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X-ray scattering images collected on timescales shorter than rotation diffusion

times using a (partially) coherent beam result in a significant increase in

information content in the scattered data. These measurements, named

fluctuation X-ray scattering (FXS), are typically performed on an X-ray free-

electron laser (XFEL) and can provide fundamental insights into the structure

of biological molecules, engineered nanoparticles or energy-related mesoscopic

materials beyond what can be obtained with standard X-ray scattering

techniques. In order to understand, use and validate experimental FXS data,

the availability of basic data characteristics and operational properties is

essential, but has been absent up to this point. In this communication, an

intuitive view of the nature of FXS data and their properties is provided, the

effect of FXS data on the derived structural models is highlighted, and

generalizations of the Guinier and Porod laws that can ultimately be used to

plan experiments and assess the quality of experimental data are presented.

1. Introduction

In biology, materials science and the energy sciences, struc-

tural information provides important insights into the under-

standing of matter. The link between a structure and its

properties can suggest new avenues for designed improve-

ments of materials, nanoparticles and proteins. For samples

without long-range order, such as solutions of biological

macromolecules, disordered organic polymers or magnetic

domains, as well as (partially) ordered materials, such as self-

assembled block copolymers, liquid crystals or assemblies of

nanoparticles, structural information can be obtained effi-

ciently using traditional small- and wide-angle X-ray scat-

tering (SAXS/WAXS) techniques (Gann et al., 2012; Dyer et

al., 2014). Samples lacking long-range order typically display

angular isotropic X-ray scattering patterns, where the mean

intensity as a function of scattering angle is directly related to

the average shape and local organization of the material

investigated (Feigin et al., 1987; Glatter & Kratky, 1982).

The isotropic nature of these SAXS/WAXS diffraction

patterns is a result of orientational averaging of the scattering

species, due to the fact that the timescale of X-ray exposure

exceeds that of rotational diffusion. The advent of coherent

X-ray sources (Emma et al., 2010; Ishikawa et al., 2012;

Vartanyants et al., 2007; Feldhaus et al., 2013; Borland, 2013)

such as free-electron lasers (FELs) and ultra-bright synchro-

tron light sources allows one to reduce the exposure timescale

below that of rotational diffusion such that the non-isotropic

intensity fluctuations (or speckle) in the scattering pattern can

be resolved.
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The first experimental demonstration of this technique,

termed by the inventor (Kam, 1977) as fluctuation X-ray

scattering (FXS), was provided by Kam et al. (1981) on frozen

tobacco mosaic virus in the early days of synchrotron-based

small-angle scattering. Subsequently, fluctuation scattering has

been used to detect hidden symmetries in colloids (Wochner et

al., 2009) and magnetic domains (Su et al., 2011), for the

structure determination of two-dimensional particles (Pedrini

et al., 2013; Chen et al., 2012; Saldin, Poon et al., 2010), and for

the characterization of liquid crystals (Kurta et al., 2013) and

glasses (Cowley, 2001). XFEL-based fluctuation (X-ray)

scattering data and structure determination have been

demonstrated from single and multiple inorganic nano-

particles (Liu et al., 2013; Mendez et al., 2014) and single

polystyrene dumb-bells (Starodub et al., 2012).

Information is extracted from the experimental speckle

patterns by computing in-frame angular intensity correlations

(Kam, 1977; Saldin, Poon et al., 2010; Saldin, Poon, Bogan et

al., 2011; Saldin et al., 2009). These angular intensity correla-

tion curves, the FXS data, can be used for structure determi-

nation, either via reciprocal-space techniques (Poon et al.,

2013; Saldin, Poon, Schwander et al., 2011; Saldin, Shneerson

et al., 2010) or via real-space methods (Chen et al., 2012; Liu et

al., 2013). In earlier studies, FXS has been presented as a

method for overcoming experimental and theoretical hurdles

in single-particle imaging (Kam, 1977; Saldin et al., 2009). In

contrast with this viewpoint, we demonstrate here that FXS is

a natural extension of SAXS/WAXS. Despite the increased

attention paid to fluctuation scattering due to newly

constructed and future light sources, there is a significant lack

of understanding of the basic properties of such data. The

absence of a basic grasp of the general nature and character-

istics of the data makes assessment, validation and proper use

of the experimental data a challenge.

This communication will provide an in-depth view of the

nature of fluctuation X-ray scattering data, resulting in the

derivation of Guinier and Porod relations and other opera-

tional properties. We furthermore present the effect of the

progressive inclusion of FXS data when reconstructing three-

dimensional models, demonstrating the superior quality of

models that can be obtained from limited FXS data. The

benefits of FXS data apply not only to low-resolution shape or

structure determination, but extend to model-based structural

refinements as well, allowing one to determine structural

changes due to ligand binding or other externally induced

perturbations.

2. Results and discussion

2.1. FXS extends traditional small- and wide-angle X-ray
scattering

The diffraction pattern of an ensemble of molecules frozen

in space and time will contain the signature of many particles,

combining effects from the shape and internal structure of the

particles, the so-called form factor, and their mutual

arrangement in space, the structure factor. In the case of an

ideal dilute solution, one can show that the mean angular

intensity correlation function, C2(q, �’), averaged over a

large number of independent multiple-particle shots, is

equivalent to that obtained from single-particle data (Kam,

1977; Saldin et al., 2009), assuming no interparticle inter-

actions (Kam, 1977; Saldin et al., 2009; Kirian et al., 2011;

Altarelli et al., 2010) and the presence of a flat X-ray wave-

front during the scattering process (Lehmkühler et al., 2014;

Schroer et al., 2014). The potential effects of the coherence

properties of the X-ray beam on the resulting angular corre-

lations will be discussed elsewhere.

The angular correlation function can be obtained from the

experimental data by averaging a large number of in-frame

intensity correlation functions

C2ðq;�’Þ ¼

Z 2�

0

Ijðq; ’Þ Ijðq; ’þ�’Þ d’

� �
images

; ð1Þ

where Ij(q, ’) denotes the intensity as recorded on the j-th

diffraction pattern at polar coordinate (q, ’) [q = (4�/�)sin�,
where � is half the scattering angle and � is the wavelength of

the incident radiation]. Note that additional cross-resolution

and n-point correlations can be derived as well (Kam, 1977)

but are not considered at this point.

The function C2(q, �’) can be further decomposed into

orthogonal components

C2ðq;�’Þ ¼
X1
l¼0

BlðqÞFlð�’Þ; ð2Þ

where Bl (q) are resolution-dependent weights and Fl(�’) is

given by

Flð�’Þ ¼
1

4�
Pl cos2 �ðqÞ þ sin2 �ðqÞ cosð�’Þ
� �

: ð3Þ

Here, Pl(�) is a Legendre polynomial and

�ðqÞ ¼
�

2
� sin�1 q

2�

� �
; ð4Þ

where � is equal to the wavenumber 2�/�, with � the wave-

length of the incident radiation. Note that, due to Friedel’s

law, Bl (q) terms for odd l are equal to 0 (Kam, 1977).

The set of resolution-dependent expansion coefficients

Bl(q), as obtained from the experimental data, is related to the

three-dimensional structure �(x) (Kam, 1977; Saldin et al.,

2009). Although the derivation relating the three-dimensional

structure to the expansion coefficients Bl (q) is relatively

straightforward, it does not provide an intuitive insight into

the nature of the data.

Traditionally, fluctuation scattering data are presented

starting from the Fourier transform of the real-space structure

of the sample (Kam, 1977). Additional insights are obtained

when following the route typically used to derive standard

relations in small-angle X-ray and neutron scattering. A

graphical depiction of fluctuation scattering and how it is

related to standard SAXS is shown in Fig. 1, in which the

mathematical relations outlined below are referenced.

Starting from the real-space structure �(x), the Patterson

function �(u) can be obtained via a self-convolution
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�ðuÞ ¼

Z
V

�ðxÞ �ðx� uÞ dx: ð5Þ

By switching to a spherical coordinate system and expressing

the Patterson function as a spherical harmonics series, we

obtain

�ðrÞ ¼
X1
l¼0

Xl

m¼�l

�lmðrÞYlmð!rÞ; ð6Þ

where � lm(r) are the expansion coefficient curves of the real-

space autocorrelation function and Ylm(�) is a spherical

harmonic function. Given that the scattered intensity is

proportional to the Fourier transform of the real-space auto-

correlation function, one has

IðqÞ ¼

Z
V

�ðrÞ expðiqrÞ dr: ð7Þ

Expressing this intensity function as a spherical harmonics

series

IðqÞ ¼
X1
l¼0

Xm

l¼�m

IlmðqÞYlmð!qÞ; ð8Þ

one obtains (Baddour, 2010)

IlmðqÞ ¼ 4�

Z dmax

0

�lmðrÞr
2jlðqrÞ dr; ð9Þ

where jl(�) is a spherical Bessel function of order l. These

intensity function expansion coefficients are related to the

fluctuation scattering curves Bl (q) via (Kam, 1977; Saldin et

al., 2009)

BlðqÞ ¼
Xm

l¼�m

IlmðqÞ
�� ��2: ð10Þ

From the above equations and Fig. 1, it is clear that fluctuation

scattering is a natural extension of small-angle X-ray scat-

tering.

In the analysis of traditional SAXS data, the system is

assumed to be statistically isotropic, resulting in the assump-

tion that coefficients Ilm(q) for l > 0 are not experimentally

accessible. The term I00(q) is of course equal to SAXS data, as

it models the mean intensity as a function of momentum

transfer q. Upon further inspection of equation (9) for l = 0,

we obtain the Debye equation
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Figure 1
The ‘magic square’ of scattering is expanded to show the relation between the real-space electron density �(r), the associated autocorrelation function
�(r) and its Fourier transforms, F(q) and I(q), respectively. When expressing �(r) and I(q) in a spherical coordinate system, Hankel transforms relate the
associated expansion coefficients. Orientation-averaged quantities in the grey column, such as SAXS data and the radial distance distribution, can be
obtained by selecting curves for which l = 0. The numbers in parentheses relate key operations to the corresponding equations given in the text.



I00ðqÞ ¼ 4�

Z dmax

0

�00ðrÞ r
2 sinðqrÞ

qr
dr; ð11Þ

where �00(r)r2 can be recognized as the pair distance distri-

bution function P(r) (Feigin et al., 1987; Glatter & Kratky,

1982).

Whereas SAXS data only provide experimental informa-

tion about the zero-order polar Fourier transform of the real-

space autocorrelation of the real-space object [equation (11)],

fluctuation scattering extends the data into higher-order

descriptors of the sample. Given that both SAXS and fluc-

tuation scattering data can be described as l-th order spherical

Hankel transforms of radial expansion coefficients, it should

come as no surprise that certain operational properties from

SAXS data can easily be expanded into the fluctuation scat-

tering framework.

3. Guinier and Porod laws for FXS data

As is the case for SAXS data, the low-resolution behaviour of

fluctuation scattering data can provide insights into the

structural parameters in a model-free fashion and can be used

to check the general quality of the data. Using an infinite

series expression for spherical Bessel functions (Bowman,

1958) in equation (9) and truncating the series to the second

term, as done when deriving the standard Guinier relation,

one quickly obtains

IlmðqÞ � ÎIlmql 1�
q2R2

lm

2l þ 3

	 

; ð12Þ

where

ÎIlm ¼
Q0

lm

ð2l þ 1Þ!!
; ð13Þ

R2
lm ¼

Q2
lm

2Q0
lm

: ð14Þ

The quantities Qn
lm are the n-th order multipole moments of

the autocorrelation function

Qn
lm ¼ 4�

Z dmax

0

�ðrÞr2
� �

rlþnYlmð!rÞ dr ð15Þ

¼ 4�

Z dmax

0

PlmðrÞr
lþn dr; ð16Þ

with Plm(r) = � lm(r)r2. Ylmð!rÞ denotes complex conjugation of

the spherical harmonic Ylm(!r). Note that, in general, Ilm(q),

ÎIlm and R2
lm are complex quantities unless l = 0. Equation (12)

can be substituted into equation (10), ultimately resulting in

BlðqÞ � B�l exp 2l log q�
2q2R2

l

2l þ 3

	 

; ð17Þ

where R2
l is equal to the mean real part of R2

lm (�l � m � l)

and B�l is related to the average absolute value of ÎIlm for a

fixed value of l. Linearizing this expression yields a general-

ized Guinier plot

log BlðqÞ � 2l log q
� �

� log B�l �
2q2R2

l

2l þ 3
; ð18Þ

where the slope and intercept provide information on the

sample-dependent properties B�l and R2
l . From this general

formulation of the Guinier equation, it now becomes evident

that B�l and R2
l represent the average amplitudes of the zero-

and second-order multipole moments, Qn
lm. For l ¼ 0, i.e. a

monopole, this is synonymous with the square of the total

scattering length, I(0)2, and the squared radius of gyration, R2
g,

of the particle. For l > 0, these two quantities likewise describe

the higher-order moments (quadrupoles, hexadecapoles etc.)

of the particle shape. The relative magnitudes of these invar-

iants for different values of l are influenced by the symmetry of

the particle, leading to systematic absences of Bl(q) (Saldin,

Poon, Schwander et al., 2011). A generalized Guinier plot from

synthetic data is shown in Fig. 2, using satellite tobacco mosaic

virus (STMV) as an example.

The generalized Guinier equation also allows one to esti-

mate the location of the first local maximum q̂ql in Bl (q), such

that

q̂ql ¼
lð2l þ 3Þ

2

� �1=2
1

Rl

; ð19Þ

where the height, B̂Bl, can be shown to be equal to

B̂Bl ¼ Blðq̂qlÞ ¼ B�l q̂q2l
l exp ð�lÞ; ð20Þ

Although B�l and B̂Bl are related, the latter quantity is on a

similar numerical scale to the total scattering length, making

the use of this quantity more intuitive. B̂Bl can be made scale-

invariant by normalizing the data such that B0(q) = 1, which is

assumed in the following paragraphs.
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Figure 2
Model Bl(q) coefficients from STMV for l = 0 (black), 2 (red), 4 (green)
and 6 (blue). The inset depicts generalized Guinier plots with linear fits.
The location of the first maximum q̂ql in Bl (q), as obtained from the
Guinier analysis, is indicated. The Porod behaviour of the data,
characterized by an asymptotic fall-off proportional to q�8, is shown by
dotted lines.



The values B̂Bl and Rl can be used as model-free shape

classifiers beyond what is provided by the radius of gyration

(Rg = R0) as obtained from a standard Guinier analysis. This is

exemplified for l = 2 in Fig. 3, where the B̂B2 values and R2 /Rg

ratio have been computed for a number of different sized

cylinders, ellipsoids and a representative set of 6709 protein

assemblies from the Protein Data Bank (Berman et al., 2000)

(see Appendix A for details). From the cylinder and ellipsoid

data, it is evident that the combination of R2 /Rg and B̂B2

provides a combination of unique shape classifiers that allows

one to distinguish prolate from oblate structural features. The

value of R2 /Rg indicates whether a shape has prolate or oblate

characteristics, while the value of B̂B2 measures the extent or

strength of the anisotropy, as large values of B̂B2 indicate

significant deviations from sphericity. Higher-order moments

can be used to expand this formalism further to provide a

more fine-grained shape classification.

The above generalized Guinier analysis characterizes fluc-

tuation scattering curves at low resolution. For SAXS/WAXS

data, high-resolution data trends are described by Porod’s law:

IðqÞ / q�4: ð21Þ

This trend holds for well defined three-dimensional particles.

Following Porod’s derivation (Feigin et al., 1987; Glatter &

Kratky, 1982), but using the l-th order spherical Hankel

transform and with an asymptotic approximation for jl (�) for

large q (Bowman, 1958), one readily obtains

IlmðqÞ
�� �� / q�4; ð22Þ

and one can thus show that, for large q values, Porod’s law

extends to fluctuation scattering data

BlðqÞ / q�8: ð23Þ

An illustration of this trend for STMV is depicted in Fig. 2.

The Porod behaviour of shapes such as discs [Bl (q) / q�4]

and rods (Bl / q�2) also displays the same characteristic fall-

off (Feigin et al., 1987; Glatter & Kratky, 1982) as expected for

squared SAXS intensities (Fig. 4). A practical use of the

predicted Porod behaviour is to use the expected fall-off as an

inverse weight when fitting molecular or bead models to data,

as is done in SAXS studies (Svergun, 1999).

This combination of Guinier and Porod analyses provides a

set of model-independent tools to characterize and validate

the quality of the experimental data, in the same way that

Guinier and Porod analyses are used in biological small- and

wide-angle scattering (Feigin et al., 1987; Glatter & Kratky,

1982). The tools presented here provide straightforward

guidelines for the evaluation of experimental FXS data or can

be used to plan FXS experiments. An example of the use of

the generalized Guinier analysis is the prediction that the first

maximum in B2(q), q̂q2, is expected to lie between 2.2/Rg and

1.6/Rg (see Appendix A). If an Rg estimate is available from

standard synchrotron SAXS studies, its value can be used in

the experimental design of FEL-based experiments, to ensure

that high-quality low-angle FXS data can be obtained.
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Figure 3
(a) Example shape descriptors for l = 2. The ratio R2/Rg is plotted against the anisotropic ratio for ellipsoids (black dots) or cylinders (red squares),
allowing the identification of prolate or oblate features. (b) Including the use of B̂Bl as a shape classifier, normalized against B̂B0, provides further
discriminative power between shapes. Small values of B̂B2 represent approximately spherical particles, while large values represent either prolate or
oblate particles. The density in part (b) represents the empirical distribution of ðR2=Rg; B̂B2Þ pairs, as obtained from known PDB structures (see Appendix
A for details).

Figure 4
The Porod behaviour of FXS data for one-dimensional rods (red) and
two-dimensional discs (blue) follows the same fall-off trends as seen in
SAXS/WAXS data. Curves for l = 2 are shown; similar trends for higher-
order curves exist.



4. Increased information content

The derivation of the basic properties of FXS data allows one

to characterize and evaluate the quality of the experimental

data, but fails to explain the reason why these types of

experiment are beneficial. The principal advantage of FXS, as

shown in Fig. 1, is the additional data made accessible in a

fluctuation scattering experiment. This increase in experi-

mental information, even in limited q and l ranges, allows the

recovery of more structural detail compared with using B0(q),

i.e. the SAXS data alone, in the same q range. This effect is

illustrated in Fig. 5, in which average ab initio reconstructions

obtained from both SAXS and FXS data are shown. The

reconstructions are compared with the reference density from

which the calculated data were obtained (see Appendix A for

details). The reconstructions and analyses here are limited to a

relatively low order of l, since these curves are experimentally

more easily accessible, and thus provide a conservative over-

view of the benefit of FXS data compared with standard SAXS

data. As is clear from Fig. 5, the addition of limited higher-

order scattering information already provides a spectacular

increase in reproducible details in the proposed models. One

of the reasons why we do not recover the target structure in an

error-free fashion is that the optimization problem is still

under-constrained (Elser, 2011). However, the main benefit is

that FXS is able to reconstruct or derive structural details with

greater confidence than can be accomplished from the SAXS

data alone, ultimately leading to a better understanding of the

structure-related properties.

A similar view of the use of FXS data is obtained when we

consider model-based refinement techniques for SAXS/

WAXS data (Petoukhov & Svergun, 2005; Gorba & Tama,

2010). Given the stark differences in results obtained in ab

initio modelling (Fig. 5), the further addition of geometric

restraints from a known molecular model could resolve

structural ambiguities to such a level that physiologically

relevant conformational changes in macromolecules could be

confidently deduced from FXS data. For example, when

assuming that the structure of a resting state is known, an FXS

experiment on the perturbed molecule can provide signifi-

cantly more data than can be obtained from a SAXS experi-

ment alone. This is illustrated in Fig. 6, in which model FXS
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Figure 5
Ab initio unconstrained shape reconstructions from model STMV data. The reconstructions were performed by including l = 0 (i.e. SAXS data) [parts
(b), (f) and (i)], l� 6 [parts (c), (g) and (j)] or l� 12 [parts (d), (h) and (k)] in the Bl refinement. The top row [parts (a)–(d)] depicts density slices through
the centre of the virus (e). The reference density (a) shows significant detail in the core of the virus, which is largely absent when only SAXS data are used
(b) but which is reproduced, with increasing quality, when terms up to l = 6 (c) and l = 12 (d) are considered. Another striking improvement is the
distinctly non-spherical outer boundary of the particle when fluctuation scattering data are used. The second row [parts (f)–(h)] displays the associated
standard deviations in the electron density as obtained from the ten independent aligned reconstructions. The black bar [parts (a)–(d) and (f)–(h)
represents 10 Å. The bottom row [parts (i)–(k)] shows the agreement between the data (black circles) and the MOSA-refined (multi-objective simulated
annealing; see Appendix A) expansion coefficients [B0(q) red, B2(q) green, B4(q) blue, B6(q) magenta, B8(q) orange, B10(q) cyan and B12(q) yellow] for
SAXS [part (i)] and for fluctuation scattering [parts (j)–(k)]. The error bars represent the standard deviation from the ten reconstructions.



data from carbon monoxide-bound haemoglobin are

compared with its unligated intermediate. The relative

difference in the data at the Shannon sampling points (Feigin

et al., 1987) is depicted as well, indicating that the sensitivity of

Bl (q) is enhanced for larger values of l. If high-order l data up

to larger scattering angles are available, difference maps can

be obtained as well (Pande et al., 2014). It is worth noting that

the extraction of a difference FXS signal will require optimal

instrumental and sample conditions, as well as fine-tuned data-

processing routines.

This increased information content of FXS data compared

with SAXS can play an important role in determining the

structural foundation of dynamic processes in biology. As

shown earlier (Chen et al., 2013), FXS from a mixture can be

described as the component-weighted sum of curves from the

individual species. By performing time-resolved FXS experi-

ments, one can obtain Bl (q) curves for intermediate short-

lived structural species, akin to standard practices in the

analysis of time-resolved WAXS data at synchrotrons

(Cammarata et al., 2008; Andersson et al., 2009) or, as recently

demonstrated, at an FEL (Arnlund et al., 2014). Thus, the use

of fluctuation scattering will ultimately lead to a more accurate

depiction of the structural dynamics of macromolecules in

solution.

5. Conclusions

In conclusion, we have shown that fluctuation scattering is a

natural extension of traditional small-angle X-ray scattering,

and that a number of operational properties translate from

SAXS/WAXS into fluctuation scattering. Given the increased

detail that can be obtained from fluctuation scattering data

and the ever-increasing availability of X-ray sources at which

these experiments can be performed, we expect that these

experiments will become routine in the future. The extended

standard Guinier and Porod methods can be used to validate

data and characterize samples rapidly in a model-free fashion.

APPENDIX A
Additional details

The cylinder and ellipsoid models used in Fig. 3 were obtained

by generating voxelized representations of these shapes on a

41 � 41 � 41 voxel cubic grid with 40 Å edges. The set of

shapes was obtained by varying their radii and lengths

(cylinders) or their main and minor axes (ellipsoids) while

keeping a constant volume. The anisotropy ratio as used in

Fig. 3 is defined as

�x � �z

�x þ �z

; ð24Þ

where �z is the moment of inertia, along the axis of revolution

for ellipsoids or the cylindrical axis for cylinders. �x is the

moment of inertia perpendicular to the z axis. The anisotropy

ratio is 1 for a perfect one-dimensional rod and �1 for a two-

dimensional disc. Fig. 3 indicates that R2 /Rg is expected to lie

between 1.25 and 1.65. Using equation (19), it follows that the

first maximum in B2(q), q̂q2, lies between 2.2/Rg and 1.6/Rg.

When determining Rl and B̂Bl from FXS curves for l > 0, one

can either use interpolation and peak picking and equation

(19), or use the generalized Guinier transform, equation (18).

The empirical distribution PðR2=Rg; B̂B2Þ, as shown in

Fig. 3(b), was obtained from 6709 PDB files with low (<30%)

sequence identity. The distribution shown contains 98% of the

density. A small number of structures displayed R2 /Rg ratios

below 1.25 or above 1.65, with B̂B2 typically close to zero.

All FXS data were computed from either the atomic co-

ordinates (PDB models) or the electron density (real-space

reconstructions) or voxelized representations (cylinders and

ellipsoids) using the three-dimensional Zernike polynomial

expansion method (Liu et al., 2012). The maximum expansion

order, nmax, was determined such that nmax 	 qmaxrmax, which

resulted in nmax = 30 for STMVand nmax = 40 for haemoglobin.

The Bl(q) coefficients were evaluated to a maximum

momentum transfer, qmax, of 0.3 Å�1 (
20 Å) for STMV

(PDB code 1a34) and 0.6 Å�1 (
10 Å) for haemoglobin (PDB

codes 1bbb and 2hbb). The ab initio reconstructions were

obtained without the use of symmetry or connectivity

restraints via a multi-objective simulated annealing (MOSA)

(Smith et al., 2008) adaptation of our reverse Monte Carlo

procedure (Liu et al., 2013), which has been shown to be less
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Figure 6
(a) FXS data calculated from the two haemoglobin crystal intermediates
1bbb (CO-haemoglobin; green and red cartoon and dotted lines) and
2hbb (deoxy-haemoglobin; blue cartoon and solid lines) in the Protein
Data Bank. The average root mean-square difference between the two
intermediates was approximately 2 Å and data were computed for l � 4
(black, red and green curves). (b) The relative differences, |�Bl (q)|/
Bl (q), between the two states at the Shannon sampling points (multiples
of �/dmax = 0.044 Å�1) (black squares, red circles and green triangles),
indicate the average increased sensitivity of Bl (q) for l > 0, as illustrated
by the dotted lines. This additional sensitivity, combined with the
independent nature of the higher-order curves, ultimately results in a
more precise determination of macromolecular structures in solution.



prone to local minima than when using an aggregated �2-

based target function. The starting model for the reconstruc-

tion was a hollow sphere with a radius of 96 Å on a

61 � 61 � 61 voxel cubic grid.
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