miller indices based on the geometric relations

between the Bragg peaks observed in diffraction patterns. However, if the

Bravais symmetry is higher than the space-group symmetry, there will be

multiple indexing options that are geometrically equivalent, and hence many

ways to merge diffraction intensities from protein nanocrystals. Structure factor

magnitudes from full reflections are required to resolve this ambiguity but only

partial reflections are available from each XFEL shot, which must be merged to

obtain full reflections from these ‘stills’. To resolve this chicken-and-egg

problem, an expectation maximization algorithm is described that iteratively

constructs a model from the intensities recorded in the diffraction patterns as

the indexing ambiguity is being resolved. The reconstructed model is then used

to guide the resolution of the indexing ambiguity as feedback for the next

iteration. Using both simulated and experimental data collected at an X-ray

laser for photosystem I in the P63 space group (which supports a merohedral

twinning indexing ambiguity), the method is validated.

1. Introduction

An X-ray free electron laser (XFEL) generates brief intense

X-ray pulses of femtosecond duration, allowing structure

determination of sub-micron crystals. This technique, known

as serial femtosecond crystallography (SFX), has provided

atomic resolution structures for proteins (Barends et al., 2014;

Boutet et al., 2012; Chapman et al., 2011; Liu et al., 2013;

Redecke et al., 2013). At the same time, SFX has created many

challenges for data analysis, since patterns from thousands of

nanocrystals of different sizes and orientations must be

merged after indexing, and also because of the large shot-to-

shot variations in pulse intensity. Here, we discuss one of the

most important issues in SFX, namely the indexing ambiguity

which occurs when the Bravais symmetry is higher than the

space-group symmetry. In its simplest form, the indexing

ambiguity arises when a correctly indexed crystal might also

be indexed as its twin. We do not suggest here that the

nanocrystals themselves are twinned, only that data from

different single crystals may be accidently merged in twin-

related orientations. Thus, merged data from patterns subject

to a twinning index ambiguity are similar to those from

physically twinned crystals. The process of resolving this

ambiguity has thus been referred to as detwinning.

Auto-indexing software, including the widely used

MOSFLM (Leslie, 1999), DIRAX (Duisenberg, 1992) and

LABELIT (Sauter et al., 2004) programs, are capable of
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determining both the unit-cell parameters and the orientation

of a crystal, based on Bragg spot locations in a diffraction

pattern. Indexing ambiguities are not a severe problem in

conventional crystallography, because (i) a series (or even a

full set) of diffraction patterns with known relative rotational

relations are measured from each crystal; (ii) the reflections

measured at each Bragg spot are narrowly distributed and

represent the full diffraction intensities, especially if the

oscillation or rotation technique is applied during each

exposure. In SFX, a crystal is completely destroyed immedi-

ately after interacting with the X-ray laser pulse. The rotation

of a nanocrystal can be ignored during the femtosecond

exposure, so that the recorded intensity covers only a small

fraction of the angular width of a reflection generated by

mosaicity. This fraction is set by the range of wavelengths

within each pulse (typically 0.1% monochromaticity), so that

full structure factors cannot be extracted from a single

diffraction pattern. The orientational relationship between

diffraction patterns is unknown because the crystals are

oriented randomly from shot to shot, and the auto-indexing

methods cannot distinguish between, for example, twin-

related indexing schemes based on Bragg spot locations alone.

In such a case, if data were merged based on indexing results,

one would expect half the data to be merged incorrectly by

chance for the cases where two indexing modes are equivalent,

resulting in a merged data set that appears to be from physi-

cally twinned crystals. On the other hand, the intensities of full

reflections at Bragg spots can provide the extra information

needed to resolve this ambiguity.

In SFX indexing a second challenge arises which is that, for

mosaic crystals, the measured snapshot XFEL Bragg spots are

only partial reflections. This is a result of the collimation and

monochromaticity of the X-ray laser, which samples only a

fraction of the full angular width of each reflection, which is

broadened by mosaicity (Hattne et al., 2014). Mosaicity

models differ according to the type of crystal, and a model

based, for example, on continuous elastic deformation may

apply in some cases [see Snell et al. (2003) for a review].

Partiality has been defined in several ways, often very

loosely as the angle by which a given diffracted beam misses

the exact Bragg condition. More precisely, we will define the

partiality of a reflection as the fraction of a full reflection that

is recorded in one experimental pattern, with a maximum

value of unity corresponding to a full reflection. A different

situation arises for the second case of the smallest nanocrystals

which consist of a single mosaic block (with possible elastic

deformation), smaller than the width of the coherent beam,

where the full Fourier transform of the external shape of the

nanocrystal (the so-called shape transform) is laid down

around every reciprocal lattice point. Interference fringes are

then seen running between Bragg spots (Chapman et al., 2011;

Spence et al., 2011) and the angular distribution of scattering

around the Bragg condition can no longer be modelled as a

smooth narrow peak. We may also have a third case, when

using the smallest sub-micron diameter XFEL beams, where

the beam size may be smaller than one ‘mosaic block’ or

isolated nanocrystal. This case of coherent convergent-beam

diffraction is treated by Spence et al. (2014) and will not be

considered here. The fourth case of a large perfect crystal

(such as a semiconductor silicon wafer) in which dynamic

scattering is important will also not be considered here, since it

does not occur in protein crystallography.

Since the intensity variation due to partiality variation may

be much greater than that due to changes in the choice of

indexing scheme, one has a chicken-and-egg problem, where

full reflections are needed to resolve the indexing ambiguity,

but these cannot be obtained until indexing is correctly

assigned to allow data merging. The method of partial

reflection analysis was developed by Rossmann & Erickson

(1983) [see also Rossmann et al. (1979)] and has been used as a

form of post-refinement ever since, in conjunction with

modern goniometer-based data collection at synchrotrons.

Recently, Brehm & Diederichs (2014) developed algorithms

(BD algorithms) to resolve the indexing ambiguity by clus-

tering the patterns based on pairwise similarities, measured

using Pearson’s correlation coefficient. Here, we describe an

expectation maximization (EM) algorithm to establish the

relation between each diffraction pattern and iteratively

construct the full correctly indexed three-dimensional

diffraction volume. The important difference between the BD

and EM algorithms lies in their evaluation functions. EM does

not use the pairwise relationship between two sets of partial

reflections (corresponding to the information recorded in two

diffraction patterns). Rather, it utilizes the relationship

between reflections from any pattern and a merged full

reflection model, which is built up iteratively using the EM

algorithm. This repeated comparison with an iteratively

improved model greatly reduces the time to convergence and

increases the accuracy of the method. We have implemented

this algorithm within the framework of CrystFEL (White et al.,

2012) and tested it using both simulated patterns and experi-

mental patterns from photosystem I crystals.

2. Method

2.1. Existing methods and the Pearson correlation

For two diffraction patterns, Pearson’s correlation coeffi-

cient is defined as (Brehm & Diederichs, 2014)

rij ¼

P
h

IiðhÞ � Ii

� �
IjðhÞ � Ij

� �
P

h

IiðhÞ � Ii

� �2P
h

IjðhÞ � Ij

� �2

� �1=2
; ð1Þ

where {Ii} and {Ij} are the intensities measured from the two

patterns i and j, and {h} are the indices for the common

reflections. Ii and Ij are the mean intensities calculated using

common reflections from the two patterns. Clustering algo-

rithms were then devised to group the patterns into the correct

classes to assign indices consistently. Specifically, Brehm and

Diederichs demonstrated success in classifying diffraction

patterns to indexing modes by mapping the patterns into

hyperspace, using the BD algorithm. For any pair of diffrac-

tion patterns, two quantities are defined to describe their
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relationship. One is the Pearson distance, which is defined as

(1.0 � rij), where rij is the Pearson correlation efficient [see

equation (1)]. The second relation is the Euclidean distance

(or the angle) between these two patterns in the hyperspace

where the diffraction patterns are embedded and represented

as points (or vectors from the origin, when considering the

angles between patterns). In the BD algorithm, the difference

between the Pearson distance and the Euclidean distance (or

angles) is minimized. This procedure eventually maps closely

related patterns to closer locations in hyperspace, thereby

separating the indexing modes.

Pairwise correlations between diffraction patterns that

record only partial intensities may not be accurate enough to

discriminate one indexing mode from the alternatives (espe-

cially for the smallest nanocrystals), yet the success of the BD

algorithm indicates the feasibility of clustering by exploiting

pairwise correlations between patterns. It is also found that

the average Pearson correlation between one pattern and all

other patterns can be used to resolve the indexing ambiguity,

and eventually leads to indexing in a consistent manner. The

method described in the following also uses Pearson’s corre-

lation coefficient to assign indices such that the patterns are

indexed consistently. Considering that individual patterns

consist of a set of ‘partial reflections’, we pursue the idea that

comparison between partial reflections recorded in individual

patterns against a model with full reflections should yield more

reliable results. Therefore, we devised a Pearson correlation

between a diffraction pattern i and a model consisting of full

reflections, {Ifull}, defined as follows:

ri ¼

P
h

IiðhÞ � Ii

� �
IfullðhÞ � Ifull

� �
P

h

IiðhÞ � Ii

� �2P
h

IfullðhÞ � Ifull

� �2

� �1=2
; ð2Þ

where ri is the correlation coefficient and all other symbols are

the same as in equation (1). We now describe how to construct

the full reflection data set iteratively from the partial reflection

data set, using an expectation maximization approach.

2.2. Expectation maximization algorithm and full reflection
construction

Full intensities in three-dimensional reciprocal space can be

computed from an atomic model for a known structure. These

{Ifull} can then be used as a reference to recover orientation

information for each diffraction pattern. In practice, {Ifull} is

often not known for a macromolecule, and it can only be

determined by merging diffraction patterns after recovering

the correct orientations or indexing modes. This comes back to

our ‘chicken-and-egg’ problem, i.e. the ‘correct indexing and

full reflection data set’, which is solved using the expectation

maximization (EM) method. The EM approach has been

applied to a related problem: determining the orientation of

scattering patterns from single-particle experiments, and

merging the scattered intensity into the three-dimensional

scattering intensity volume. We have adapted the imple-

mentation of Tegze & Bortel (2012), which utilizes the

Pearson correlation coefficients to assign orientations. Details

of the EM method and its implementation can be found

elsewhere (Loh & Elser, 2009; Tegze & Bortel, 2012). In brief,

the algorithm works as follows.

At the nth iteration, each two-dimensional experimental

diffraction pattern (consisting of partial reflections) is

compared with a three-dimensional model of the full reflection

intensities on the reciprocal lattice. Correlation coefficients

{rt
i} are computed between each pattern i and the model for

each indexing mode t, where t enumerates all possible indexing

possibilities (two, for the case of a twin-like ambiguity). The

full set of two-dimensional patterns are then merged with each

other into a three-dimensional diffraction volume, based on

the indexing mode which shows the highest correlation with

the current model. This newly merged model is then used as

the reference for the next iteration, in which this process is

repeated, and this is continued until the merged model

converges to a stable solution. The model used for the first

iteration consists of random real numbers representing Bragg

spot intensities. In this way the number of correlations is

greatly reduced from N n (where each pattern is compared

with all others) to hmiNn (through our use of a cumulative
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Figure 1
Flow chart for the expectation maximization algorithm.



model), for N patterns and n indexing possibilities, where hmi

is the expected number of iterations. This is the real power of

the EM algorithm and it results from the use of a model where

the output from one iteration is fed back to the following

iteration to improve the outcome. For the case of space group

P63, there are two indexing modes ({h, k, l} and {k; h; l}) that

cannot be distinguished without considering the full reflection

intensity information. The algorithm is outlined in the form of

pseudocode in the scheme below and as a flow chart in Fig. 1.

Using this algorithm, we aim to solve the following optimi-

zation problem

ÎIfull ¼ arg max
t

X
i

rt
i subject to t 2 indexing modes: ð3Þ

As for the Monte Carlo integration method (Kirian et al.,

2010), the intensities from the diffraction patterns are merged

into the diffraction volume by averaging multiple measure-

ments of the same Bragg spots, and in this way partiality is

dealt with. This means a larger number of measurements (or

diffraction patterns) should lead to a more accurate approx-

imation to the real model of full reflections, with the error

reducing as the inverse square root of the number of patterns.

2.3. Error metrics

For simulated data, the full reflection model is known and

can be used as a reference to check whether the detwinning is

successful. It is straightforward to compute the correlation

between the detwinned model and the reference model. For

the purposes of clarity, we label the indexing mode that is

consistent with the reference model as the consistent indexing

mode (CIM); the other indexing modes are labelled alter-

native indexing modes (AIM). For the case where there are

multiple AIMs, a subscript can be used, such as AIM1, AIM2

etc. For the P63 space group there is only one AIM, so we label

the two indexing modes as CIM and AIM when comparing

merged models with the reference model. Because the model

indexed in one mode can be mapped to the other modes, the

CIM and AIMs are interchangeable. To facilitate the following

discussion, the indexing mode for the target model that yields

the best agreement with the reference model is labelled as the

CIM. These reference intensities from the known structure

and its indexing mode are used only for comparison purposes

to monitor errors in the analysis of experimental data, and

they are never used as inputs to guide the detwinning at any

stage.

For experimental data, we used Photosystem I (PSI) data

collected during SFX experiments at the Linac Coherent Light

Source (LCLS; Stanford, California, USA). The atomic co-

ordinates of PSI [PDB (Berman et al., 2000) code 1jb0; Jordan

et al., 2001] were used to compute the theoretical model

reflection intensities, which were then used as a reference

model to evaluate detwinning accuracy.

The model building process was monitored using a target

score, defined as

rscore ¼
1

N

XN

i¼1

max
t

rt
i

� �� 	
; ð4Þ

where N is the number of patterns. This score will increase as

the merged model is improved on, by incorporating more

diffraction patterns into the merged model in a consistent

manner. This target score will reach a maximum when all the

patterns are correctly indexed.

3. Results

3.1. Performance evaluation using experimental data

Photosystem I (PSI) belongs to space group P63, which has

an indexing ambiguity of {h, k, l} and {k; h; l}, so that there are

two ways to merge any two diffraction patterns. A data set for

PSI consisting of 17 106 indexed patterns has been collected at

LCLS. After auto-indexing analysis, the unit-cell parameters

were identified and found to be consistent with the model
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Figure 2
Test results of the detwinning algorithm with an experimental data set
collected at LCLS for photosystem I. (a) The detwinning process. The
reference intensity is the theoretical value calculated from the PDB
model (pdb code 1jb0). The blue and green curves are the correlation
coefficients between the theoretical and merged intensities at two
indexing modes. The red curve is the target score, i.e. the average of the
highest correlation coefficients between each pattern and the merged
model. (b) The intensity distribution within the first quadrant in the plane
of l = 0 in reciprocal space. The symmetry of the twinned data (top)
disappears after applying the EM detwinning algorithm (bottom).



solved using synchrotron data from macrocrystals (PDB code

1jb0). Our EM algorithm was applied to this data set and the

output model compared with the theoretical form factors

calculated from the known atomic model (PDB code 1jb0).

The detwinning process is summarized in Fig. 2. The merged

model at each iteration was compared with the reference

model (theoretical form factors of the PDB structure) at two

indexing modes (the consistent and alternative indexing

modes, CIM and AIM). After six iterations, the merged model

converged to a stable solution. Fig. 2(a) shows that the initial

correlations are nearly zero because the starting model

consists of random positive numbers (hence no correlations

are expected). The correlations between the output model

from the first iteration and the reference model (1jb0 protein

intensity) reached about 0.62 for both indexing modes. The

orientations of the 17 106 patterns used in this test are clas-

sified into two groups of about the same size after the first

iteration. After the second iteration, the correlation coeffi-

cients between the merged model and the reference model

started to diverge and stabilized at 0.71 and 0.41 for the two

indexing modes. The monitoring score [equation (4)] also

increased to about 0.42, as shown by the red curve in Fig. 2(a).

Because the patterns were obtained experimentally, the actual

orientations were unknown beforehand, so it is difficult to

evaluate the number of patterns that have their orientations

recovered correctly. Nevertheless, using the theoretical

intensity as a reference, a most likely indexing mode for each

pattern can be assigned based on the correlations described in

the Methods, x2.1, equation (2). Our EM algorithm recovered

94.6% of the diffraction patterns (16 188 out of 17 106) in a

manner consistent with the indexing modes assigned using the

theoretical model as the reference. In Fig. 2(b), an intensity

slice through the plane l = 0 in reciprocal space is used to

demonstrate the differences between the merged intensities

before and after detwinning. For clarity, only the first quadrant

with h < 20, k < 20 is shown. As mentioned, for the P63 space

group the indexing ambiguity occurs for {h, k, l} and {k; h; l}.

In the plane l = 0, a symmetric distribution is expected for the

twinned intensity, because the Miller indices {h, k, 0} and

{k, h, 0} are equivalent before resolving the indexing ambi-

guity. This symmetry is clearly observed in the merged data

from the original experimental data set (top of Fig. 2b), while

the bottom of Fig. 2(b) shows the result of the detwinning,

showing that the artificial symmetry due to twinning effects is

not present after applying our EM detwinning algorithm.

3.2. Performance evaluation using simulated data

To quantify the performance of the algorithm further, two

types of simulation were carried out. The first type of simu-

lation was conducted following the same approach as that of

Brehm & Diederichs (2014). The theoretical intensities were

computed using the sfall program in the CCP4 package (Winn

et al., 2011), based on PSI in space group P63 with unit-cell

parameters from the PDB model (PDB code 1jb0). The

simulated patterns were based on experimental data collected

at the LCLS, as described in the previous section. For each

pattern, the Bragg peaks were re-indexed following either

indexing mode with equal probability. The experimental

intensities were replaced with the calculated values, and the

partial reflections were modelled using partialities drawn

randomly from a uniform distribution (from 0 to 1). Shot

noises, following the Poisson distribution, were added to the

simulated intensities. For the simulated data set, where

information about the indexing mode for each diffraction

pattern is known, the performance of the algorithm can be

evaluated directly by counting the number of correctly

recovered indexing modes. The results from a typical test run

are summarized in Fig. 3, showing that the vast majority of the

patterns have been indexed consistently with respect to the

reference model.

The detwinning process is similar for the case of the

experimental data set discussed in x3.1. The starting model was

not correlated with the reference model in either indexing

mode, as indicated by a zero correlation coefficient. Then,

after the first iteration, the patterns fall into two classes based

on the likelihood of being in each indexing mode and half of

the patterns are correctly assigned in this iteration, as

expected. As the iteration continues, the indexing ambiguity

breaks down, reflected by the growing percentage of correctly

recovered indexing modes. The target score increases and

reaches a stable value of about 0.85 after a few iterations. The

correlation between the merged model and the reference

model (i.e. the theoretical intensity calculated from 1jb0) is

also plotted in Fig. 3. The merged model is compared with the

reference model at the two indexing modes for space group

P63. As the detwinning progresses, the information embedded

in the diffraction patterns is incorporated into the merged

model, the correlation of which with the reference model

increases to 0.71 for the CIM and 0.69 for the AIM after the

first iteration (Fig. 3). This initial small propensity towards one

indexing mode over the other leads to an eventual breakdown

of the indexing ambiguity. We note that the correlation coef-
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Figure 3
Summary of full intensity reconstruction and the progress of detwinning
for the simulated data set. The indexing ambiguity breaks after six
iterations, and almost all patterns are indexed consistently (line with
triangles). All the other annotations are the same as in Fig. 2(a).



ficient between the reference and merged models increases to

0.88 after six iterations in the CIM, while the coefficient for the

model in the AIM gradually reduces to about 0.40.

The partiality of intensity is not randomly distributed but

depends on many factors, including crystal size, orientation

and mosaicity and the monochromaticity of the radiation.

Here, we have simplified the problem by assuming that the

crystal sizes are about the same, which is achievable using

experimental crystal size selection, or data screening. For the

second type of simulated dataset, the partiality was modelled

using the program partial_sim in the CrystFEL suite (White et

al., 2012). Fig. 4(a) shows the relationship between partiality

and resolution. Because the Ewald shell is thicker at higher

resolution, the larger overlaps between the Ewald shell and

the Bragg spots result in better intensity measurement,

reflected in larger partialities at higher scattering angles. The

performance of the algorithm for a data set of 10 000 patterns

compiled using this approach is summarized in Fig. 4(b). In

that case, the model intensity reconstruction converges faster,

and the indexing ambiguity is resolved after just two iterations.

The final correlation coefficient compared with the theoretical

intensity is about 0.99, with only two patterns (out of 10 000)

indexed incorrectly.

3.3. Consistency and robustness of the algorithm

The detwinning results are consistent with each other. For

the same set of experimental data described in x3.1, the EM

algorithm was applied ten times with different randomly

generated starting models. The ten detwinning processes are

shown in Fig. 5(a), indicating the convergence of detwinning

within ten iterations. Although the convergence speeds vary,

the final results are consistent: (i) the correlations with the

reference model computed from the PDB structure are very

similar in both indexing modes; (ii) the target scores converge

to almost the same value. The consistency between the final

models from the ten runs was also evaluated by computing

pairwise correlations. It is also worth comparing the EM

detwinning results with those from the method implemented

in the CrystFEL package, the program ambigator, which

utilizes the average values of the correlations between one

pattern and an ensemble composed of other patterns. We also

included the merged intensities without detwinning operations

in the pairwise comparisons. For these comparisons, the

correlations were computed for the subset of reflections within

resolution shells between 3 and 5 Å. This subset of reflections

contains about 55% of the total reflections (111 452 out of

204 092), well representing the reflections in reciprocal space

and reducing the influence of extremely large intensities at low

resolutions. The results are summarized in Fig. 5(b), where the

correlation between each model pair is computed twice,
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Figure 4
The detwinning process for a simulated data set, with the emphasis on
systematic modelling of partiality. (a) The relation between partiality and
resolution. At higher resolution (larger q values), the recorded intensity
is more accurate and better represents the corresponding full reflection.
(b) Within two iterations, the indexing ambiguity problem is solved and
almost all patterns are indexed in consistent modes.

Figure 5
The EM algorithm results are consistent. (a) The program was run ten times with randomly generated starting models, and the final output models have
nearly the same correlations compared with the theoretical models. (b) Pairwise comparison of the models from ten runs, the results from the program
ambigator in CrystFEL and the twinned data. The lower triangular matrix shows the correlations when compared in CIMs and the upper triangular
matrix shows the correlations in AIMs. Note that the correlations are very similar for twinned data in these two modes (dark-grey colour, last row and
last column) while the other models are very consistent, giving correlations larger than 0.90 when indexed in the same modes.



considering the two indexing modes: one for the CIM and the

other for the AIM. The lower triangular matrix shows the

correlations between the models when they are indexed in the

same modes (CIM), and the upper triangular matrix contains

the correlations between models that are in alternative

indexing modes (AIM). The heat map shows that the ten

models, when indexed in the same modes, have very large

correlations (>0.90), indicating good self-consistency. On the

other hand, the correlations between models are smaller than

0.55 when they are indexed in different modes. The results

from the ambigator program are also strongly correlated with

all ten models obtained from the EM algorithm, with corre-

lations from 0.90 to 0.95. By contrast, the twinned intensities

are not strongly correlated with the detwinned results. Based

on the correlations between the twinned model and all other

detwinned results, the two indexing modes are barely distin-

guishable for the twinned model (with correlations between

0.70 and 0.80), as shown in the heat map (Fig. 5b), where the

last row and the last column correspond to correlations

between detwinned results and the twinned data for the two

indexing modes.

The EM algorithm is fast and has the advantage of linear

scaling with respect to the number of patterns. It took about

18 min to process the experimental data set composed of over

17 000 patterns on a MacBook Pro with a 2.8 GHz Intel Core

i7 two-core processor. The computation time is plotted as a

function of the number of patterns in Fig. 6(a), showing a

linear dependence relation. The current implementation of

the algorithm utilizes a single computing core, and detwinning

can be speeded up by parallelizing the correlation calculations

that can be distributed to many computing cores when a larger

dataset needs to be processed.

The EM algorithm has also been evaluated using smaller

data sets and the results suggest that the algorithm is very

robust. From an experimental data set composed of over

17 000 diffraction patterns of PSI crystals, subsets of the

patterns were randomly selected to form data sets of 500, 1000,

2000, 3000 and 10 000 patterns. The percentage of consistently

indexed patterns is summarized in Fig. 6(b). When the data set

was composed of more than 5000 diffraction patterns, we

found that more than about 90% of the patterns were indexed

consistently. When the data set was composed of a smaller

number of patterns, the algorithm became less reliable, indi-

cated by the smaller percentage and larger fluctuations. This

may be because the merged intensities could not accurately

approximate the full reflections if the data set were not large

enough. This can be understood from the fundamental prop-

erties of Monte Carlo integration, which requires sufficient

sampling of each Bragg spot. Another extreme case is that the

consistently indexed patterns are close to 50% (failed in

detwinning) when the number of patterns in the test data set is

too small (500 in this test case), as shown in Fig. 6(b).

4. Discussion and conclusions

We have demonstrated that the expectation maximization

(EM) algorithm can be applied to solve the indexing ambi-

guity problem which arises in serial femtosecond crystal-

lography (SFX) and other X-ray diffraction experiments

where ‘still’ reflections are collected without a goniometer,

such as the use of a lipid cubic phase nanocrystal injector at a

synchrotron. In SFX, the experimental diffraction pattern

from a nanocrystal depends on several factors, including

crystal orientation, size, mosaicity and shape, the X-ray beam
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Figure 6
The speed of the EM algorithm and the requirements on the data set. (a) The time required for a single iteration is linearly dependent on the number of
diffraction patterns. (b) For the case of PSI experimental data, a minimum set of 5000 diffraction patterns is required to guarantee reliable converged
models. The CIM percentage shown on the vertical axis means the percentage of recovered indexing modes that are consistent with the reference model.
When the sample size is smaller than 500, the EM algorithm fails to resolve the indexing ambiguity. For the cases where 1000 to 3000 patterns form the
test set, detwinning can be successful but the large error bars suggest that the success rate is not guaranteed, so more runs would be desired.



profile, and the interaction region between the crystal and the

X-ray pulse (for example, crystals may be only partially illu-

minated by a highly focused beam). Submicrometre-sized

crystals can result in shape-transform effects if the coherent

beam is wider than the crystal. The effect of these will be

investigated in a subsequent paper devoted to the smallest

crystals. The X-ray beam profile varies from shot to shot, but

seeding methods can improve the beam quality. In the original

Monte Carlo sampling approach for nanocrystals at an XFEL

(Kirian et al., 2010), it was expected that this approach would

average over all stochastic experimental variables, and this

behaviour has been confirmed by the N�1/2 fall-off in the error

of structure factor measurement with the number N of

diffraction patterns. It has been shown that the pairwise

correlation between diffraction patterns can be used to break

the indexing ambiguity. Although the correlation function

calculated from partial intensities may not be highly accurate,

the information is sufficient to identify the correct orientation

from incorrectly indexed twins. In such operations, qualitative

results are critical. As long as the correct indexing mode yields

slightly higher correlations compared with incorrect indexing

modes, then the correlation-based algorithm should work.

This would explain the success of the method for distin-

guishing the correct indexing mode from its twin in an

experimental data set where rscore is less than 1.0 (rscore = 1.0

only in the case where full reflections are recorded in each

pattern).

The partiality of reflection intensity does not prevent

recovery of the correct indexing mode. If the patterns are

randomly indexed in two possible twin-related modes for

photosystem I crystals, the merged (twinned) full intensity will

have a correlation coefficient of about 0.71 compared with the

correct model (the theoretical values that were used to

generate the patterns). After resolving the ambiguity, the

merged model is almost identical to the reference model (the

correlation coefficient is close to 1.0), even in the case where

the average partiality is smaller than 0.4 (see Fig. 4a).

Using patterns simulated using the partial_sim program

with the same parameters that were used to generate the data

set in Fig. 4, we conducted a comparison between two

measures: (i) using correlations between all patterns and a

randomly selected pattern (i.e. each correlation coefficient is

taken between two sets of partial reflections), and (ii) using

correlations between patterns and full intensities (the corre-

lation between partial and full reflections). The results shown

in Fig. 7 indicate that our correlation method based on the EM

approach is more reliable for distinguishing indexing modes.

As the iteration progresses, the merged intensities move closer

to the full intensities and the separation of two indexing

modes becomes more pronounced, eventually moving to the

state of Fig. 7(b).

Real experimental data often suffer from imperfect

measurement, such as saturated pixels at very bright spots at

low resolution, or low intensity at very high resolutions. Such

imperfections introduce errors in the correlations. One

strategy to reduce the influence of these saturated pixels and

low-signal pixels is to exclude these data points from the

correlation calculations. In the current implementation of the

EM detwinning program, the very low-resolution data were

ignored for correlation calculations, because extremely large

values at low resolution will make the correlations less

sensitive to the differences due to different indexing modes.

In summary, we have found that an algorithm based on the

expectation maximization approach can effectively resolve the

indexing ambiguity problem, which is unavoidable in serial

femtosecond crystallography for many space groups. The
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Figure 7
Correlations between pairwise SFX patterns, and correlations between SFX patterns and a model with full reflections. The data set is from simulations
obtained using the partial_sim program (see Fig. 4). (a) Diffraction patterns are compared with a randomly selected pattern, and correlation coefficients
for two indexing modes are calculated for every pair of patterns (black and red). The average coefficients for each indexing mode are shown with blue
and yellow lines. (b) Correlations between the diffraction pattern and the merged intensities after three iterations. It is clear that the correlations shown
in (b) separate the two indexing modes more reliably, even in the presence of severe partiality (<40%, see Fig. 4a).



method is implemented within the CrystFEL framework, and

the source code is available upon request from the authors.
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