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Small-angle X-ray and neutron scattering (SAXS and SANS) experiments on

solutions provide rapidly decaying scattering curves, often with a poor signal-to-

noise ratio, especially at higher angles. On modern instruments, the noise is

partially compensated for by oversampling, thanks to the fact that the angular

increment in the data is small compared with that needed to describe adequately

the local behaviour and features of the scattering curve. Given a (noisy)

experimental data set, an important question arises as to which part of the data

still contains useful information and should be taken into account for the

interpretation and model building. Here, it is demonstrated that, for

monodisperse systems, the useful experimental data range is defined by the

number of meaningful Shannon channels that can be determined from the data

set. An algorithm to determine this number and thus the data range is

developed, and it is tested on a number of simulated data sets with various noise

levels and with different degrees of oversampling, corresponding to typical

SAXS/SANS experiments. The method is implemented in a computer program

and examples of its application to analyse the experimental data recorded under

various conditions are presented. The program can be employed to discard

experimental data containing no useful information in automated pipelines, in

modelling procedures, and for data deposition or publication. The software is

freely accessible to academic users.

1. Introduction

Small-angle scattering (SAS) of X-rays (SAXS) and neutrons

(SANS) is a powerful method for the analysis of biological

macromolecules in solution (Svergun et al., 2013). Over the

last decade, major advances in instrumentation and compu-

tational methods have led to new and exciting applications of

SAXS to structural biology (Graewert & Svergun, 2013).

However, for biological systems the contrast of the particles in

aqueous solution is rather small and the useful signal may be

weak compared with the background (Jacques et al., 2012).

This leads to a low signal-to-noise ratio for the data, especially

at higher scattering angles. A question arises as to how to

determine the useful angular data range of the experimental

scattering pattern that can be taken for subsequent inter-

pretation and model building. A common practice is to use

only that portion of the scattering curve where the signal-to-

noise ratio exceeds a certain threshold (Skou et al., 2014), but

the choice of the threshold remains a rather subjective

procedure. Also, relying only on the signal-to-noise ratio does

not take into account the degree of oversampling of the data.
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The problem of assessing the useful data range is also

pertinent for other diffraction techniques, e.g. X-ray crystal-

lography. Accepted criteria for data quality and accuracy

include the signal-to-noise ratio of the intensities in the

highest resolution shell [hI/�(I)i] and the spread function of

the equivalent reflections (Rmerge) (Wlodawer et al., 2008). In

SAS data analysis, no agreed criteria exist and, in view of the

recent standardization developments of SAS publications

(Jacques et al., 2012; Trewhella et al., 2013) and efforts towards

making experimental data and models publicly available

(Valentini et al., 2015), the absence of an objective method to

assess the useful range of a data set is a serious drawback.

Here, we present an approach using Shannon sampling

(Shannon & Weaver, 1949) to determine the useful range in a

given experimental scattering data set from a dilute mono-

disperse system via the number of Shannon channels that can

be determined from this data set. To establish a robust algo-

rithm for the determination of this number, simulated data

sets with different signal-to-noise ratios and different over-

sampling corresponding to typical X-ray and neutron scat-

tering experiments are generated and analysed. The algorithm

is implemented in a computer program and applied to

experimental SAXS and SANS data sets recorded under

various conditions and on various instruments. The proposed

method is easy to incorporate into automated analysis pipe-

lines, and it can also be employed to select a fitting range in

modelling procedures, especially those relying on higher

resolution data, and during data deposition or publication to

discard the portions of the (higher-angle) SAS data containing

no useful information.

2. Truncated Shannon approximation

The scattering intensity I(s) from a dilute solution of identical

particles (e.g. a monodisperse solution of macromolecules) is

related to the distance distribution function p(r) in real space

as

IðsÞ ¼ 4�

ZDmax

0

pðrÞ
sin sr

sr
dr; ð1Þ

where s = 4�sin(�)/�, 2� is the scattering angle and � is the

radiation wavelength. Equation (1) takes into account the fact

that the p(r) function has finite support and it is equal to zero

for all r > Dmax (where Dmax is the maximum size of the

particle). If I(s) is known, p(r) can be calculated by the inverse

transformation

pðrÞ ¼
r

2�2

Z1

0

sIðsÞ sin sr ds: ð2Þ

From equations (1) and (2), one can easily see that the func-

tions sI(s) and p(r)/r are Fourier mates related by a sine

transformation, and that p(r) is conveniently represented as a

Fourier sine series

pðrÞ ¼
r

2�2

X1
n¼1

an sinð�rn=DmaxÞ; ð3Þ

where n is an integer. Substituting equation (3) into equation

(1) gives the Shannon interpolation formula (Shannon &

Weaver, 1949)

UðsÞ ¼ sIðsÞ ¼
X1
n¼1

snan

sin Dmaxðs� snÞ

Dmaxðs� snÞ
�

sin Dmaxðsþ snÞ

Dmaxðsþ snÞ

� �
;

ð4Þ

where sn = n�/Dmax are the positions of the Shannon channels.

Equation (4) contains, generally speaking, an infinite

number of Shannon channels. However, for experimental data

measured over a limited range of scattering vectors (s < smax),

the contribution of the channels beyond this range (i.e. with

indices n > smaxDmax/�) to the fit in this range is relatively

small. The number of Shannon channels in the measured

range, NS = smaxDmax/�, was therefore suggested (Damaschun

et al., 1968; Taupin & Luzzati, 1982) as an estimate of the

information content of the scattering data. Methods have been

proposed to calculate the p(r) function (Moore, 1980) and to

assess fits to experimental data (Rambo & Tainer, 2013) based

on the Shannon representation.

Although larger values of NS do generally indicate a greater

information content, it is clear that this value alone cannot

provide an ultimate estimate, due to the fact that the signal-to-

noise ratio is not taken into account. Furthermore, SAS data

are usually oversampled, i.e. measured with an angular

increment �s much smaller than the distance between the

Shannon channels �/Dmax. The amount of information in the

data must be related to both the level of experimental error

and the degree of oversampling.

When the summation index in equations (3) and (4) is

limited by an integer number M, the corresponding truncated

expressions are denoted pM(r) and UM(s), respectively. Given

an experimental data set, one can construct its truncated

approximation UM(s) using M Shannon channels by mini-

mizing the discrepancy

�2
ðMÞ ¼

XN

i¼1

1

2s2
i �

2
i

siIðsiÞ � UMðsiÞ
� �2

; ð5Þ

where the summation index i runs over N experimental points

and �2
i is the standard deviation for the measured intensity at

si . The best least-squares solution should meet the condition

��2/�am = 0, leading to the system of normal equations

XN

i¼1

1

s2
i �

2
i

si IðsiÞBðm; iÞ
� �

¼
XN

i¼1

XM

n¼1

an

s2
i �

2
i

Bðm; iÞBðn; iÞ½ �; ð6Þ

where

Bðn; iÞ ¼
sin Dmaxðsi � snÞ

Dmaxðsi � snÞ
�

sin Dmaxðsi þ snÞ

Dmaxðsi þ snÞ

� �
: ð7Þ

For solution scattering experiments, the experimental data

I(si) represent the difference between the scattering from the

solute and the pure solvent, and may show negative values due

to experimental errors. These negative values should enter
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equations (5) and (6). However, the computed SAS intensity

UM(si) must always be non-negative, and equation (6) can be

solved using standard methods under the constraint of non-

negativity of an (Lawson & Hanson, 1974).

The truncated Shannon approximation provides a way of

assessing the information content and useful range of an

experimental data set. Indeed, if M is too small, this approx-

imation will not have a sufficient number of terms to fit the

experimental data. With increasing M one will improve the fit,

but at some stage an overfitting would be observed where the

determined an values will not significantly improve the

discrepancy, being poorly defined by the experimental data.

There should therefore be an optimum (effective) value of the

channels MS reflecting the information content of the data,

and the useful range of the given experimental data set will be

defined as �MS/Dmax. Note that MS does not necessarily

coincide with NS, and the following sections will present a

procedure for a reliable automated determination of the

effective number of Shannon channels.

3. Noise level and oversampling

In order to test how the truncated Shannon approximation is

influenced by noise and oversampling, we have simulated a

number of scattering patterns from various geometric bodies

(see Table 1). The data were generated with a fixed

momentum transfer value up to smax = 4 nm�1 and containing

varying numbers of Shannon channels for different bodies due

to their different size. A dense grid with an angular step �s =

0.0025 nm�1 was used to simulate typical synchrotron X-ray

data collection, and a sparse grid with �s = 0.042 nm�1 (i.e.

having about 17 times fewer points in the same angular range)

emulated SANS data. For each intensity point, random

Gaussian noise was added, with the relative error of the

simulated noise varying from 1 to 400% for the different data

sets.

For each simulated data set, Shannon fits were calculated

with increasing M according to equations (4)–(6), and the

quality of the approximation was assessed by the R factor

between the ideal theoretical curve without noise Iref(s) and

the corresponding Shannon fit UM(s)/s, according to the

formula

RM ¼

PN
i¼1

UMðsiÞ � siIrefðsiÞ
� �
PN
i¼1

siIrefðsiÞ

: ð8Þ

The simulated data sets and the best Shannon fits (corre-

sponding to the minimum R factors) are shown in Fig. 1 and in

the supporting information (Figs. S1–S4). The optimum

number of Shannon channels MB providing the best agree-

ment with the ideal curve depends on both the noise level and

the angular step (see Table 1). One should also note that the

quality of the fits from the truncated Shannon approximation

depends on the anisometry of the object. For very anisometric

particles, high noise levels (100% noise in Fig. 1a; 20 and 100%

noise in Fig. 1b) lead to significant oscillations in the Shannon

approximations. Still, all the fits in Fig. 1, even those with

oscillations, provide the best agreement with the ideal curve

compared with the Shannon fits with other M, and are

therefore best fits in terms of the truncated Shannon

approximation.

As is evident from Table 1(a), for oversampled and accurate

(1–5% noise) data the best Shannon fits sometimes require

more channels MB than NS, indicating that the amount of

information in the data warrants extrapolation beyond the

available range. This possibility reflects the well known

property of oversampled measurements of analytical functions

[and the scattering intensity, being a Fourier transform of a

p(r) function having a finite support, is an analytical function

according to the Wiener–Paley–Schwartz theorem (Schwartz,
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Table 1
Tests on simulated data sets calculated from geometric bodies.

The theoretical scattering was calculated up to a momentum transfer value of smax = 4 nm�1, and various noise levels (ranging from 1 to 400%) were added. The
columns on the right-hand side from the nominal Shannon number NS = smaxDmax/� display the optimum number of Shannon channels MB that provides the best
agreement with the ideal (noise-free) curve. In each case, the maximum noise level where useful information is still present in the entire curve is shown in bold.

MB

Type of body Dmax (nm) NS 1% 5% 20% 50% 100% 200% 400%

(a) X-ray type data, strong oversampling
Oblate ellipsoid (half-axes 15, 15, 1 nm) 30 38 41 39 39 38 38 38 25
Prolate ellipsoid (half-axes 1, 1, 15 nm) 30 38 39 39 39 38 38 37 23
Hollow sphere (Rin 2.5 nm, Rout 5 nm) 10 13 14 14 13 13 13 12 11
Hollow cylinder (Rin 2.5 nm, Rout 5 nm, H 10 nm) 14 18 19 19 18 18 18 16 14
Cube (5 nm edge) 8.6 11 12 12 12 11 11 10 9
Solid sphere (radius 5 nm) 10 13 15 14 14 14 14 14 13

(b) Neutron type data, medium oversampling
Oblate ellipsoid (half-axes 15, 15, 1 nm) 30 38 38 38 38 38 38 37 25
Prolate ellipsoid (half-axes 1, 1, 15 nm) 30 38 38 38 38 37 36 34 15
Hollow sphere (Rin 2.5 nm, Rout 5 nm) 10 13 13 13 13 12 11 11 10
Hollow cylinder (Rin 2.5 nm, Rout 5 nm, H 10 nm) 14 18 18 18 18 17 16 16 14
Cube (5 nm edge) 8.6 11 11 11 11 10 10 9 8
Solid sphere (radius 5 nm) 10 13 13 13 13 13 13 11 10



1952)]. The effect is utilized e.g. for ‘super-resolution’ in

optical image reconstruction (Frieden, 1971) but can clearly be

observed only for very accurate data. Obviously, MB decreases

with an increasing level of added noise, but interestingly and

somewhat unexpectedly, for oversampled data, even at a very

high (100% and above) noise level, MB may still be essentially

equal to NS (taking into account the �1 uncertainty of

determination of MB). In other words, oversampled data, even

if looking very noisy (e.g. Fig. 1c, bottom curve), still contain

useful information about the ideal scattering curve over the
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Figure 1
Simulated scattering curves from an oblate ellipsoid [half-axes 1, 15 and 15 nm, parts (a) and (b)] and for a cube with an edge of 5 nm [parts (c) and (d)].
From top to bottom, the curves correspond to added Gaussian noise of 1, 5, 20 and 100% (dots with error bars), respectively. The best truncated Shannon
approximations are displayed as solid lines. Subsequent curves are shifted by one logarithmic order for better visualization. Here and in the subsequent
figures, the intensities are displayed on a logarithmic scale. For the noisy simulated and experimental data where the values may become negative
because of noise, logarithms of the modulus of the intensity are displayed as red dots. Parts (a) and (c) correspond to X-ray type data, and parts (b) and
(d) to neutron type data.



entire measured range. In contrast, for data simulated on a

sparse angular grid, MB starts to decrease at a noise level of

20–50% (Table 1b), indicating an insufficient quantity of

information to define NS channels for sparse noisy data.

4. Determination of the effective number of Shannon
channels

In a real experiment, the ideal scattering curve and thus MB

are of course not available, and MS should be determined

based on experimental data only. The extensive simulations

described in the previous section allowed us to define quan-

titative criteria for the selection of MS. In principle, the choice

could be performed by monitoring the discrepancy �2 of the

Shannon fit as a function of M, given that the poorly defined

channels would not significantly improve the fit. Such a

procedure is employed to determine the number of indepen-

dent components in singular-value decomposition (Golub &

Reinsch, 1970), although formalization of the ‘non-significant’

condition is not trivial and the results are not always accurate.

Fortunately, a reliable estimate of MS is obtained by

combining reciprocal- and real-space criteria. Indeed, each

Shannon approximation UM(s) expressed by a set of coeffi-

cients an corresponds to a distance distribution in real space

pM(r) according to equation (3). Increasing M adds extra

terms to pM(r), oscillating with a higher and higher frequency

�M/Dmax . One would expect that the unreliably determined

Shannon channels an will provide nothing but increasing

oscillations in the pM(r) function, and this can be captured by a

measure of the integral derivative �(p)

�ðpÞ ¼

ZDmax

0

dpMðrÞ

dr

� �2

dr: ð9Þ

The quality of the Shannon representation can be character-

ized by a combined measure
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Figure 2
Truncated Shannon fits for simulated scattering from an oblate ellipsoid
(half-axes 1, 15 and 15 nm) with added 20% noise. (a) The scattering
pattern with noise (dots with error bars) and the Shannon approximations
obtained using M = 18 (blue curve), 28 (red curve), 38 (green curve) and
43 (pink curve). (b) The distance distribution function p(r) calculated
from the noise-free simulated data (dots) and pM(r) from the appropriate
Shannon approximations (coloured curves). The colour scheme is the
same as in part (a).

Figure 3
Discrepancy and smoothness as a function of the number of Shannon
channels for the simulated data in Fig. 2. The blue curve depicts the
discrepancy �2(M) and the green curve the scaled integral smoothness
��[pM(r)]. The target function f(M) is shown as the red curve.



f ðMÞ ¼ �2ðMÞ þ ��ðpMÞ; ð10Þ

where the coefficient � ensures proper scaling of the two

metrics (see below). The procedure to determine the optimum

number of Shannon channels MS is therefore formulated as

follows:

(i) Given an experimental data set, estimate the maximum

particle size Dmax (this is done e.g. by the programs AutoRG

and AutoGnom (Petoukhov et al., 2007).

(ii) Calculate the nominal number of Shannon channels as

NS = smaxDmax/�, and set up the search range. In practical

applications, we use Mmin = max(3, 0.2NS), Mmax = 1.25NS.

(iii) For Mmin < M < Mmax , calculate the coefficients of the

Shannon approximation an (n = 1, . . . M) by solving equation

(6) using a non-negative linear least-squares procedure

(Lawson & Hanson, 1974).

(iv) For each Shannon fit, calculate the discrepancy �2(M)

and the integral derivative �(pM).

(v) Evaluate the scaling coefficient � as the ratio between

�2(Mmax) and �[p(Mmin)].

(vi) Determine the optimum value MS corresponding to the

minimum of the target function f(M) as defined in equation

(10).

Typical examples of fits with different numbers of Shannon

channels and the corresponding p(r) functions are shown in

Figs. 2(a) and 2(b) for the case of an oblate ellipsoid. As

expected, the �2 values decrease with increasing Shannon

channel number (Fig. 3, blue curve), reaching a plateau when

approaching MB (which, for this example, coincides with NS).

The integral derivative �(pM) increases slightly with

increasing M and displays a sharp upturn when M exceeds MB

(Fig. 3, green curve). This behaviour further confirms the fact

that, beyond the range of their reliable definition, the Shannon

channels do not significantly improve the fit by the inter-

polated curve but, at the same time, they lead to strong

oscillations in the p(r) function (clearly seen in Fig. 2b). The

target function f(M) is dominated by the discrepancy term

�2(M) (misfit to the data) at smaller M, and by the rapidly

increasing integral derivative �(pM), due to an oscillating

pM(r) function at larger M (Fig. 3, red curve). This leads to a

characteristic U-shaped profile of f(M) and allows for a

straightforward localization of MS corresponding to the

minimum of the target function.

A computer program, Shanum, was written to perform the

selection of MS following the above algorithm. To verify its

performance, Shanum was applied to the simulated scattering

curves described in the previous section, and it determined MS

values coinciding with MB within one Shannon channel for all

cases (Table 1). These extensive test calculations indicated

that the proposed algorithm allows one to determine reliably
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Figure 4
Experimental SAXS data and Shannon fits corresponding to the optimum number of channels determined by Shanum. (a) The complex of Importin �/	
(Falces et al., 2010). (b) The M.SSoII protein (Konarev et al., 2014). (c) The LSAQ-IDEA protein (Zhang et al., 2006). The useful angular range is
identified by an arrow in each case and the target function is shown in the inset. The insets at the bottom of parts (a) and (b) display the dependence of
the hydrated particle (Porod) volume on the range of experimental data used for the calculation of the Porod invariant (see Discussion section).



the effective number of Shannon channels in a data set MS and

therefore the useful range of the experimental data (since s =

�MS/Dmax).

5. Examples of practical application

After validation using simulated data, the method was applied

to a number of experimental X-ray and neutron data sets

collected over different angular ranges from macromolecular

solutions containing particles of various sizes at different

concentrations. Some of these examples are presented below

to illustrate the capacity of the method to detect the useful

data range. The X-ray synchrotron scattering data were

recorded in collaborative user projects on the X33 beamline of

the EMBL (Blanchet et al., 2012) at the storage ring DORIS-

III (DESY, Hamburg). Fig. 4(a) presents the X-ray scattering

data from an Importin �/	 complex with a molecular mass

(Mr) of 160 kDa and Dmax = 19 nm (Falces et al., 2010). Due to

the low protein concentration (0.5 mg ml�1), the scattering

data are extremely noisy at higher angles. Despite the fact that

the measured range of scattering vectors (up to smax = 6 nm�1)

nominally contains NS = 36 Shannon channels, the algorithm

returns MS = 9, indicating that the high-angle data beyond s =

1.5 nm�1 contain no useful information. The scattering pattern

from the DNA methyltransferase SsoII (Mr = 45 kDa, Dmax =

11 nm) displayed in Fig. 4(b) (Konarev et al., 2014) appears

rather noisy starting from s = 2 nm�1, but the algorithm

indicates that the data contain useful information up to

4 nm�1. The data from LSAQ-IDEA Lumazine synthase

(Zhang et al., 2006), which forms icosahedral assemblies in

solution (with Mr = 2 MDa and Dmax = 33 nm), display a good

signal-to-noise ratio over the entire range displayed in Fig. 4(c)

and the algorithm does find the full data range, with 20

Shannon channels to contain useful information. Interestingly,

the Shanum estimates correlate well with the data ranges

actually used for data analysis in the above-mentioned

publications.

It was also interesting to check whether the method is

applicable to wide-angle X-ray scattering (WAXS) data.

WAXS curves provide higher-resolution information and

generally contain larger numbers of Shannon channels

compared with SAXS data. We applied Shanum to WAXS

data from a concentrated (28 mg ml�1) solution of myoglobin

[downloaded from the Small-Angle Scattering Data Bank

(SASBDB), www.sasbdb.org, entry SASDAK2] and from a

dilute (2 mg ml�1) solution of cytochrome c (recorded at X33;

unpublished data). Whereas for the former case the entire

measured WAXS range was selected as useful, only about half

of this range was deemed informative for the latter case

(Fig. 5).

Finally, we shall illustrate the use of the algorithm on

several published neutron scattering data sets. Fig. 6(a)

displays SANS data from thioredoxin reductase, a dimeric

protein with Mr = 68 kDa and Dmax = 11 nm, recorded on the

D22 instrument at the Institute Laue Langevin, Grenoble,

France (Svergun et al., 1998). The two data sets, collected in

H2O and in D2O over the same angular range (up to smax =

5.2 nm�1), nominally both cover NS = 17 Shannon channels.

However, the H2O data are noisier, due to the lower contrast

and the incoherent background, such that the algorithm

returns 14 effective channels for the H2O data and 16 channels

for the D2O data. The next example demonstrates that the

approach is not limited to biological macromolecules in

aqueous solutions. The SANS data in Fig. 6(b) were collected

on the KWS-2 beamline (Julich Centre for Neutron Science,

FRM-II reactor, TU München, Germany) from hybrid gold

nanoparticles protected by dodecanethiol (C12) or hexanethiol

(C6) dissolved in deuterated chloroform (Moglianetti et al.,

2014). The top and bottom curves were recorded on the hybrid

particles with specifically deuterated dodecanethiol or

hexanethiol, respectively. The composite nanoparticle solu-

tions are close to monodisperse, with a diameter of 8 nm, as

shown by the shapes of the scattering curves and also by

complementary methods. Shanum provides feasible results,

suggesting that most of the dodecanethiol curve is informative,

whereas the last third of the noisier hexanethiol curve bears

no useful information. Given that chemically synthesized

nanoparticles inevitably have a certain degree of poly-

dispersity, the presented example indicates the applicability of

Shanum not only for a non-biological system but also for a

slightly polydisperse one.
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Figure 5
Experimental WAXS data and Shannon fits corresponding to the
optimum number of channels determined by Shanum. The top curve is
from a concentrated solution of myoglobin and the bottom curve is from
a dilute solution of cytochrome c. The useful angular ranges are identified
by the arrows and the target functions are shown in the inset.



6. Discussion and conclusions

Until now, no established procedure was available to assess

the useful range of experimental SAXS and SANS data. The

main problems of assessment based on the signal-to-noise

ratio are a lack of objectivity in the selection of the threshold

and the fact that the degree of oversampling is not taken into

account. The proposed method overcomes both problems and

offers an objective procedure to determine the useful range.

The procedure, implemented in the program module Shanum

included in the ATSAS package (http://www.embl-hamburg.

de/biosaxs/software.html), is freely available to academic

users, together with other ATSAS programs as from the 2.6

release.

Given an experimental data set, the program requires only

the maximum size of the particle, Dmax , to determine the

useful range. By default, the programs AutoRG and Auto-

Gnom (Petoukhov et al., 2007) are employed to estimate Dmax ,

but if this value is known a priori (e.g. when analysing data

from a protein with a known structure) it can be specified by

the user. Importantly, the Shannon formalism [equations (4)–

(6)] is valid not only for the maximum size Dmax but also for

any value D > Dmax . This makes the entire procedure even

more robust, allowing one safely to use a somewhat over-

estimated maximum size and also to handle slightly poly-

disperse systems (see the nanoparticle example presented

above). In the test and practical calculations presented in this

work, the use of 5–10% overestimated values yielded practi-

cally the same useful data ranges.

In X-ray crystallography, the useful data range assessed by

I/� and Rmerge determines the set of reflections to enter the

refinement and therefore directly defines the resolution of the

model. In SAS, cutting out higher-angle data would not

influence the accuracy of some parameters, e.g. the radius of

gyration determined from low-angle data by the Guinier

approximation (Guinier, 1939). Obviously, the removal of

meaningless data is expected to improve the results of indirect

transformation analysis and of the fitting procedures making

use of WAXS data (e.g. shape determination using GASBOR;

Svergun et al., 2001), and also of the calculation of overall

particle parameters such as the Porod volume Vp. This last

represents the excluded particle volume and is computed as

(Porod, 1982)

Vp ¼
2�2Ið0Þ

Q
; Q ¼

Z1

0

s2IðsÞ ds: ð11Þ

In practical applications, the Porod invariant Q is calculated

over a finite range [0, sm] and appropriate corrections are

applied to compensate for the missing data from sm to infinity

(e.g. in the POROD module of PRIMUS; Konarev et al., 2003).

The lower panel of Fig. 4(a) presents the Porod volume of the

Importin �/	 complex as a function of the upper integration

limit sm . Given an empirical relation Vp (in nm3) ’ 1.7–1.8Mr

(in kDa) (Petoukhov et al., 2012), the expected Porod volume

of the complex is about 280 nm3. The volume computed

directly by the POROD module provides stable values, with
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Figure 6
Experimental SANS data and Shannon fits corresponding to the optimum
number of channels determined by Shanum. (a) Data from thioredoxin
reductase solutions. The top and bottom curves are measured in H2O and
D2O, respectively (Svergun et al., 1998). (b) Scattering from composite
gold nanoparticles in deuterated chloroform, with specifically deuterated
dodecanethiol (upper curve) and hexanethiol (lower curve) (Moglianetti
et al., 2014). The useful angular ranges are identified by the arrows and
the target functions are shown in the inset.



moderate variations in the useful data range detected by

Shanum (i.e. up to sm’ 1.3 nm�1), and starts to oscillate wildly

as soon as higher-angle data are taken into account. Similarly,

for DNA methyltransferase SsoII, Vp reveals meaningful

values of around 75 nm3 when sm stays within the useful data

range and unreasonable oscillations beyond this range (lower

panel of Fig. 4b). Note that, in practice, the above empirical

relation is used in the opposite direction and Vp is considered

to be one of the ways of assessing Mr without absolute cali-

bration. These examples illustrate the importance of the

removal of meaningless data for preventing potential

problems in the determination of basic particle parameters.

We should underline that the proposed algorithm is not

intended to serve as a low-pass filter to provide noise reduc-

tion by fitting of the experimental data. As evident from Fig. 1,

at high noise levels the Shannon fits may display noticeable

artificial oscillations, especially for anisometric particles.

Further, the truncated Shannon representations inevitably

display a termination effect due to the missing higher orders

[in particular, UM(s) exhibits unphysical negative values

oscillating around zero for arguments exceeding �M/Dmax].

The method is developed as a means of assessing the infor-

mation content, and not as a smoothing tool for noisy data.

In cases where the experimental errors in the data set are

not available and the value of �2 cannot be reliably calculated,

one can use a recently developed correlation map test instead

(Franke et al., 2015). In this approach, the agreement between

the experimental data and the Shannon approximation is

measured by the longest contiguous stretch of the same sign of

the residuals, whereby the length of this stretch can be

translated into a statistical probability value. We have imple-

mented the correlation map criterion in Shanum as an alter-

native to �2 in equation (5) and found similar results to the use

of discrepancy, allowing one to evaluate reliably the range of

useful data also when the experimental errors are not avail-

able. The present version of Shanum uses the correlation map

if the associated errors are not provided in the input experi-

mental data set.

Importantly, the method proposed here does not require

user input and is thus applicable in automated pipelines for

data analysis. Further, Shanum is being implemented in a suite

of validation tools for the deposited experimental SAXS/

SANS data in SASBDB. The principle of assessment of the

useful data range proposed here might be useful for other

types of scattering or spectroscopic experiments yielding

discrete oversampled data.
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