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Serial femtosecond X-ray crystallography (SFX) has created new opportunities

in the field of structural analysis of protein nanocrystals. The intensity and

timescale characteristics of the X-ray free-electron laser sources used in SFX

experiments necessitate the analysis of a large collection of individual crystals of

variable shape and quality to ultimately solve a single, average crystal structure.

Ensembles of crystals are commonly encountered in powder diffraction, but

serial crystallography is different because each crystal is measured individually

and can be oriented via indexing and merged into a three-dimensional data set,

as is done for conventional crystallography data. In this way, serial femtosecond

crystallography data lie in between conventional crystallography data and

powder diffraction data, sharing features of both. The extremely small sizes of

nanocrystals, as well as the possible imperfections of their crystallite structure,

significantly affect the diffraction pattern and raise the question of how best to

extract accurate structure-factor moduli from serial crystallography data. Here it

is demonstrated that whole-pattern fitting techniques established for one-

dimensional powder diffraction analysis can be feasibly extended to higher

dimensions for the analysis of merged SFX diffraction data. It is shown that for

very small crystals, whole-pattern fitting methods are more accurate than Monte

Carlo integration methods that are currently used.

1. Introduction

Serial femtosecond X-ray crystallography (SFX) (Chapman et

al., 2011; Spence et al., 2012), which emerged with the

commissioning of hard X-ray free-electron laser (XFEL)

sources, provides a unique opportunity for modern biology to

conduct structural analysis of proteins which have previously

been inaccessible to study because of the extremely small size

of crystals that they form (e.g. submicron). The capabilities of

the SFX approach have been successfully tested in recent

studies of submicron and nanoscale protein crystals (Chapman

et al., 2011; Boutet et al., 2012; Johansson et al., 2012, 2013;

Koopmann et al., 2012; Redecke et al., 2013; Aquila et al., 2012;

Liu et al., 2013; Demirci et al., 2013; Kupitz et al., 2014).

The SFX technique involves illuminating a stream of

randomly oriented protein crystals of various sizes and

orientations by an extremely bright and ultra-short (tens or

hundreds of femtoseconds) XFEL source and properly

merging the obtained diffraction data. SFX experiments are

performed in this manner due to the destructive nature of the

XFEL source for which a single exposure can be expected to

cause the disintegration of a nanocrystal (Neutze et al., 2000).
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Diffraction information is obtained from different orienta-

tions of the reciprocal lattice of the target structure through

continual replenishment of individual crystal samples in the

XFEL beam. Whilst some characteristics of single crystals can

be obtained from processing individual SFX diffraction

patterns, the solution of a three-dimensional crystal structure

requires the processing of large numbers of SFX diffraction

patterns. The solution obtained is then an average crystal unit-

cell structure found from data that are intrinsically based on

distributions of both crystal sizes and qualities.

The SFX approach has a number of problems that have not

been so critical to protein crystallography until now. In an SFX

experiment, a single crystal effectively stands still during X-ray

illumination due to the femtosecond timescale of an XFEL

pulse. A collected diffraction pattern may then be thought of

as a diffraction ‘snapshot’ that represents the diffraction of a

single XFEL pulse from a single particle of finite size and a

unique orientation. Furthermore, the small size of the protein

crystals illuminated by the XFEL source can create broad

intensity distributions around Bragg reflections (Yefanov et al.,

2014). Since there is no time for any rotations of the sample

during the XFEL pulse, only partial information about the

crystal shape transform is recorded on the diffraction pattern.

Consequently, the shapes of the observed Bragg reflections

may vary significantly from shot to shot and within a single

image (White et al., 2012). The SFX data set consists of two-

dimensional diffraction patterns comprising partially recorded

information from different crystals. To resolve these issues and

to obtain the structure-factor moduli of Bragg reflections,

which contain encoded molecular structural information, the

SFX approach has relied on the Monte Carlo integration

method (Kirian et al., 2010, 2011; White et al., 2012; White,

2014), in which a large number of diffraction patterns are

separately analysed. For each diffraction pattern, the recorded

intensities are summed within a fixed integration volume

around each Bragg reflection and the obtained integrated

intensities are averaged over all ‘snapshots’. The choice of the

integration area is critical for the integration method to work

and the accuracy of this procedure determines the accuracy of

further structural analysis. Current crystallographic programs,

such as MOSFLM (Leslie & Powell, 2007), CrystFEL (White

et al., 2012) or Cheetah (Barty et al., 2014), use either circular

or rectangular integration areas for the analysis. It has also

been suggested that proper integration of diffracted intensities

within the Wigner–Seitz cell around each Bragg reflection

could be used (Kirian et al., 2010, 2011).

The approaches currently used in protein crystallography to

extract structure-factor moduli from the diffraction pattern

(Leslie & Powell, 2007; Kabsch, 2010; Kirian et al., 2010; White

et al., 2012; Barty et al., 2014) rely on the segregation method,

i.e. the diffraction pattern is considered as a discrete set of

completely isolated Bragg reflections. In this case, the intensity

distribution within a predefined region around a given Bragg

reflection is used to extract structure-factor moduli. Here we

present a whole-pattern fitting technique that uses a contin-

uous description of the merged diffraction data. This holds

some similarities with profile-fitting methods used for single-

crystal data, such as MOSFLM (Leslie & Powell, 2007) and

XDS (Kabsch, 2010), and those recently introduced for SFX

data analysis, such as nXDS (Kabsch, 2014). A key difference

is that the latter approaches rely on the segregation method

for the extraction of structure-factor moduli with the

assumption that Bragg reflections can be separated and inte-

grated. These approaches are based on the scaling of learned

peak shapes found from strong peaks that are assumed to be

isolated, rather than using analytical expressions to model a

continuous intensity distribution. Moreover, the integration

approach relies on the statement that the resulting shapes of

Bragg reflections on the SFX diffraction pattern are governed

by the averaged crystal shape transform only (Kirian et al.,

2010; White et al., 2012), which is the same for all Bragg

reflections. Thus, assuming a defect-free structure of protein

nanocrystals, the structure-factor moduli can be extracted

from SFX data by the integration of diffracted intensities

within a predefined region around all Bragg reflections. We

will later refer to this as the ‘integration approach’.

We have recently shown (Dilanian et al., 2013), however,

that the size and the quality of individual protein nanocrystals

illuminated by an X-ray source during the SFX experiment

significantly affect the resulting SFX diffraction pattern.

Given the asymptotic behaviours of the Bragg reflections due

to the size distribution of the nanocrystals and the scattering in

inter-Bragg regions due to the size of individual crystals, the

assumption that the Bragg reflections are isolated cannot

always be satisfied. The smaller the nanocrystals and the

bigger the unit-cell parameters of the protein crystal, the

stronger is the influence of asymptotes of the nearest Bragg

reflections on the intensity distribution of a given Bragg

reflection. Moreover, the large surface-to-volume ratio of

protein nanocrystals leads to significant contributions from

surface effects, such as structural disorder, impurities and

lattice distortions near the surface of the crystal etc. (Feher &

Kam, 1985; Grant & Saville, 1994; Caylor et al., 1999; Malkin &

Thorne, 2004), to the diffraction pattern. In such cases the

shape of Bragg reflections will not be exclusively governed by

the averaged crystal shape transform and, therefore, will not

be identical for all reflections, varying with the scattering

vector (Dilanian et al., 2013). Consequently, restriction of the

integration areas may lead to an incorrect estimation of the

corresponding structure-factor moduli.

In this paper, we present an approach to the extraction of

the structure-factor moduli of Bragg reflections from SFX

data which resolves the issue mentioned above. A key idea in

this approach is the treatment of the merged SFX diffraction

data set as a continuous function of the scattering vector, q,

and not as a discrete set of Bragg reflections. Such a treatment

is demonstrated in the three-dimensional merging of whole

two-dimensional SFX diffraction patterns by Yefanov et al.

(2014). This involves the mapping of whole two-dimensional

diffraction patterns (according to the orientations of indivi-

dual particles) to three-dimensional q space for further

analysis. The result is a diffraction data volume comprised of

an ensemble of particles of different sizes and structural

qualities that retains the dimensionality of the reciprocal
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crystal lattice. As indicated by Yefanov et al., it is possible to

take into account fluctuations in the incident pulse intensity

and beam convergence during an SFX experiment by

weighting intensities during merging based on single-shot

spectra. From this point of view, there is a similarity in the

formation of a merged SFX diffraction data set and a powder

diffraction pattern, where the shapes of Bragg reflections are

similarly formed by a collection of independent scatterers of

varying characteristics. Differences exist in that individual

SFX diffraction patterns may be first processed before

merging and that the merged data need not be collapsed into a

function of the diffracted intensity with respect to the scat-

tering vector magnitude (i.e. in one dimension) due to the

ability to estimate the orientation of individual crystals.

Instead, two-dimensional or three-dimensional merged SFX

diffraction data sets can be formed. For a sufficient number of

independently scattered particles, the shapes of the resulting

Bragg reflections in the merged SFX diffraction data volume,

as well as the asymptotic behaviours of their tails, will be

governed by the statistical properties of distribution functions,

which are characterized by the variations of particle size and

structural imperfections (Suortti & Jennings, 1977; Suortti et

al., 1979; Young & Wiles, 1982), and not by properties of

individual crystallites. Consequently, the structure-factor

moduli may be extracted from the merged SFX data by fitting

the whole SFX diffraction pattern using analytical peak-shape

functions, which are defined over the entire range of q space,

rather than only within restricted areas around individual

Bragg reflections. Moreover, the fitting approach allows us to

incorporate characteristics of Bragg reflections and the scat-

tering in inter-Bragg regions into the analysis via the adjus-

table parameters of the peak-shape function, such as unit-cell

parameters, width of the Bragg reflection or asymmetry of the

reflection. Here, we demonstrate that the fitting approach may

provide more accurate and robust results in extraction of

structure-factor moduli from protein nanocrystals compared

to the integration approaches developed so far.

2. General considerations

We base our analysis on the consideration of finite crystals and

on the assumption that the merged SFX diffraction pattern

collected from a stream of nanoscale protein crystals of

various sizes and qualities is a continuous function of the

scattering vector, q. We start with the assumption that the

scattering factor for a finite crystal can be expressed as

FCðqÞ ¼
P1
k¼0

FðqkÞSkðq� qkÞ; ð1Þ

where FðqkÞ is the structure factor, qk is the Bragg position of

the kth Bragg reflection and Skðq� qkÞ is a series of functions

centred at Bragg positions, which arises from the finite crystal

lattice. We will refer to jFðqkÞj as the structure-factor modulus

of the kth Bragg reflection here. Equation (1) is appropriate

for crystals with whole unit cells (Ino & Minami, 1979) and can

account for lattice imperfections like strain or lattice defects.

For a perfect finite lattice, Skðq� qkÞ is identical for all values

of k, but in general it can vary for different Bragg peaks. We

note that in the nanocrystallography literature (Kirian et al.,

2010, 2014; Spence et al., 2011), the scattering factor for a finite

crystal is commonly expressed as a product of continuous unit-

cell and lattice scattering factors, which for an ideal crystal

with whole unit cells can be written in the form of equation (1)

(see Appendix A). Equation (1) cannot describe models of the

crystal surface that prevent the continuous scattering factor of

the unit cell, FðqÞ, from being completely characterized by

discrete samples of FðqkÞ (Ino & Minami, 1979), such as the

presence of incomplete unit cells on the crystal surface.

Assuming the validity of equation (1), the diffracted X-ray

intensity distribution is given by

ICðqÞ /jFCðqÞj
2

ð2aÞ

¼
P1
k¼0

FðqkÞSkðq� qkÞ

����
����

2

ð2bÞ

¼
P

k

jFðqkÞSkðq� qkÞj
2

þ
P
k6¼j

P
j

F�ðqkÞFðqjÞS
�
kðq� qkÞSjðq� qjÞ: ð2cÞ

The second summation term in equation (2c) is typically

neglected (James, 1954; Hosemann & Bagchi, 1962; Guinier,

1963; Ino & Minami, 1979). For sufficiently large crystals,

equation (2c) is well approximated by the first summation

term solely (James, 1954; Guinier, 1963). If the crystal surface

is modelled by a random shift of the lattice with respect to the

crystal’s centre, Ino & Minami (1979) show that the second

summation can also disappear for small crystals. We note,

however, that this model also requires a continuous depen-

dence on the scattering factor, FðqÞ; and is not consistent with

the underlying assumptions made within equation (1), such as

the presence of whole unit cells. In fact, the second summation

contains phase information that is targeted by new methods

for directly phasing SFX data (Spence et al., 2011). In light of

the progress in the direct phasing of finite crystals (Elser, 2013;

Liu et al., 2014; Kirian et al., 2014, 2015), it is unlikely that the

second summation is entirely absent for SFX data. Here,

however, our goal is to obtain an improved estimate of the

structure-factor moduli jFðqkÞj by accurately modelling the

first summation of equation (2c) and not to pursue the addi-

tional phase information contained in the second summation

term. We do so without invoking the physical assumptions of

Ino & Minami (1979) of random shifts. We test the validity of

ignoring the second term via simulation in x4. Further work

may consider the contribution of this term more rigorously.

The model used here for the three-dimensional diffracted

intensity distribution, merged from a collection of N finite

crystals, can then be written as

hICðqÞiN /
P

k

jFðqkÞj
2
hjSkðq� qkÞj

2
iN: ð3Þ

This holds similarities to the one-dimensional intensity

distribution used in the profile-fitting analysis of powder

diffraction data (Rietveld, 1967), which can be given by
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IðjqjÞ /
P

k

jFðjqkjÞj
2Pkðjq� qkjÞ: ð4Þ

The above expression represents a whole-pattern fitting

scheme in which a set of sampling points within a diffraction

pattern, jFðjqkjÞj
2, and an associated set of peak profile

functions, Pkðjq� qkjÞ, are chosen to evaluate the continuous

function, IðjqjÞ. Based on the aforementioned similarities of

SFX and powder diffraction data, we propose that the average

shape-transform function contained in our model,

hjSCðq� qkÞj
2
iN , may also be modelled by continuous peak-

shape functions, Pkðjq� qkjÞ. For the proposed whole-pattern

fitting analysis, we define the modelled intensity distribution of

the merged SFX diffraction as

IðqÞ � hICðqÞiN /
P

k

jFðqkÞj
2Pkðq� qkÞ; ð5Þ

where the summation is performed over all Bragg reflections,

contributing to the intensity distribution, IðqÞ, for a given

scattering vector, q. jFðqkÞj is the structure-factor modulus of

the kth Bragg reflection, which we seek to accurately extract.

It should be noted that in the modelled continuous intensity

distributions [equations (3), (5)], all contributions from indi-

vidual crystals are given equal weight.

With this model, each point of the resulting SFX diffraction

pattern is affected by all Bragg reflections via the corre-

sponding peak-shape functions, Pkðq� qkÞ. The intensity

variation between neighbouring Bragg reflections will be

governed by the collective contribution of both reflections.

The degree of this ‘overlapping’ of the peak-shape functions

depends on averaged size of the crystallites illuminated by X-

rays, the size of the unit cell and the structural quality of

protein crystals. From this point of view, Bragg reflections can

be considered as isolated only if the corresponding peak-shape

functions tend to zero within the Wigner–Seitz cell region

around each Bragg reflection, which allows one to disregard

the scattering in the inter-Bragg regions. In this case, the

aforementioned segregation method provides correct estima-

tions of the structure-factor moduli. In general, however, the

collective contribution of Bragg reflections to the intensity

distribution cannot be neglected and the scattering in inter-

Bragg regions should be included in the analysis of the

diffraction pattern (Dilanian et al., 2013). Thus, consideration

of the diffraction pattern as a continuous function of the

scattering vector [equations (3), (5)], which forms by a

collective contribution of all Bragg reflections via the corre-

sponding peak-shape functions, may provide a more

comprehensive approach for the analysis of diffraction data

from a stream of nanoscale protein crystals.

The presence of whole unit cells has been assumed in the

simulations presented here. The effects of partial unit cells

present on the surface of protein nanocrystals for structural

analysis have been considered by others (e.g. Liu et al., 2014;

Kirian et al., 2014). Because of the finite size of nanocrystals,

partial unit cells can influence intensity distributions between

Bragg positions and introduce further ambiguities regarding

the definition of the unit cell for a finite crystal. While the

results of simulations presented here have only contained

whole unit cells, we will consider the presence of partial unit

cells in future work for which modifications may be introduced

to the model used for the scattering factor for a finite crystal.

Two different schemes for extracting structure-factor

moduli are considered here – an integration approach, based

upon the consideration of discrete sets of Bragg reflections,

and a whole-pattern fitting approach, based upon a continuous

treatment of the diffraction data. The choice between these

approaches depends on the average size of protein crystals,

their size distribution and imperfections in crystal structure.

According to our previous analysis, the consideration of the

diffraction pattern as a continuous function of the scattering

vector is crucial when the fraction of unit cells adjacent to the

surface of the protein crystal exceeds 10% of the total number

of unit cells. This suggests an effective size limit of 1 mm for a

protein crystal with an average unit-cell parameter of 100 Å

(Dilanian et al., 2013).

Integration and whole-pattern fitting approaches are used

here to extract structure-factor moduli from simulated

diffraction patterns in order to evaluate the effectiveness and

accuracy of both approaches in the analysis of SFX data from

protein nanocrystals of various sizes. In the case of the fitting

approach, equation (5), we extend whole-pattern fitting

procedures developed for the analysis of powder diffraction

data (Le Bail et al., 1988) from fitting of one-dimensional

intensity profiles to higher dimensions. Comparative analysis

is presented in x4.

3. Fitting procedure

The fitting procedure outlined here is conducted in a similar

manner to that described by Le Bail et al. (1988). To begin,

knowledge of the crystal structure (i.e. unit-cell parameters

and space-group symmetry) and experimental geometry are

used to predict Bragg peak locations in the modelled intensity

distribution [equation (5)]. These positions can later be

refined. Initial structure-factor moduli, jFðqkÞj
2, can be esti-

mated by Wilson’s statistics (Giacovazzo, 2011). The initial

modelled distribution [equation (5)] is calculated continuously

using the estimates of structure-factor moduli and peak-shape

distributions, based upon the chosen form of the peak-shape

function and peak-shape parameters that are input by the

user.

The peak-shape parameters are refined in each iteration of

the whole-pattern fitting procedure by minimizing the error-

cost function,

E ¼
P
½IEXPðqÞ � IðqÞ�2; ð6Þ

where IEXPðqÞ is the measured intensity and IðqÞ is the

calculated continuous intensity distribution [equation (5)].

The summation is performed over all measured points of the

diffraction pattern, rather than being assessed only at Bragg

positions.

As in Le Bail analysis (Le Bail et al., 1988), the structure-

factor moduli are estimated at the conclusion of each para-

meter refinement cycle and are fed in to the next cycle as the

input structure-factor moduli. We propose the estimation of
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the structure-factor moduli based upon the form of modelled

intensity distribution [equation (5)]. This can be evaluated at

Bragg locations to give

I ¼ PF; ð7Þ

where I is a column matrix with elements, Ij, given by the

observed peak intensity in the merged diffraction data set for

the jth Bragg reflection and F is a column matrix with

elements, Fj, given by the squared structure-factor moduli,

jFðqjÞj
2. The square matrix, P, has elements, Pij, given by the

contribution from the peak-shape distribution for the ith

reflection relative to the position of the jth reflection, i.e.

Piðqj � qija1; . . . ; aMÞ. The Pij elements are evaluated based

on the current peak-shape parameters, a1; . . . ; aM . After each

refinement cycle, the structure-factor moduli can then be

estimated on the basis of the current peak shapes through

inversion of the P matrix, using in our case the Gaussian

elimination method, to find the F column matrix elements that

satisfy equation (7) for the merged diffraction intensity

distribution. In this manner, structure-factor moduli are

iteratively estimated at the end of each fitting cycle.

The accuracy of the fitting process is monitored by two R

factors, Rwp and RB. The standard definitions of these factors

are used; see the comprehensive review by Hill & Fischer

(1990). After a good fit between the modelled intensity

distribution and merged intensity distribution is achieved, the

current structure-factor moduli are extracted. Wilson statistics

can then be employed to include scaling and thermal correc-

tion factors to the extracted structure-factor moduli

(Giacovazzo, 2011).

3.1. Peak-shape function

In the analysis presented here, we have chosen to model the

peak shapes formed from the merged diffraction data with

normalized pseudo-Voigt functions. This choice was motivated

primarily by the pseudo-Voigt function’s widespread use in the

analysis of powder diffraction data collected from crystal

samples of varying size, shape and quality (e.g. Young & Wiles,

1982; Langford, 1999) and by the function’s considerable

flexibility in form. The modelling of peak shapes with analy-

tical functions such as the pseudo-Voigt function also

improves computational speed and efficiency. It should be

noted, however, that the general scheme presented here is

based on the broader form of the modelled intensity distri-

bution expressed in equation (5), for which alternative peak-

shape distributions could be readily incorporated. Improve-

ments to this approach might be made with greater theoretical

consideration of the expected form of peak-shape distribu-

tions.

In this case, the calculated intensity distribution of the kth

Bragg reflection from equation (5) can be written as

Ikðq� qkÞ ¼ jFðqkÞj
2Pkðq� qkja1; . . . ; aMÞ; ð8Þ

where Pkðq� qkja1; . . . ; aMÞ represents normalized pseudo-

Voigt functions, a1; . . . ; aM are adjustable peak-shape para-

meters, and M is the total number of adjustable parameters. In

general, each of the adjustable parameters, a1; . . . ; aM , can be

represented by an analytical function of the scattering vector,

q, which takes into account possible variations of shapes of

individual Bragg reflections with respect to the scattering

vector.

We define an extended pseudo-Voigt peak-shape function

in the following way:

Pð�qkj�;�G;�LÞ ¼Q
i¼x;y

�iPGð�qki;�GiÞ þ ð1� �iÞPLð�qki;�LiÞ
� �

; ð9Þ

where �qk ¼ q� qk ¼ ð�qkx;�qkyÞ. PGð�qki;�GiÞ and

PLð�qki;�LiÞ are normalized Gaussian and Lorentzian func-

tions, respectively, with widths defined by �Gi ¼ ð�Gx;�GyÞ

and �Li ¼ ð�Lx;�LyÞ. The parameters �x; �y determine the

weighting of both functions in the peak shape.

4. Results and discussion

In this section we show the results of the extraction of the

structure-factor moduli of the Bragg reflections from merged

two-dimensional diffraction patterns using the whole-pattern

fitting approach. The following is presented to demonstrate

the feasibility of the extension of established powder diffrac-

tion analysis techniques to higher-dimensional SFX diffraction

data. While the simulated diffraction data correspond to two-

dimensional crystallographic planes, we expect this technique

to be readily extendable to three-dimensional diffraction data.

4.1. Simulations

The sugar-binding domain of langerin protein with the

F241L mutation (Chabrol et al., 2015; PDB entry 4AK8) was

used as a test case for simulation studies. This protein has P42

space-group symmetry and unit-cell parameters of a = b =

79.959, c = 90.419 Å. Simulations were performed to test the

applicability of the whole-pattern fitting method to data

merged from crystals of varying mean size. This was investi-

gated by simulating several sets of needle-like nanocrystals of

langerin with the numbers of unit cells in each crystal

randomly generated from log-normal distributions. Both the

shape and size of individual crystals were allowed to vary by

sampling from independent size distributions that were taken

to correspond to the orthogonal dimensions of a crystal.

Finite-lattice transforms [see equations (16) and (17) in the

Appendix and Dilanian et al. (2013), for details] were calcu-

lated along the [100] and [010] directions of the reciprocal

crystal lattice.

The mean numbers of unit cells were varied between sets of

simulated crystals as follows. The mean number of unit cells in

the Y direction, hNYi, was varied from 60 unit cells progres-

sively down to 30 unit cells in increments of 5, while the mean

number of unit cells in the X direction, hNXi, was fixed at 10

unit cells. Each generated set involved a total of 2000 nano-

crystals. The orientations of simulated crystals were

constrained to diffract into a selected crystallographic plane,

the (hk0) plane. A significant increase in the total number of
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crystals would be required to fill a complete three-dimensional

diffraction volume.

Within each simulated set of crystals, individual diffraction

patterns were calculated for each crystal on a 1024 � 1024

array [see Dilanian et al. (2013) for more details] using the

published atomic positions and Debye–Waller factors (PDB

entry 4AK8). The crystal set corresponding to the smallest

average size was also calculated on a 340 � 340 pixel array.

Knowledge of the crystal structure, such as the unit-cell

parameters and symmetry operations, was employed during

the calculation of individual diffraction patterns and the

subsequent merging. All diffraction patterns were calculated

in the (hk0) crystallographic plane to 5.0 Å resolution.

Additional crystal disorder effects were not included in this

simulation study.

Merging of the individual diffraction patterns was

performed for each collection of crystals to create seven two-

dimensional diffraction patterns defined by varying mean

crystal dimensions. Since we are only considering the two-

dimensional diffraction patterns in the (hk0) crystallographic

plane, the dimension of the nanocrystals along the [001]

direction is not relevant in this case. The proposed approach,

however, can be applied to any arbitrarily oriented reciprocal-

lattice plane and extended to the fitting of three-dimensional

diffraction data.

4.2. Analysis

The accurate and robust extraction of structure-factor

moduli is the primary objective of the presented whole-

pattern fitting technique. Molecular structural information is

encoded within these values and the structural analysis of

protein crystals for diminishing crystal size requires suitable

methods with which to read out such structural information.

Structure-factor moduli estimated from whole-pattern fitting,

jFWPF
k j, are compared here both to the values, jF C

k j, calculated

from published structural data (PDB entry 4AK8) and also to

the values, jF I
k j, found from the integration approach. The

respective relative errors, �WPF
k = jjF C

k j � jF
WPF
k jj=jF C

k j and �I
k

= jjF C
k j � jF

I
k jj=jF

C
k j, of the extracted structure-factor moduli

are assessed for both the whole-pattern fitting and the inte-

gration methods. It is shown here that the accuracy of

extracted structure-factor moduli via the integration of

merged diffraction data is sensitive to the chosen integration

area, whereas the values found from the presented whole-

pattern fitting approach do not require integration and exhibit

improved accuracy for diffraction data merged from small

average crystal sizes.

In this investigation, a variety of integration areas were

trialled for the extraction of structure-factor moduli via inte-

gration for the test diffraction data from the protein langerin.

Scaling and thermal correction factors were estimated and

applied for all sets of structure-factor moduli found from each

integration area. This was performed using Wilson statistics

(Giacovazzo, 2011), as with the structure-factor moduli

extracted via whole-pattern fitting. The average relative error,

h�i ¼
P

�k=Np, was assessed, where Np is the number of

extracted structure-factor moduli. Figs. 1(a)–1(g) show the

average relative errors from integration for the seven merged

diffraction patterns for a variety of integration areas. The

integration area was defined by a circle with the radius,

r ¼ jq� qkj, varied from zero (the Bragg position) to half of

the distance between the nearest Bragg reflection, 0:5ja�j,
where a� is the reciprocal-lattice parameter, which corre-

sponds, in our case, to the boundary of the Wigner–Seitz cell

along the [100] (or [010]) direction of the reciprocal lattice.

The average error found from whole-pattern fitting is also

indicated in Figs. 1(a)–1(g). These values are represented by

solid lines given that the extracted structure-factor moduli are
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Figure 1
Structure-factor moduli average relative errors from the two-dimensional
whole-pattern fitting approach (line) and from the integration approach
(* symbol) against integration area for merged diffraction patterns from
sets of 2000 crystallites with varying mean unit-cell dimensions along the
Y direction, hNYi, and with a mean of 10 unit cells along the X direction,
hNXi: (a) hNYi = 30, (b) hNYi = 35, (c) hNYi = 40, (d) hNYi = 45, (e) hNYi =
50, (f) hNYi = 55, (g) hNYi = 60, (h) hNYi = 30. (a)–(g) The diffraction
patterns were simulated on a 1024 � 1024 pixel array to 5 Å resolution.
(h) The diffraction pattern was simulated on a 340 � 340 pixel array to
5 Å resolution. The integration area was defined by a circle with radius
varied in the range 0 � r � 0:5ja�j.



independent of integration area with this technique. It should

be noted that in each instance and in both the whole-pattern

fitting and the integration methods, a fixed set of several very

weak reflections has been excluded from the assessment of

average relative errors. These were excluded due to the

weighted errors being considerably higher in these cases and

thus having a significant impact on the overall averages. The

problem of weak reflections will be discussed later in this

section.

The whole-pattern fitting approach is shown in Fig. 1 to

improve the accuracy of extracted structure-factor moduli for

the smallest average crystal sizes. This is shown in Figs. 1(a)–

1(b) and, most significantly, in Fig. 1(h), for which the smallest

average crystal size is represented with fewer pixels simulated.

Similar accuracy is achieved by both approaches for larger

average crystal sizes, shown in Figs. 1(c)–1(g). The relative

success of the integration method shown in Figs. 1(a)–1(g) can

be understood from the size of the integration areas: the

smallest average errors were found from the smallest inte-

gration lengths. It follows that, as the integration length is

decreased, the extracted values approach the values of the

heights of the Bragg reflections. Given that additional sources

of structural disorder were not included in the simulated

diffraction data, it is to be expected that the peak heights of

well resolved, high-signal Bragg reflections would provide

accurate structure-factor moduli. However, both the number

of pixels between adjacent Bragg positions and the signal-to-

noise ratio of the diffraction data would often be lower for

experimentally collected SFX data. The average errors found

via integration indicate that intensity contributions from

neighbouring peaks can quickly begin to contribute as the

integration area is expanded. The accuracy of the whole-

pattern fitting approach does not exhibit this sensitivity.

The whole-pattern fitting approach allows peak contribu-

tions to extend continuously throughout the modelled

diffracted intensity distribution. Limited integration or

calculation areas are not required for the extraction of struc-

ture-factor moduli, as outlined earlier. As in powder diffrac-

tion Le Bail analysis, the whole-pattern fitting approach allows

for individual reflections to be isolated and untangled from the

contributions of nearby Bragg reflections. Average relative

errors found [Figs. 1(a)–1(g)] indicate the stability of struc-

ture-factor moduli extracted by the whole-pattern fitting

formulation. This approach is shown to produce an accuracy

comparable to the integration method using optimal integra-

tion areas, while the results from integration decrease in

quality for varying integration area. Improved accuracy from

whole-pattern fitting for diffraction data merged from the

smallest average crystal sizes is also evident. This favours the

use of the whole-pattern fitting approach particularly for the

analysis of data from small average crystal sizes in SFX

experiments, with stable results found that are independent of

calculation areas.

An average of slightly over 30 pixels was held between the

positions of neighbouring Bragg reflections due to the large

number of pixels used in this simulation study. This provided

the capacity for detailed distributions of peak shapes to test

the accuracy of the extended pseudo-Voigt function and of the

whole-pattern fitting approach. However, it is acknowledged

that these pixel numbers are not necessarily realistic in the

case of the analysis of high-resolution SFX experimental data.

To test this, simulations were performed of the diffraction

pattern on a 340 � 340 pixel array to 5.0 Å resolution for a

collection of 2000 nanoscale crystals of the test protein with

mean dimensions of hNYi ¼ 30 and hNXi ¼ 10 unit cells along

orthogonal real-space dimensions. In this case, as few as 9–10

pixels exist from Bragg peak to Bragg peak. Both the whole-

pattern fitting and the integration approaches were used to

extract structure-factor moduli. A selection of extracted

values and corresponding relative errors, h�i, is provided in

Table S1 (in the supporting information). Within Table S1,

several weak reflections have been highlighted that have been

excluded from the calculated average error, h�i. The struc-

ture-factor moduli values shown in Table S1 are provided with

the optimal integration area for the integration method. The

dependence of the average relative error upon these areas was

also tested and is shown in Fig. 1(h). It is apparent that the

whole-pattern fitting approach was able to extract structure-

factor moduli to an accuracy similar to the earlier and more

pixel-dense case. Accuracy was significantly diminished for the

structure-factor moduli extracted via integration, however.

The dependence on integration area was also further exacer-

bated. This can be expected due to the fineness of integration

area choices being limited by the fewer number of pixels

present. It is worth noting that the ability of the integration

method to approach the peak-height values of the Bragg

reflections is hindered by the lower density of pixels and that

the accuracy of extracted structure-factor moduli is poorly

affected as a result. The whole-pattern fitting approach does

not appear to exhibit the same sensitivity. In cases where the

peak heights of Bragg reflections cannot be expected to be

reliably extracted for structure-factor moduli estimation,

whole-pattern fitting techniques may be valuable.

4.3. Peak-shape parameters

Peak-shape parameters found from the fitting procedures

are given in Table 1 for each of the simulated diffraction

patterns. No prior knowledge of the protein structure was used

in fitting procedures, excluding the unit-cell parameters for the

estimation of accurate Bragg peak positions. Fitting proce-

research papers

IUCrJ (2016). 3, 127–138 Ruben A. Dilanian et al. � Whole-pattern fitting technique in SFX 133

Table 1
Merged diffraction pattern adjustable parameters from size-varying
crystallite sets.

Adjustable
parameters

Mean unit-cell dimensions, hNYi, in log-normal
distribution for 2000 crystallites

30 35 40 45 50 55 60

�x 0.594 0.543 0.540 0.525 0.524 0.536 0.517
�y 0.465 0.502 0.650 0.736 0.760 0.842 0.876
�Gx � 104, Å�1 5.78 5.85 5.85 5.86 5.99 5.94 5.96
�Gy � 104, Å�1 3.36 3.20 3.08 3.07 2.94 3.01 2.89
�Lx � 104, Å�1 6.20 6.178 5.434 5.23 4.91 4.89 4.83
�Ly � 104, Å�1 1.98 1.96 1.91 1.69 1.52 1.33 1.28



dures were restricted to a single quadrant of the (hk0) crys-

tallographic plane given that, in this case, the tetragonal

symmetry of the test protein structure can be exploited.

Selected sections in the (hk0) crystallographic plane of the

simulated and fitted diffraction patterns are shown in Fig. 2 for

the sets of generated crystallites with the largest average unit-

cell dimension, hNYi ¼ 60. An example of cross sections of the

simulated and fitted diffracted intensity distributions is shown

in Fig. 3. Fig. 3 contains cross sections of the simulated and

fitted intensity distributions for the smallest average unit-cell

case, hNYi ¼ 30, through Bragg reflections along the (h, 14, 0)

crystallographic direction. Fitting of the simulated diffraction

patterns was achieved with R factors of Rwp ¼ 0:17, RB ¼ 0:18

and Rwp ¼ 0:15, RB ¼ 0:16 for the cases with the smallest,

hNYi ¼ 30, and the largest, hNYi ¼ 60, average unit-cell

dimensions, respectively.

The set of mixing parameters, �x, obtained from the fitting

procedures, Table 1, demonstrates the dependence of the

character of the peak-shape description upon the average size

of the collection of crystallites. Put differently, diffraction

patterns simulated with smaller average crystal sizes obtained

smaller average mixing parameters during fitting procedures.

This indicates a trend of greater contribution from the

Lorentzian component in the fitted pseudo-Voigt functions for

diffraction data merged from crystals of smaller average size.

This might be interpreted as indicating more diffuse scattering

in these cases, with less localized distributions of intensities

found to be fitted around Bragg reflections.

Throughout the fitting process, inversion of the P matrix

was employed to estimate structure-factor moduli according

to current peak-shape parameters. The condition number can

be estimated by the ratio of the largest to the smallest singular

value of the P matrix to test whether the system of linear

equations, equation (7), is well conditioned. Condition

numbers calculated from final peak-shape parameters were

found to be in the range of 1.1–1.2, indicating that the

formulation used was well conditioned in the cases considered

here, allowing the simple Gaussian elimination method to be

used for matrix inversion.

4.4. ‘Overlapping’ Bragg peak contributions

Each individual term in the summation of equation (5)

represents the intensity distribution for a given Bragg reflec-

tion untangled from the nearby Bragg reflections. The inten-

sity distribution around a given Bragg reflection in the merged

diffraction pattern can be represented by

Iðq� qkÞ ¼ Ikðq� qkÞ þ
P
j6¼k

Ijðq� qjÞ; ð10Þ

where Ikðq� qkÞ is the modelled intensity distribution for the

kth peak and
P

j 6¼k Ijðq� qjÞ is the combined contribution of

other Bragg peaks around the Bragg position, qk. This second

term defines the contribution of surrounding Bragg reflections

to a given Bragg reflection in our modelled intensity distri-

bution. The magnitude of this term determines the extent to

which the Bragg reflections can be considered as isolated. The

combined intensity distribution, Iðq� qkÞ, is used to model
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Figure 2
Merged two-dimensional diffraction patterns, (a) simulated and (b) fitted
using the whole-pattern fitting approach, in the crystallographic (hk0)
plane from a stream of 2000 crystals of various sizes with mean
dimensions of 10 and 60 unit cells along the X and Y directions,
respectively. Only one quadrant of the diffraction pattern is shown.

Figure 3
Cross sections through Bragg reflections along the (h, 14, 0) crystal-
lographic direction through the simulated (green crosses) and fitted (blue
lines) diffracted intensity distributions. The residual difference between
the simulated and fitted distributions is shown (red line, offset below the
positive intensity axis for clarity). The simulated diffracted intensity
distribution was formed by the merging of patterns from 2000 crystals of
mean unit-cell dimensions of 10 and 30 along the X and Y directions,
respectively. Intensity values have been scaled to below 100 arbitrary
units.



the total intensity distribution from the kth peak during

whole-pattern fitting.

In order to evaluate the influence of the nearest-neighbour

reflections on the intensity distribution of the Bragg reflection,

we calculated the first and the second terms of equation (10)

using the peak-shape parameters obtained via whole-pattern

fitting. The contribution of two terms was calculated for

various radial distances, r ¼ jq� qkj, from the Bragg position

of a selected reflection. Similarly to the previous analysis (Fig.

1), the radial distance varied in the range 0 � r � 0:5ja�j. Only

the intensities exceeding 2% of the peak intensity of the

corresponding Bragg reflection were considered in the calcu-

lations. The analysis was performed on two merged diffraction

patterns generated from a collection of 2000 nanoscale crystals

of the test protein with mean dimensions of hNYi ¼ 30,

hNXi ¼ 10, and hNYi ¼ 60, hNXi ¼ 10, respectively. As one

can see from Fig. 4, the contribution of the second term

increases with the distance from the Bragg position of the

selected reflection, quickly reaching 10% (or more) of the

total intensity. The obtained results are in a good agreement

with results shown in Fig. 1, in that the wider the integration

area, the stronger the influence of the nearest Bragg reflec-

tions on the intensity distribution of the selected reflection

and, consequently, the bigger the error in the determination of

the corresponding integrated intensity. The contribution of the

second term of equation (10) to the total intensity of the Bragg

reflection can differ for different reflections. In particular, the

influence is negligible when a strong Bragg reflection is

surrounded by weak reflections. Conversely, the intensity

distribution of a weak Bragg reflection surrounded by very

strong reflections will largely be determined by the contribu-

tions of surrounding reflections.

This may be the cause of some difficulties present in both of

the extraction methods considered here, which make the

accurate estimation of structure-factor moduli for several

weak reflections problematic. Further development of the

whole-pattern fitting method may be required for the treat-

ment of weak reflections, together with the use of more robust

and numerically stable algorithms for less well conditioned P

matrices. In the current approach, all Bragg reflections are

fitted simultaneously with either common peak-shape para-

meters or common dependences of the peak-shape para-

meters on the scattering vector. The weak reflections that were

poorly estimated were often surrounded by much stronger

reflections; this may have affected the accuracy with which

these sets of reflections could be modelled with this approach.

Further extensions could be made by performing the indivi-

dual fitting of small numbers of selected weak reflections,

following whole-pattern fitting procedures. A similar approach

is present in powder diffraction analysis, known as partial

profile relaxation (Izumi, 2003). This would be expected to

increase the accuracy of structure-factor moduli for weak

reflections by allowing those with nearby strong reflections to

have independent peak-shape parameters.

5. Conclusion

Presented here is an approach that builds upon an established

analysis technique in powder diffraction, the whole-pattern

fitting method (Le Bail et al., 1988). The impetus for this can

be seen in the similarities between powder diffraction and

merged SFX data sets. In both instances, peak-shape distri-

butions are formed by the shape, size and disorder char-

acteristics of a large set of independent scatterers. It is shown

here that appropriate extension of the whole-pattern fitting

technique can be used to closely model SFX diffraction

patterns and to extract integrated intensity information of

Bragg reflections. This follows the work of Dilanian et al.

(2013) in the use of a continuous description of the diffraction

pattern obtained from a distribution of protein nanocrystals.

This analysis indicates that the whole-pattern fitting method

is a feasible approach for the extraction of intensity infor-

mation from SFX data. Parameters obtained from fitting

procedures show some dependence on the average size of

contributing crystals. Flexibility is provided in the form of

peak-shape distributions to fit merged diffraction patterns

from crystals of varying mean sizes using smooth analytical

functions adopted from the analysis of powder diffraction

data. Further improvements in this approach might be made

with closer consideration of the theoretical basis of the

average shape-transform distributions formed by collections

of nanocrystals.

The strength of the whole-pattern fitting approach in

isolating Bragg reflections is particularly desirable in cases

where substantial inter-Bragg scattering occurs – such as when
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Figure 4
The percentage contribution of nearest-neighbour Bragg reflections to
the total modelled intensity distribution of the (980) Bragg reflection
[|FWPF(980)| = 555.6, |FC(980)| = 551.1]. The percentage contribution was
calculated as the percentage of the intensity distribution modelled by the
surrounding Bragg reflections [the second term of equation (10)] relative
to the total intensity modelled at radial distances from the Bragg position
of the (980) reflection. The analysis was performed on two merged
diffraction patterns generated from a collection of 2000 nanoscale crystals
of the test protein with different mean unit-cell dimensions along the Y
direction and with a mean of 10 unit cells along the X direction, hNXi= 10:
(black, circles) hNYi = 30, (red, squares) hNYi = 60.



unit-cell parameters are large yet the dimensions of the

contributing crystals are small. This supports the application

of the whole-pattern fitting approach in the analysis of high-

resolution experimental SFX data from large collections of

protein nanocrystals.

Several important aspects of the SFX approach were

outside the scope of the analysis presented in this article. We

have analysed the defect-free structure of the protein crystal.

This allowed all peaks to be fitted with the same ð�Gx;�GyÞ,

ð�Lx;�LyÞ parameters. In general, each of the adjustable

parameters ð�Gx;�GyÞ and ð�Lx;�LyÞ can be represented by

an analytical function of the scattering vector, q, to take into

account effects of the structural disorder on the diffraction

pattern of protein nanocrystals. The unit-cell parameters may

also vary from crystal to crystal, or even within one crystal.

This will lead to a shift of Bragg reflections from ideal posi-

tions. All of these problems are well known in single-crystal

and powder diffraction crystallography (e.g. Ungár &

Gubicza, 2007; Palosz et al., 2003) and can further be incor-

porated into the analysis of SFX data. In our analysis we

considered all the molecules which form incomplete unit cells

on the surface of the protein crystals as independently scat-

tered objects. In this case, molecules from incomplete unit

cells contribute only to the background scattering (Welberry,

2004). This assumption is incorrect, however, for extremely

small crystals, comprised of several molecular clusters, when

the influence of such molecules on the diffraction pattern is

strong (Chen & Millane, 2013). It should also be noted that the

definitions of ‘crystal lattice’ and the ‘unit cell’ are not entirely

clear in this case and a separate analysis of this situation is

required.

APPENDIX A
The scattering factor for a finite crystal

The scattering factor for a nanocrystal is often expressed as

the product of a finite lattice transform and unit-cell scattering

factor. Here we describe the alternative expression used

throughout this work [equations (1) and (15)] and show its

equivalence to the former formulation [equation (16)] for the

ideal case of a finite crystal composed solely of whole, iden-

tically ordered unit cells. This should be viewed simply as an

example presented for an idealized case. Discrepancies in the

scattering factor formulations can be expected to arise for

ensembles of real crystals for which the diffracted intensity

distributions will be shaped by variations in factors such as

size, shape, disorder and strain.

The formulation of the diffracted X-ray intensity from a

finite crystal is briefly reviewed here. Following representa-

tions of Patterson (1939) and Ewald (1940), the electron

density of a finite crystal, �CðrÞ, can be defined as

�CðrÞ ¼ �1ðrÞsCðrÞ; ð11Þ

where r is a vector in real space and �1ðrÞ is the electron

density of an effectively infinite crystal lattice, such as in

macroscopic crystals used in conventional crystallography.

The shape of the crystal is denoted sCðrÞ and can be written as

sCðrÞ ¼
1 r 2 VC

0 r =2VC:

�
ð12Þ

Here, VC is the volume of the crystal and determines its

boundary. We adopt the further definition of Guinier (1963)

that sCðrÞ is bounded such that whole unit cells are contained

within the crystal volume. The scattering amplitude, FC(q), can

then be represented as

FCðqÞ ¼ F1ðqÞ 	 SCðqÞ; ð13Þ

where F1ðqÞ is the scattering amplitude from an effectively

infinite crystal and SCðqÞ is the Fourier transform of sCðrÞ.

Ignoring nuclear motion, the scattering amplitude from an

infinite crystal can be expressed as

F1ðqÞ ¼
P1
k¼0

FðqkÞ�ðq� qkÞ; ð14Þ

where FðqkÞ is the scattering factor of the unit cell sampled at

the Bragg positions, qk, with the Dirac delta function distri-

bution, �ðq� qkÞ. This provides the scattering factor for the

finite crystal as

FCðqÞ ¼
P1
k¼0

FðqkÞSCðq� qkÞ; ð15Þ

which is identical to the form of the scattering factor provided

in equation (1). Recent work (e.g. Kirian et al., 2010, 2014;

Spence et al., 2011) has used a formulation of the scattering

factor for a nanocrystal that can be expressed as

FCðqÞ ¼ FðqÞLðqÞ; ð16Þ

where FðqÞ is the continuous scattering factor of the unit cell

and LðqÞ is the Fourier transform of the lattice function of the

nanocrystal, lðrÞ. The lattice function in real space can be

written as a finite series of Dirac delta functions located at the

corner of each occupied unit cell:

lðrÞ ¼
PN
k¼0

�ðr� rkÞ; ð17Þ

where N denotes the number of unit cells in the nanocrystal.

We seek to demonstrate here that both formulations [i.e.

equations (15) and (16)] are equivalent for the ideal case

considered in this appendix.

The scattering factor of the unit cell, FðqÞ, is a band-limited

function and thus can be reproduced with a minimal sampling

rate given by the Shannon–Nyquist sampling, which is given

here by the Bragg locations. The scattering factor for the unit

cell can consequently be expressed as

FðqÞ ¼
P1
k¼0

FðqkÞSUðq� qkÞ; ð18Þ

where SUðq� qkÞ is the Fourier transform for the shape

function of the unit cell centred on the Bragg locations, qk. The

unit-cell shape function can be defined as
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sUðrÞ ¼
1 r 2 VU

0 r =2VU;

�
ð19Þ

where VU is the volume of the unit cell and defines its

boundary. Knowledge of FðqÞ at the Shannon–Nyquist

sampling points, qk, is sufficient to interpolate to find FðqÞ at

other positions using the unit-cell shape transform,

SUðq� qkÞ.

The scattering factor for the nanocrystal given in equation

(16) can then be expressed as

FðqÞLðqÞ ¼
P1
k¼0

FðqkÞSUðq� qkÞ

� �
LðqÞ

¼
P1
k¼0

FðqkÞ SUðq� qkÞLðqÞ
� �

: ð20Þ

The product, SUðq� qkÞLðqÞ, can be written as

SUðq� qkÞLðqÞ ¼ ½�ðq� qkÞ 	 SUðqÞ�LðqÞ: ð21Þ

In our approach, the following relationship is used:

SUðq� qkÞLðqÞ ¼ �ðq� qkÞ 	 ½SUðqÞLðqÞ�: ð22Þ

Equations (21) and (22) are not equal for general expressions

due to convolution not holding associativity properties with

multiplication. These equations are equivalent in this work,

however, due to the characteristics of the particular functions

considered here. This can be shown by considering the inverse

Fourier transform of each expression. The inverse Fourier

transform of equation (21) is given by

F
�1
fSUðq� qkÞLðqÞg

¼ F
�1
fSUðq� qkÞg 	 F

�1
fLðqÞg

¼ F
�1
fSUðqÞ 	 �ðq� qkÞg 	

PN
i¼0

�ðr� riÞ

� �

¼ ½F
�1
fSUðqÞgF

�1
f�ðq� qkÞg� 	

PN
i¼0

�ðr� riÞ

� �

¼ ½sUðrÞ expð2�ir 
 qkÞ� 	
PN
i¼0

�ðr� riÞ

� �

¼
PN
i¼0

½sUðrÞ expð2�ir 
 qkÞ� 	 �ðr� riÞ

¼
PN
i¼0

½sUðr� riÞ expð2�iðr� riÞ 
 qkÞ�

¼
PN
i¼0

½sUðr� riÞ expð2�ir 
 qkÞ expð�2�iri 
 qkÞ�

¼
PN
i¼0

½sUðr� riÞ expð2�ir 
 qkÞ expð�2�iKÞ�;

ð23Þ

where F�1 indicates the inverse Fourier transform operation

and K is an integer given by the dot product of a lattice point

vector, rl, and a reciprocal-lattice point vector, qk. The reci-

procal relationship of the points rl and qk arises from the

band-limited nature of the scattering factor of the unit cell,

FðqÞ. Given that K is an integer, the phase factor expð�2�iKÞ

is equal to one. This provides the inverse Fourier transform of

equation (21) as

F
�1
fSUðq� qkÞLðqÞg ¼

PN
i¼0

½sUðr� riÞ expð2�ir 
 qkÞ�: ð24Þ

This is equal to the inverse Fourier transform of equation (22),

given the following:

F
�1
f�ðq� qkÞ 	 ½SUðqÞLðqÞ�g

¼ F
�1
f�ðq� qkÞgF

�1
f½SUðqÞLðqÞ�g

¼ expð2�ir 
 qkÞ½F
�1
fSUðqÞg 	 F

�1
fLðqÞg�

¼ expð2�ir 
 qkÞ sUðrÞ 	
PN
i¼0

�ðr� riÞ

� �

¼ expð2�ir 
 qkÞ
PN
i¼0

sUðrÞ 	 �ðr� riÞ

� �

¼ expð2�ir 
 qkÞ
PN
i¼0

sUðr� riÞ

� �

¼
PN
i¼0

½sUðr� riÞ expð2�ir 
 qkÞ�: ð25Þ

The equality of equations (24) and (25) arises from the char-

acteristics of the lattice function, lðrÞ ¼
PN

i¼0 �ðr� riÞ, and

from the sampling points in reciprocal space, qk. These char-

acteristics allow the convolution operator to be applied

equivalently in equations (21) and (22). The order of the

application of convolution operations between shape func-

tions and unit-cell electron-density distributions can create

differences in models for the scattering factor for a nano-

crystal when the presence of incomplete unit cells is consid-

ered (Ino & Minami, 1979; Beyerlein, 2011). Alternative

scattering factor models have been evaluated in powder

diffraction studies (Ino & Minami, 1984); further considera-

tion of the influence of crystal boundary effects in ensembles

of finite crystals may be required in future work. The product,

SUðq� qkÞLðqÞ, can then be shown to be equivalent to the

Fourier transform of the shape function of the crystal centred

at the Bragg positions, SCðq� qkÞ, given that

SUðq� qkÞLðqÞ ¼ �ðq� qkÞ 	 ½SUðqÞLðqÞ�

¼ �ðq� qkÞ 	 ½FfsUðrÞ 	 lðrÞg�

¼ �ðq� qkÞ 	 F sUðrÞ 	
PN
k¼0

�ðr� rkÞ

� �� �

¼ �ðq� qkÞ 	 ½FfsCðrÞg�

¼ �ðq� qkÞ 	 SCðqÞ

¼ SCðq� qkÞ; ð26Þ

where F indicates the Fourier transform operation and the

presence of whole unit cells has been assumed. Substitution

into equation (20) then provides the result,

FðqÞLðqÞ ¼
P1
k¼0

FðqkÞSCðq� qkÞ; ð27Þ

showing the equivalence of the models for the scattering

factor of a nanocrystal for the cases we consider here.

A consequence of this is that it is implicitly assumed that the

sampling rate for the scattering factor for the unit cell, FðqÞ, is

the Shannon–Nyquist sampling rate when considering ‘over-

lapping’ Bragg peak distributions in this paper. The spreading
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of Bragg peak distributions can also be understood as incor-

porating the interpolation of FðqÞ to locations in between

these sampling points, i.e. interpolation between the Bragg

locations.
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