research letters\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 3| Part 2| March 2016| Pages 96-101
ISSN: 2052-2525

Four- and five-component molecular solids: crystal engineering strategies based on structural inequivalence

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: desiraju@sscu.iisc.ernet.in

(Received 22 November 2015; accepted 12 December 2015; online 5 January 2016)

A synthetic strategy is described for the co-crystallization of four- and five-component molecular crystals, based on the fact that if any particular chemical constituent of a lower cocrystal is found in two different structural environments, these differences may be exploited to increase the number of components in the solid. 2-Methylresorcinol and tetramethylpyrazine are basic template molecules that allow for further supramolecular homologation. Ten stoichiometric quaternary cocrystals and one quintinary cocrystal with some solid solution character are reported. Cocrystals that do not lend themselves to such homologation are termed synthetic dead ends.

1. Introduction

Retrosynthetic analysis with supramolecular synthons remains at the cornerstone of logic driven crystal engineering (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]). Supramolecular synthons encapsulate critical shape and chemical recognition information and are the structural units that persist through all stages of crystallization (Desiraju, 1997a[Desiraju, G. R. (1997a). Chem. Commun. pp. 1475-1482.]; Desiraju, 2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.]). Crystal engineering is a form of solid state supramolecular synthesis (Desiraju, 1997b[Desiraju, G. R. (1997b). Curr. Opin. Solid State Mater. Sci. 2, 451-454.]) and the complexity of a synthetic target is assessed in terms of precise orientations and topologies of specified chemical constituents, and the eventual aim is a crystal architecture with pre-desired properties (Desiraju et al., 2011[Desiraju, G. R., Vittal, & J. J., Ramanan, A. (2011). Crystal Engineering: A Text Book. Singapore: World Scientific.]). Crystallization, since antiquity, has been a method of purification and it is an excluding rather than an including phenomenon. Generally speaking, when a mixture of compounds is taken for crystallization, the outcome is a single component crystal. Multi-component crystals are more difficult to obtain, and their isolation is often unpredictable. The formation of a two-component crystal AB from A and B implies that interactions of the type AB are better in some respect than interactions of the type AA or BB, with the caveat that these interactions involve either or both shape and chemical recognition. Therefore, obtaining a multi-component crystal means that one is able to calibrate and assess intermolecular interactions rather carefully. These multi-component crystals (Bond, 2007[Bond, A. D. (2007). CrystEngComm, 9, 833-834.]), also called cocrystals, have been known since the isolation of quinhydrone (Wöhler, 1844[Wöhler, F. (1844). Annalen, 51, 145-163.]). Binary cocrystals are of importance in the pharmaceutical industry (Almarsson & Zaworotko, 2004[Almarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889-1896.]; Wouters & Quéré, 2012[Wouters, J. & Quéré, L. (2012). Pharmaceutical Salts & Co-crystals. Cambridge: RSC Publishing.]; Stahly, 2009[Stahly, G. P. (2009). Cryst. Growth Des. 9, 4212-4229.]). Making a binary cocrystal is now well within the scope of crystal engineering (Desiraju et al., 2011[Desiraju, G. R., Vittal, & J. J., Ramanan, A. (2011). Crystal Engineering: A Text Book. Singapore: World Scientific.]).

Increasing the number of components in a cocrystal is a crystal engineering equivalent of synthetic complexity (Aakeröy et al., 2001[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2001). Angew. Chem. Int. Ed. 40, 3240-3242.], 2005[Aakeröy, C. B., Desper, J. & Urbina, J. (2005). Chem. Commun. pp. 2820-2822.]). This is because when one cocrystallizes compounds such as A, B and C, one may well obtain binary cocrystals AB, BC, AC rather than the desired ternary ABC. Design strategies for ternary cocrystals are based on exploiting chemical differences in the selected molecules (Bučar et al., 2012[Bučar, D.-K., Sen, A., Mariappan, S. V. S. & MacGillivray, L. R. (2012). Chem. Commun. 48, 1790-1792.]; Seaton et al., 2013[Seaton, C. C., Blagden, N., Munshi, T. & Scowen, I. J. (2013). Chem. Eur. J. 19, 10663-10671.]; Chakraborty et al., 2014[Chakraborty, S., Rajput, L. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 2571-2577.]; Dobrowolski et al., 2014[Dobrowolski, M. A., Garbarino, G., Mezouar, M., Ciesielski, A. & Cyrański, M. K. (2014). CrystEngComm, 16, 415-429.]; Bolla & Nangia, 2015[Bolla, G. & Nangia, A. (2015). Chem. Commun. 51, 15578-15581.]). Ditopic hydrogen bond donors and acceptors may be manipulated so that a hierarchy of hydrogen bonds emerge, facilitating the formation of ternary cocrystals (Dubey & Desiraju, 2014[Dubey, R. & Desiraju, G. R. (2014). Angew. Chem. Int. Ed. 53, 13178-13182.], 2015[Dubey, R. & Desiraju, G. R. (2015). IUCrJ, 2, 402-408.]; Mir et al., 2015[Mir, N. A., Dubey, R., Tothadi, S. & Desiraju, G. R. (2015). CrystEngComm, 17, 7866-7869.]). Alternatively, interactions of different strengths or types may be employed so that a hierarchy is established (Chakraborty et al., 2014[Chakraborty, S., Rajput, L. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 2571-2577.]; Tothadi & Desiraju, 2013[Tothadi, S. & Desiraju, G. R. (2013). Chem. Commun. 49, 7791-7793.]). Strong hydrogen bonds, weak hydrogen bonds, halogen bonds, ππ interactions and van der Waals interactions may be used in a modular and pre-determined manner to give an interaction orthogonality that is sufficient to form ternary cocrystals. Typically, in an assembly of the type ABC, the interactions BC could be weaker than the interaction AB while an interaction of the type AC may be so feeble that it need not be considered (Bolla & Nangia, 2015[Bolla, G. & Nangia, A. (2015). Chem. Commun. 51, 15578-15581.]). If BC is sufficiently close in effectiveness to AB then ternary ABC would be preferred to binaries AB and BC. This strategy is surprisingly effective and we (Chakraborty et al., 2014[Chakraborty, S., Rajput, L. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 2571-2577.]; Dubey & Desiraju, 2014[Dubey, R. & Desiraju, G. R. (2014). Angew. Chem. Int. Ed. 53, 13178-13182.], 2015[Dubey, R. & Desiraju, G. R. (2015). IUCrJ, 2, 402-408.]; Mir et al., 2015[Mir, N. A., Dubey, R., Tothadi, S. & Desiraju, G. R. (2015). CrystEngComm, 17, 7866-7869.]; Tothadi & Desiraju, 2013[Tothadi, S. & Desiraju, G. R. (2013). Chem. Commun. 49, 7791-7793.]) and others (Aakeröy et al., 2001[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2001). Angew. Chem. Int. Ed. 40, 3240-3242.], 2005[Aakeröy, C. B., Desper, J. & Urbina, J. (2005). Chem. Commun. pp. 2820-2822.]; Seaton et al., 2013[Seaton, C. C., Blagden, N., Munshi, T. & Scowen, I. J. (2013). Chem. Eur. J. 19, 10663-10671.]) have reported cases where ternaries are obtained exclusively in the absence of binaries. Certain techniques of `supramolecular homologation' may also be used, for example, a diacid may be inserted into an amide⋯amide homosynthon without interfering with other interactions in the system (Tothadi & Desiraju, 2013[Tothadi, S. & Desiraju, G. R. (2013). Chem. Commun. 49, 7791-7793.]). This would reliably increase the number of components in a system by one. Shape and chemical arguments may be used together and provide greater control (Bhogala et al., 2005[Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). Cryst. Growth Des. 5, 1683-1686.]; Moorthy et al., 2010[Moorthy, J. N., Natarajan, P. & Venugopalan, P. (2010). Chem. Commun. 46, 3574-3576.]; Tothadi et al., 2011[Tothadi, S., Mukherjee, A. & Desiraju, G. R. (2011). Chem. Commun. 47, 12080-12082.]). Host–guest compounds with cavities of different sizes could accommodate guests of specific sizes.

One may ask whether stoichiometric four- and five-component cocrystals can even be prepared given the large number of crystallization possibilities that would seem to be available. In this study, a four-component crystal is taken as one in which four solid components are crystallized together to obtain a single crystalline product that contains all four compounds in a stoichiometric ratio. Such a definition excludes, for example, solvates/hydrates in which the solvent is the third and/or the fourth component and in which introduction of the solvent was not deliberately engineered or even anticipated (this is mostly true of water which need not even be taken as a crystallizing solvent but can still appear in the final crystal) (Clarke et al., 2012[Clarke, H. D., Hickey, M. B., Moulton, B., Perman, J. A., Peterson, M. L., Wojtas, Ł., Almarsson, Ö. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 4194-4201.]), and also solid solution type entities which are obtained by statistical crystallization techniques (Bhogala & Nangia, 2008[Bhogala, B. R. & Nangia, A. (2008). New J. Chem. 32, 800-807.]). With such a definition, cocrystallization of a mixture of four compounds could, in principle, give not only binaries but also a number of ternaries. In the end, it would appear that the level and degree of control to make a quaternary cocrystal is formidable.

2. Experimental

Single-crystal X-ray data for all the crystals were collected on a Rigaku Mercury 375/M CCD (XtaLAB mini) diffractometer using graphite monochromator Mo Kα radiation at 150 K and were processed with CrystalClear software (Rigaku, 2009[Rigaku (2009). Crystal Clear-SM Expert 2.0. Rigaku Corporation, Tokyo, Japan.]). Some datasets were collected on a Bruker D8 Quest diffractometer equipped with an Oxford cryosystems N2 open-flow cryostat using Mo Kα radiation. Data integration and data reduction were carried out with the SAINT-Plus program (Bruker, 2006[Bruker (2006). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]). Structure solution and refinement were performed using SHELX2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) embedded in the WinGX suite (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]). All non-H atoms were refined anisotropically by the full-matrix least-squares method. H atoms were fixed on the riding model and some of the acidic H atoms were located via Fourier maps. Mercury Version 3.5 (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) was used for molecular representations and packing diagrams.

For crystallization, liquid assisted or solvent assisted grinding procedures were employed. In this method the solid components to be crystallized are taken together in definite stoichiometric ratios in a mortar along with few drops of a solvent. The mixture is then ground with a pestle and the process is repeated 2–3 times to get a homogenous mixture. The solid mixture is then taken for crystallizations in different solvents. Detailed crystallization descriptions have been provided in the supporting information .

3. Results and discussion

This letter describes a concise synthetic strategy to increase the number of components in a crystal from one to two (Mir et al., 2015[Mir, N. A., Dubey, R., Tothadi, S. & Desiraju, G. R. (2015). CrystEngComm, 17, 7866-7869.]), to three, to four and eventually to five. The strategy is outlined schematically in Fig. 1[link] and in cartoon fashion in Fig. 2[link]. In Fig. 1[link] and henceforth in this paper the letters A, B, C, D and E refer to molecules in certain crystal environments rather than to the compounds themselves. The strategy is based on the fact that if any particular component in a cocrystal is found in two different environments, these differences may be exploited to increase the number of components. Molecules A and B are chosen so that two types of binaries are obtained. In the first, the same chemical functionalities in A or B are located in the same crystal environment and are not susceptible to any further supramolecular differentiation. In the second type, however, the same functional groups in say B are found in two types of crystal environments which we shall refer to as B1 and B2, or they are potentially capable of such differentiation (Smolka et al., 1999[Smolka, T., Boese, R. & Sustmann, R. (1999). Struct. Chem. 10, 429-431.]). These crystal environments (or potential environments) may be sufficiently distinct so that a new entity C that is introduced will be able to discriminate between the sites and replace just one of B1 or B2, to give a ternary. These ternaries may be of two types: in the first, the three components A, B and C are found in a single crystallographic environment each and in the second, one of the components, say C is found in two slightly different crystallographic environments. We shall refer to these as ABC and ABC1C2, respectively. So, in the next step, if a fourth component D is taken for the crystallization experiment there is a possibility of obtaining a quaternary ABCD. Finally, the same strategy may be employed in the favorable case where ABCD1D2 is obtained, to arrive at a quintinary cocrystal ABCDE. This design strategy is illustrated in this research letter with the prototype 2-methylresorcinol (MRE).

[Figure 1]
Figure 1
Schematic representation for the synthesis of multi-component crystals. Here, A, B, C, D and E refer to the molecule in distinct crystal environments. B1, B2 refer to the breakdown of structural equivalence at site B, and similarly for sites C and D.
[Figure 2]
Figure 2
Cartoon representation of crystal synthesis for multi-component crystals. Here, color coding and shapes represent distinct chemical and geometrical features of the molecules.

We have reported binary and ternary cocrystals of MRE (Mir et al., 2015[Mir, N. A., Dubey, R., Tothadi, S. & Desiraju, G. R. (2015). CrystEngComm, 17, 7866-7869.]). Here (Fig. 3[link]) we have selected tetramethylpyrazine (TMP) as a coformer that provides an O—H⋯N mediated 1:1 MRE:TMP cocrystal of the type AB1B2 (the two O—H⋯N metrics are different, for example). This lack of structural equivalence has been previously utilized in the synthesis of hydrogen-bonded ternary solids ABC, for instance in the 2:1:2 solid MRE·TMP·4DMAP (4DMAP is 4-dimethylaminopyridine). Here, we preferred to modulate interaction strength and selected flat aromatic molecules (PAH) that can form weak C—H⋯π interactions with the methyl groups of TMP. For example, an equimolar ratio of pyrene (PYR) as a template with MRE and TMP provides a stoichiometric 1:1:1 MRE:TMP:PYR ternary solid in which each molecule occupies its own distinct crystal environment. We extended the generality of this strategy with anthracene (ANT) and hexamethylbenzene (HMB) and isolated 1:1:1 MRE:TMP:ANT and 1:1:1 MRE:TMP:HMB ternary solids, respectively (Fig. 4[link]). These crystal structures follow from a situation wherein O—H⋯N hydrogen-bond inequivalences in the binary MRE:TMP cocrystal are exploited to achieve incorporation of the third component. As mentioned by us previously, the ternaries thus obtained were largely uncontaminated by binaries (as monitored with powder X-ray diffraction).

[Figure 3]
Figure 3
Synthetic scheme for multicomponent crystals. A, B, C, D and E are representative molecules. Note the systematic insertion of components in each step using structural differentiations available in the crystal.
[Figure 4]
Figure 4
Quaternary cocrystal. The MRE:TMP:PYR ternary solid (top) is a synthetic dead end. The MRE:TMP:22TP:DPE-I quaternary solid may be considered as a development of the MRE:TMP:22TP ternary (bottom) in which the one of the MREs is replaced by the fourth component DPE-I using O—H⋯N hydrogen bonding.

However, this is not the only type of ternary cocrystal that is obtained. Figs. 2[link] and 4[link] show two other types: biphenyl (BP), 2,2′-bipyridine (22BP) and 2,2′-bisthiophene (22TP) yield 1:1:1 solids with MRE and TMP with O—H⋯O hydrogen bonds between MRE molecules; acridine (ACR), perylene (PER), phenazine (PHE) and tolan (TOL) give ternaries wherein the ditopic MRE and TMP form an infinite O—H⋯N pattern. However, only every alternate molecule of TMP is involved in C—H⋯π stacking with the third component. An important difference between these two types of ternary and the PYR type is that the PYR type does not lend itself to upgradation into a quaternary (Fig. 4[link]). There is no inequivalence at any of the three sites A, B or C. It is a synthetic dead end. In the ACR and 22TP types, however, there is a differentiation of structural sites: in the ACR group only one of the TMP molecules is stacked with the PAH; in the 22TP type, MRE forms O—H⋯N and O—H⋯O hydrogen bonds at different sites. Accordingly, these inequivalences may be likened to C1 and C2 in the scheme shown in Fig. 1[link]. So, we could replace the (unstacked) TMP in the ACR group with another ditopic acceptor such as 1,2-bis(4-pyridyl)ethylene (DPE-I). Using the 22TP ternary as a conceptual starting point for a quaternary, we are effectively replacing an O—H⋯O hydrogen bond with an O—H⋯N by using DPE-I or DPE-II. We obtained six four-component cocrystals ABCD with DPE-I or the nearly similar 1,2-bis(4-pyridyl)ethane (DPE-II) as the fourth component and each of BP, 22BP and 22TP as the third component. Typical examples are the 2:1:1:1 solids MRE:TMP:22TP:DPE-I and 2:1:1:1 MRE:TMP:BP:DPE-II, which is ABCD in Fig. 1[link]. This is the first report in which four solids are taken together for crystallization and the product is a single phase that contains all four chemical species in a fixed stoichiometry.

Four more quaternaries were obtained in which the crystal structures arise from the ACR group of ternaries. These solids are derived from the 1:2:1 MRE:TMP:ACR structure in which all or half of the unstacked TMP molecules are replaced by DPE-I or DPE-II. Accordingly, one may understand the crystal structures of 3:2:2:1 MRE:TMP:ACR:DPE-I and MRE:TMP:ACR:DPE-II. In the 4:3:2:1 MRE:TMP:ACR:DPE-I cocrystal, only half the unstacked TMP molecules are replaced by DPE and the structure is of mechanistic relevance in the crystallization of the 3:2:2:1 solids (see S2 for details). The last quaternary is 3:2:2:1 MRE:TMP:ANT:DPE-II and it was obtained not through retrosynthesis but rather through a high throughput procedure. In this context, ANT occurs in a dead end ternary. In three of these four quaternaries (MRE:TMP:ACR:DPE-I, MRE:TMP:ACR:DPE-II, MRE:TMP:ANT:DPE-II) MRE molecules occur in ordered and disordered environments. When ordered, MRE forms O—H⋯N hydrogen bonds with DPE and TMP. When disordered, it lies on an inversion center and forms O—H⋯N hydrogen bonds with only TMP. These MRE sites represent a further inequivalence and the solid may be likened to ABCD1D2 in Fig. 1[link]. To summarize, the 10 quaternaries we have reported here may be divided into three groups: six of them are 2:1:1:1 ABCD solids and are synthetic dead ends; one is a 4:3:2:1 outlier; the other three are of the ABCD1D2 type and could lend themselves to further development into a quintinary cocrystal.

The synthetic strategy towards a five-component crystal uses the fact that the disordered MRE molecule in the ACR quaternaries (Fig. 2[link]) is chemically and geometrically equivalent to a molecule of 1,2,4,5-tetrahydroxy-3,6-dimethylbenzene, and may therefore be replaced by it as a solid solution. This strategy has been used to make a ternary cocrystal from a binary (Bučar et al., 2012[Bučar, D.-K., Sen, A., Mariappan, S. V. S. & MacGillivray, L. R. (2012). Chem. Commun. 48, 1790-1792.]). The tetrahydroxy molecule is, however, too unstable to isolate. A surrogate molecule, trimethylhydroquinone (TMHQ), based on OH/CH3 exchange, was identified. It was expected that TMHQ would replace the disordered MRE but not the ordered MRE. A mixture of ACR, DPE-II, MRE, TMHQ and TMP were taken together for crystallization in MeNO2, with the first four compounds in equimolar ratio and TMHQ in fivefold excess of the desired 100% occupancy in the disordered MRE site D2. A single solid was obtained in the form of yellow brown blocks; the quaternary is pale yellow to colorless (S3 ). A single crystal was selected and the cell parameters found to be identical to the quaternary. The same crystal was dissolved in MeOH and the GC–MS spectra traces recorded. The GC trace shows the clear presence of five components (S3 ). The crystal is therefore a five-component crystal. The MS identifies four of the compounds as MRE (m/z = 124), TMP (m/z = 136), DPE-II (m/z = 184) and ACR (m/z = 179), but the fifth compound is not TMHQ but rather its oxidation product 2,3,5-trimethyl-1,4-benzoquinone (TMBQ) with its characteristic molecular ion peak at m/z = 150. We thus identify (Fig. 5[link]) the five-component solid (MRE)3 − x·TMP2·ACR2·DPE-II·TMBQx in which the fifth component, TMBQ, is not present in a stoichiometric amount.

[Figure 5]
Figure 5
Retrosynthesis of quintinary solids. The MRE:TMP:ACR:DPE-II quaternary solid (top) has a disordered MRE that is replaced by the topologically similar TMBQ molecule in the crystal.

Least-squares refinement of the X-ray data of the quintinary cocrystal shows the presence of TMBQ but the TMBQ:MRE ratio in the disordered inversion site cannot be estimated (S3 ). Considering that TMHQ is very prone to oxidation, and the crystal of the suspected quintinary is brown–yellow, it is concluded that TMHQ gets oxidized to TMBQ in solution and the latter enters the crystal in the disordered MRE site. TMBQ has the required topological similarities to occupy this site and has the shape–size mimicry with MRE that was anticipated for TMHQ. While TMBQ is bound in the site with C—H⋯N hydrogen bonds (S3 ), these are weaker than the O—H⋯N bonds formed by MRE. TMBQ cannot compete so well with the MRE for hydrogen bonding to TMP, but it still enters the crystal to some small extent (we estimate 5%) justifying the design strategy of using the lack of equivalence of the D site in the quaternary cocrystal to introduce the fifth component. There is a precedent for this kind of solid solution behavior in the system barbital–urea–acetamide (Thakur et al., 2010[Thakur, T. S., Azim, Y., Tothadi, S. & Desiraju, G. R. (2010). Curr. Sci. 98, 793-802.]). It is emphasized that the five-component solid obtained here is not, strictly speaking, a quintinary cocrystal, if by the latter term is meant a solid in which five different solid compounds are present in stoichiometric amounts. However, the present strategy outlines an approach to such cocrystals.

4. Conclusions

Four- and higher-component molecular crystals can be designed with crystal engineering principles. In the 10 quaternary and one quintinary cocrystal reported here, the components are introduced into the solid using logic driven protocols and they occur in stoichiometric ratios, except for the fifth component TMBQ in the quintinary which enters the cocrystal in a solid solution manner. All the new solids we report contain the crucial components 2-methylresorcinol (MRE) and tetramethylpyrazine (TMP). In all cases there is an O—H⋯N hydrogen bond between these entities. Success rates in the crystallizations are quite high (around 75% and the unsuccessful 25% cases are mostly ones where a selected PAH molecule failed to give the desired product, see S4 ) and one may well ask why this is the case.

Some points need further discussion. The modularity of the entire sequence would seem to hint that synthons present in the crystals are also present in the crystallizing solution. Once the binary to ternary progression was made, it was possible to think of the ternary to quaternary progression in the same terms: the key elements of the ternary structures are likely to be present in solution, and the fourth component is seemingly `added' to give the quaternary. One of the reasons for the success rate of this strategy could be that none of the components contain very good hydrogen bond donor or acceptor groups. The strongest hydrogen bond in the system is the O—Hphenol⋯Npyridine interaction. There are no acids, amides and other similar compounds in any of these new cocrystals. Good donors and acceptors lead necessarily to strong hydrogen bonds and these lead to stable lower component cocrystals (binary, ternary) that act as synthetic terminators or dead ends. The essence of making a quaternary (or higher) cocrystal seems to be a selection of molecules, all of which associate with comparable intermolecular interactions. Perhaps it is also this feature that allows for the breakdown of structural equivalence (BB1, B2; CC1, C2; DD1, D2) throughout the reaction cascade, and which has been used to make ternaries from binaries, quaternaries from ternaries and so on. Also of interest is the idea of sites that are `potentially' inequivalent. In the MRE:TMP binary in Fig. 2[link], all TMP molecules are identical. However, C—H⋯π stacking with a PAH causes an inequivalence (CC1, C2) in cases where the PAH is larger or more polar (ACR, PER, PHE, TOL) and where perhaps stacking at the second site is hindered because of stereoelectronic factors. Smaller and/or less polar PAH molecules (ANT, HMB, PYR) stack at both sites leading to dead end ternaries.

Crystallization proceeds from solution and this modularity is very strong evidence for the persistence of small and large supramolecular synthons in solution (Mukherjee et al., 2014[Mukherjee, A., Dixit, K., Sarma, S. P. & Desiraju, G. R. (2014). IUCrJ, 1, 228-239.]). The nucleation of a higher component crystal may be visualized as occurring via the attachment of the nth component to an (n − 1) cluster in solution. This is the crux of synthon theory (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]). The design of each new crystal is not an ab initio exercise (Dunitz, 2015[Dunitz, J. D. (2015). IUCrJ, 2, 157-158.]; Thakur et al., 2015[Thakur, T. S., Dubey, R. & Desiraju, G. R. (2015). IUCrJ, 2, 159-160.]; Lecomte et al., 2015[Lecomte, C., Espinosa, E. & Matta, C. F. (2015). IUCrJ, 2, 161-163.]). Smaller and larger synthons and clusters are sufficiently stable kinetically so that crystal build-up can be analyzed retrosynthetically.

Supporting information


Computing details top

For all compounds, program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013).

(MRE_TMP_22BP) top
Crystal data top
C32H36N4O4Z = 2
Mr = 540.65F(000) = 576
Monoclinic, P21/nDx = 1.277 Mg m3
a = 7.8566 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 21.336 (4) ŵ = 0.09 mm1
c = 8.3872 (17) ÅT = 150 K
β = 90.911 (11)°Block, colorless
V = 1405.8 (5) Å30.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
2925 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.092
profile data from ω–scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1010
Tmin = 0.983, Tmax = 0.983k = 2727
14373 measured reflectionsl = 1010
3224 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.094P)2 + 0.5103P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3224 reflectionsΔρmax = 0.51 e Å3
186 parametersΔρmin = 0.31 e Å3
Crystal data top
C32H36N4O4V = 1405.8 (5) Å3
Mr = 540.65Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.8566 (12) ŵ = 0.09 mm1
b = 21.336 (4) ÅT = 150 K
c = 8.3872 (17) Å0.20 × 0.20 × 0.20 mm
β = 90.911 (11)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3224 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
2925 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.983Rint = 0.092
14373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.09Δρmax = 0.51 e Å3
3224 reflectionsΔρmin = 0.31 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61159 (14)0.14356 (5)0.18886 (13)0.0257 (3)
H10.58230.11600.25440.039*
O20.37775 (15)0.29025 (6)0.17446 (14)0.0302 (3)
H20.28420.30470.20740.045*
N10.54103 (16)0.04834 (6)0.39891 (15)0.0220 (3)
C10.49383 (19)0.21591 (6)0.00284 (17)0.0216 (3)
C20.46884 (19)0.16724 (7)0.11193 (17)0.0211 (3)
C50.1865 (2)0.21810 (8)0.04573 (19)0.0273 (3)
H50.09020.23530.10010.033*
C60.3492 (2)0.24141 (7)0.07289 (18)0.0233 (3)
C90.47762 (19)0.06073 (7)0.54315 (18)0.0219 (3)
C30.3070 (2)0.14372 (7)0.14232 (18)0.0250 (3)
H30.29240.11070.21680.030*
C100.56394 (19)0.01141 (7)0.35443 (17)0.0213 (3)
C70.6681 (2)0.24118 (8)0.0327 (2)0.0327 (4)
H7A0.69080.27820.03360.049*
H7B0.67320.25290.14550.049*
H7C0.75380.20900.00930.049*
C40.1675 (2)0.16932 (8)0.0622 (2)0.0288 (4)
H40.05710.15320.08150.035*
C80.4524 (2)0.12797 (8)0.5889 (2)0.0323 (4)
H8A0.47930.15500.49830.049*
H8B0.52770.13830.67940.049*
H8C0.33380.13460.61900.049*
C110.6353 (2)0.02326 (9)0.19232 (18)0.0308 (4)
H11A0.66140.01680.14120.046*
H11B0.55150.04610.12700.046*
H11C0.73960.04820.20290.046*
N20.0836 (2)0.01554 (7)0.30583 (18)0.0336 (4)
C160.0326 (2)0.01815 (8)0.43041 (19)0.0269 (4)
C150.0396 (2)0.08328 (9)0.4346 (2)0.0316 (4)
H150.00390.10560.52610.038*
C140.0998 (2)0.11499 (9)0.3024 (2)0.0372 (4)
H140.10500.15950.30140.045*
C120.1411 (3)0.01595 (9)0.1802 (2)0.0372 (4)
H120.17680.00750.09050.045*
C130.1520 (2)0.08058 (10)0.1721 (2)0.0385 (4)
H130.19420.10080.07980.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0291 (6)0.0220 (5)0.0259 (6)0.0042 (4)0.0023 (4)0.0078 (4)
O20.0327 (6)0.0260 (6)0.0319 (6)0.0008 (4)0.0030 (5)0.0092 (5)
N10.0265 (6)0.0216 (6)0.0179 (6)0.0000 (5)0.0001 (5)0.0023 (5)
C10.0274 (7)0.0168 (7)0.0207 (7)0.0021 (5)0.0012 (5)0.0010 (5)
C20.0272 (7)0.0180 (7)0.0182 (6)0.0017 (5)0.0008 (5)0.0029 (5)
C50.0261 (7)0.0280 (8)0.0279 (8)0.0036 (6)0.0001 (6)0.0026 (6)
C60.0311 (8)0.0180 (7)0.0207 (7)0.0004 (5)0.0007 (5)0.0014 (5)
C90.0260 (7)0.0201 (7)0.0195 (7)0.0012 (5)0.0015 (5)0.0007 (5)
C30.0303 (8)0.0231 (7)0.0217 (7)0.0039 (6)0.0048 (6)0.0008 (6)
C100.0248 (7)0.0229 (7)0.0161 (6)0.0011 (5)0.0007 (5)0.0004 (5)
C70.0289 (8)0.0273 (8)0.0417 (10)0.0062 (6)0.0005 (7)0.0108 (7)
C40.0256 (7)0.0314 (8)0.0296 (8)0.0043 (6)0.0061 (6)0.0037 (6)
C80.0443 (9)0.0207 (8)0.0320 (8)0.0037 (7)0.0016 (7)0.0020 (6)
C110.0411 (9)0.0335 (9)0.0179 (7)0.0037 (7)0.0059 (6)0.0002 (6)
N20.0408 (8)0.0332 (8)0.0269 (7)0.0044 (6)0.0060 (6)0.0001 (6)
C160.0263 (7)0.0292 (8)0.0252 (8)0.0044 (6)0.0014 (6)0.0004 (6)
C150.0347 (8)0.0333 (9)0.0268 (8)0.0030 (7)0.0012 (6)0.0027 (6)
C140.0438 (10)0.0290 (9)0.0390 (10)0.0026 (7)0.0024 (8)0.0055 (7)
C120.0458 (10)0.0387 (10)0.0275 (9)0.0065 (8)0.0079 (7)0.0015 (7)
C130.0405 (9)0.0435 (11)0.0317 (9)0.0052 (8)0.0061 (7)0.0117 (8)
Geometric parameters (Å, º) top
O1—C21.3807 (18)C7—H7B0.9800
O1—H10.8400C7—H7C0.9800
O2—C61.3667 (18)C4—H40.9500
O2—H20.8400C8—H8A0.9800
N1—C101.3414 (19)C8—H8B0.9800
N1—C91.3420 (19)C8—H8C0.9800
C1—C21.400 (2)C11—H11A0.9800
C1—C61.403 (2)C11—H11B0.9800
C1—C71.506 (2)C11—H11C0.9800
C2—C31.394 (2)N2—C121.335 (2)
C5—C41.389 (2)N2—C161.335 (2)
C5—C61.394 (2)C16—C151.391 (2)
C5—H50.9500C16—C16ii1.498 (3)
C9—C10i1.400 (2)C15—C141.388 (2)
C9—C81.499 (2)C15—H150.9500
C3—C41.389 (2)C14—C131.384 (3)
C3—H30.9500C14—H140.9500
C10—C9i1.400 (2)C12—C131.383 (3)
C10—C111.500 (2)C12—H120.9500
C7—H7A0.9800C13—H130.9500
C2—O1—H1109.5C3—C4—H4119.4
C6—O2—H2109.5C5—C4—H4119.4
C10—N1—C9119.42 (13)C9—C8—H8A109.5
C2—C1—C6117.56 (13)C9—C8—H8B109.5
C2—C1—C7122.17 (14)H8A—C8—H8B109.5
C6—C1—C7120.27 (13)C9—C8—H8C109.5
O1—C2—C3121.28 (13)H8A—C8—H8C109.5
O1—C2—C1117.09 (13)H8B—C8—H8C109.5
C3—C2—C1121.62 (14)C10—C11—H11A109.5
C4—C5—C6118.81 (15)C10—C11—H11B109.5
C4—C5—H5120.6H11A—C11—H11B109.5
C6—C5—H5120.6C10—C11—H11C109.5
O2—C6—C5122.27 (14)H11A—C11—H11C109.5
O2—C6—C1115.99 (13)H11B—C11—H11C109.5
C5—C6—C1121.74 (14)C12—N2—C16117.14 (16)
N1—C9—C10i119.91 (14)N2—C16—C15123.06 (15)
N1—C9—C8118.15 (14)N2—C16—C16ii116.23 (19)
C10i—C9—C8121.94 (14)C15—C16—C16ii120.71 (18)
C4—C3—C2119.01 (14)C14—C15—C16118.73 (16)
C4—C3—H3120.5C14—C15—H15120.6
C2—C3—H3120.5C16—C15—H15120.6
N1—C10—C9i120.67 (13)C13—C14—C15118.75 (18)
N1—C10—C11117.77 (14)C13—C14—H14120.6
C9i—C10—C11121.57 (14)C15—C14—H14120.6
C1—C7—H7A109.5N2—C12—C13124.25 (17)
C1—C7—H7B109.5N2—C12—H12117.9
H7A—C7—H7B109.5C13—C12—H12117.9
C1—C7—H7C109.5C12—C13—C14118.06 (16)
H7A—C7—H7C109.5C12—C13—H13121.0
H7B—C7—H7C109.5C14—C13—H13121.0
C3—C4—C5121.23 (14)
C6—C1—C2—O1178.37 (12)C1—C2—C3—C40.0 (2)
C7—C1—C2—O11.1 (2)C9—N1—C10—C9i0.0 (2)
C6—C1—C2—C31.4 (2)C9—N1—C10—C11179.93 (14)
C7—C1—C2—C3179.18 (14)C2—C3—C4—C50.7 (2)
C4—C5—C6—O2178.48 (14)C6—C5—C4—C30.1 (2)
C4—C5—C6—C11.6 (2)C12—N2—C16—C151.0 (2)
C2—C1—C6—O2177.84 (13)C12—N2—C16—C16ii179.56 (18)
C7—C1—C6—O21.6 (2)N2—C16—C15—C141.0 (3)
C2—C1—C6—C52.2 (2)C16ii—C16—C15—C14179.52 (18)
C7—C1—C6—C5178.37 (14)C16—C15—C14—C130.6 (3)
C10—N1—C9—C10i0.0 (2)C16—N2—C12—C130.5 (3)
C10—N1—C9—C8179.60 (14)N2—C12—C13—C140.1 (3)
O1—C2—C3—C4179.77 (13)C15—C14—C13—C120.2 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
(MRE_TMP_22TP) top
Crystal data top
C30H34N2O4S2Z = 2
Mr = 550.71F(000) = 584
Monoclinic, P21/nDx = 1.334 Mg m3
a = 7.7971 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 22.217 (5) ŵ = 0.23 mm1
c = 7.9179 (15) ÅT = 150 K
β = 91.479 (15)°Block, colorless
V = 1371.1 (5) Å30.45 × 0.31 × 0.21 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
2870 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.080
profile data from ω–scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1010
Tmin = 0.843, Tmax = 1.000k = 2828
13884 measured reflectionsl = 1010
3151 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0892P)2 + 0.8922P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3151 reflectionsΔρmax = 0.83 e Å3
177 parametersΔρmin = 0.47 e Å3
Crystal data top
C30H34N2O4S2V = 1371.1 (5) Å3
Mr = 550.71Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.7971 (14) ŵ = 0.23 mm1
b = 22.217 (5) ÅT = 150 K
c = 7.9179 (15) Å0.45 × 0.31 × 0.21 mm
β = 91.479 (15)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3151 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
2870 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 1.000Rint = 0.080
13884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.09Δρmax = 0.83 e Å3
3151 reflectionsΔρmin = 0.47 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25411 (7)0.00844 (3)0.62304 (7)0.0358 (2)
C90.8457 (2)0.00939 (8)0.9228 (2)0.0202 (4)
N10.89884 (19)0.04747 (7)0.94647 (19)0.0208 (3)
C100.9482 (2)0.05757 (8)0.9778 (2)0.0206 (4)
C140.0295 (3)0.08624 (9)0.5130 (3)0.0344 (5)
H140.07150.10430.46610.041*
C80.6731 (2)0.01900 (10)0.8389 (3)0.0305 (4)
H8A0.62710.01970.79940.046*
H8B0.59490.03680.92000.046*
H8C0.68470.04620.74240.046*
C150.0574 (2)0.02396 (9)0.5272 (2)0.0261 (4)
C130.1754 (3)0.11887 (10)0.5797 (3)0.0369 (5)
H130.18200.16160.57980.044*
C110.8929 (3)0.12172 (9)0.9532 (3)0.0311 (4)
H11A0.98220.14870.99890.047*
H11B0.87460.12970.83240.047*
H11C0.78580.12871.01230.047*
C120.3030 (3)0.08311 (11)0.6424 (3)0.0373 (5)
H120.40720.09790.69140.045*
O10.68599 (17)0.14377 (6)0.86376 (16)0.0243 (3)
H10.74290.11300.89130.036*
O20.33099 (18)0.29239 (6)1.09693 (18)0.0280 (3)
H20.29450.30481.18950.042*
C50.4543 (2)0.21723 (9)1.2833 (2)0.0264 (4)
H50.40230.23471.37880.032*
C20.6091 (2)0.16711 (7)1.0045 (2)0.0198 (4)
C60.4294 (2)0.24233 (8)1.1239 (2)0.0217 (4)
C10.5032 (2)0.21735 (8)0.9803 (2)0.0205 (4)
C30.6347 (2)0.14117 (8)1.1633 (2)0.0238 (4)
H30.70550.10661.17660.029*
C70.4673 (3)0.24375 (9)0.8081 (2)0.0283 (4)
H7A0.54000.27920.79240.043*
H7B0.34630.25560.79820.043*
H7C0.49210.21370.72150.043*
C40.5562 (2)0.16612 (9)1.3014 (2)0.0272 (4)
H40.57210.14821.40960.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0335 (3)0.0343 (3)0.0395 (3)0.0026 (2)0.0030 (2)0.0078 (2)
C90.0170 (8)0.0222 (8)0.0215 (8)0.0001 (6)0.0024 (6)0.0015 (6)
N10.0199 (7)0.0196 (7)0.0229 (7)0.0021 (5)0.0035 (6)0.0007 (5)
C100.0207 (8)0.0174 (8)0.0239 (8)0.0005 (6)0.0046 (6)0.0024 (6)
C140.0484 (13)0.0236 (10)0.0310 (10)0.0053 (9)0.0016 (9)0.0027 (8)
C80.0192 (9)0.0327 (10)0.0395 (11)0.0011 (7)0.0037 (8)0.0047 (8)
C150.0253 (9)0.0276 (9)0.0256 (9)0.0050 (8)0.0048 (7)0.0027 (7)
C130.0378 (11)0.0287 (10)0.0440 (12)0.0017 (9)0.0013 (9)0.0030 (9)
C110.0305 (10)0.0212 (9)0.0417 (11)0.0039 (8)0.0023 (8)0.0037 (8)
C120.0364 (11)0.0383 (12)0.0370 (11)0.0016 (9)0.0024 (9)0.0040 (9)
O10.0273 (7)0.0209 (6)0.0250 (7)0.0071 (5)0.0056 (5)0.0034 (5)
O20.0299 (7)0.0251 (7)0.0295 (7)0.0078 (5)0.0070 (6)0.0005 (5)
C50.0244 (9)0.0307 (10)0.0244 (9)0.0023 (7)0.0040 (7)0.0024 (7)
C20.0183 (8)0.0182 (8)0.0229 (8)0.0023 (6)0.0025 (6)0.0014 (6)
C60.0191 (8)0.0191 (8)0.0270 (9)0.0025 (6)0.0028 (6)0.0011 (6)
C10.0188 (8)0.0188 (8)0.0241 (8)0.0016 (6)0.0024 (6)0.0024 (6)
C30.0213 (8)0.0227 (8)0.0272 (9)0.0006 (7)0.0010 (7)0.0051 (7)
C70.0324 (10)0.0264 (9)0.0264 (9)0.0089 (8)0.0036 (7)0.0050 (7)
C40.0275 (9)0.0313 (10)0.0227 (9)0.0043 (8)0.0005 (7)0.0054 (7)
Geometric parameters (Å, º) top
S1—C121.708 (2)C11—H11C0.9800
S1—C151.728 (2)C12—H120.9500
C9—N11.341 (2)O1—C21.380 (2)
C9—C101.398 (2)O1—H10.8400
C9—C81.501 (3)O2—C61.365 (2)
N1—C10i1.340 (2)O2—H20.8400
C10—N1i1.340 (2)C5—C61.390 (3)
C10—C111.500 (2)C5—C41.391 (3)
C14—C151.405 (3)C5—H50.9500
C14—C131.438 (3)C2—C31.393 (2)
C14—H140.9500C2—C11.398 (2)
C8—H8A0.9800C6—C11.402 (2)
C8—H8B0.9800C1—C71.504 (2)
C8—H8C0.9800C3—C41.382 (3)
C15—C15ii1.449 (4)C3—H30.9500
C13—C121.357 (3)C7—H7A0.9800
C13—H130.9500C7—H7B0.9800
C11—H11A0.9800C7—H7C0.9800
C11—H11B0.9800C4—H40.9500
C12—S1—C1592.24 (10)C13—C12—S1112.09 (18)
N1—C9—C10120.39 (16)C13—C12—H12124.0
N1—C9—C8117.76 (16)S1—C12—H12124.0
C10—C9—C8121.84 (17)C2—O1—H1109.5
C10i—N1—C9119.23 (15)C6—O2—H2109.5
N1i—C10—C9120.38 (16)C6—C5—C4119.13 (17)
N1i—C10—C11117.82 (16)C6—C5—H5120.4
C9—C10—C11121.79 (17)C4—C5—H5120.4
C15—C14—C13110.3 (2)O1—C2—C3121.21 (15)
C15—C14—H14124.8O1—C2—C1117.17 (15)
C13—C14—H14124.8C3—C2—C1121.61 (16)
C9—C8—H8A109.5O2—C6—C5122.26 (17)
C9—C8—H8B109.5O2—C6—C1115.91 (16)
H8A—C8—H8B109.5C5—C6—C1121.83 (17)
C9—C8—H8C109.5C2—C1—C6117.28 (16)
H8A—C8—H8C109.5C2—C1—C7122.06 (16)
H8B—C8—H8C109.5C6—C1—C7120.66 (16)
C14—C15—C15ii127.4 (2)C4—C3—C2119.48 (17)
C14—C15—S1111.44 (16)C4—C3—H3120.3
C15ii—C15—S1121.21 (19)C2—C3—H3120.3
C12—C13—C14113.9 (2)C1—C7—H7A109.5
C12—C13—H13123.1C1—C7—H7B109.5
C14—C13—H13123.1H7A—C7—H7B109.5
C10—C11—H11A109.5C1—C7—H7C109.5
C10—C11—H11B109.5H7A—C7—H7C109.5
H11A—C11—H11B109.5H7B—C7—H7C109.5
C10—C11—H11C109.5C3—C4—C5120.62 (17)
H11A—C11—H11C109.5C3—C4—H4119.7
H11B—C11—H11C109.5C5—C4—H4119.7
C10—C9—N1—C10i0.5 (3)C4—C5—C6—C10.4 (3)
C8—C9—N1—C10i179.52 (16)O1—C2—C1—C6177.99 (15)
N1—C9—C10—N1i0.5 (3)C3—C2—C1—C62.7 (3)
C8—C9—C10—N1i179.48 (17)O1—C2—C1—C72.6 (2)
N1—C9—C10—C11179.91 (17)C3—C2—C1—C7176.72 (17)
C8—C9—C10—C111.1 (3)O2—C6—C1—C2178.07 (15)
C13—C14—C15—C15ii179.1 (2)C5—C6—C1—C22.4 (3)
C13—C14—C15—S11.2 (2)O2—C6—C1—C72.5 (2)
C12—S1—C15—C140.90 (17)C5—C6—C1—C7177.09 (17)
C12—S1—C15—C15ii179.5 (2)O1—C2—C3—C4179.58 (16)
C15—C14—C13—C121.1 (3)C1—C2—C3—C41.2 (3)
C14—C13—C12—S10.4 (3)C2—C3—C4—C50.9 (3)
C15—S1—C12—C130.3 (2)C6—C5—C4—C31.2 (3)
C4—C5—C6—O2179.99 (17)
Symmetry codes: (i) x+2, y, z+2; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2iii0.952.643.187 (3)117
O1—H1···N10.841.942.776 (2)173
O2—H2···O1iv0.842.002.8065 (19)162
C3—H3···S1v0.953.023.819 (2)143
Symmetry codes: (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1, y, z+2.
(MRE_TMP_ACR) top
Crystal data top
C43H49N5O4V = 969 (2) Å3
Mr = 699.87Z = 1
Triclinic, P1F(000) = 374
a = 7.409 (10) ÅDx = 1.200 Mg m3
b = 8.781 (11) ÅMo Kα radiation, λ = 0.71073 Å
c = 15.360 (19) ŵ = 0.08 mm1
α = 81.63 (3)°T = 150 K
β = 86.57 (3)°Block, green
γ = 78.64 (2)°0.44 × 0.26 × 0.19 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
1972 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.163
profile data from ω–scansθmax = 27.0°, θmin = 1.3°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 99
Tmin = 0.44, Tmax = 1.000k = 1111
9995 measured reflectionsl = 1919
4227 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.250 w = 1/[σ2(Fo2) + (0.1039P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
4227 reflectionsΔρmax = 0.34 e Å3
251 parametersΔρmin = 0.34 e Å3
Crystal data top
C43H49N5O4γ = 78.64 (2)°
Mr = 699.87V = 969 (2) Å3
Triclinic, P1Z = 1
a = 7.409 (10) ÅMo Kα radiation
b = 8.781 (11) ŵ = 0.08 mm1
c = 15.360 (19) ÅT = 150 K
α = 81.63 (3)°0.44 × 0.26 × 0.19 mm
β = 86.57 (3)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4227 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
1972 reflections with I > 2σ(I)
Tmin = 0.44, Tmax = 1.000Rint = 0.163
9995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.250H-atom parameters constrained
S = 0.93Δρmax = 0.34 e Å3
4227 reflectionsΔρmin = 0.34 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C220.0571 (4)0.9734 (4)0.0880 (3)0.0582 (9)
C200.0659 (4)1.1281 (4)0.0426 (3)0.0564 (9)
C190.1339 (5)1.2570 (5)0.0906 (3)0.0813 (13)
H190.14031.36160.06240.098*
C160.1173 (5)0.9519 (6)0.1780 (3)0.0819 (12)
H160.11360.84880.20800.098*
C180.1890 (6)1.2298 (8)0.1761 (4)0.1041 (18)
H180.23531.31660.20670.125*
C170.1799 (6)1.0767 (8)0.2213 (3)0.1017 (16)
H170.21741.06140.28170.122*
N30.0095 (19)0.8483 (12)0.0385 (11)0.054 (5)0.5
C230.004 (3)0.847 (2)0.0489 (14)0.072 (7)0.5
H230.00710.74430.07960.086*0.5
N10.1431 (3)0.0795 (3)0.48262 (16)0.0479 (6)
C10.4970 (4)0.4661 (3)0.32667 (19)0.0396 (6)
C20.3692 (4)0.3694 (3)0.35482 (19)0.0426 (7)
O10.4126 (3)0.2630 (3)0.42821 (16)0.0673 (7)
H10.32870.21060.44010.101*
O20.5850 (3)0.6681 (3)0.22581 (17)0.0642 (7)
H20.54540.73440.18280.096*
C60.4566 (4)0.5747 (3)0.25245 (19)0.0426 (7)
C50.2964 (4)0.5891 (3)0.2077 (2)0.0509 (8)
H50.27180.66470.15680.061*
C30.2078 (4)0.3825 (3)0.3103 (2)0.0469 (7)
H30.12280.31590.33010.056*
C100.1494 (4)0.0556 (3)0.45094 (19)0.0452 (7)
C40.1727 (4)0.4931 (3)0.2372 (2)0.0520 (8)
H40.06210.50350.20670.062*
C90.0031 (5)0.1357 (3)0.5312 (2)0.0477 (7)
C70.6695 (4)0.4513 (4)0.3768 (2)0.0579 (9)
H7A0.75410.51070.34190.087*
H7B0.72880.34060.38850.087*
H7C0.63780.49290.43280.087*
C110.3184 (5)0.1144 (4)0.3985 (3)0.0722 (11)
H11A0.38950.03070.38290.108*
H11B0.28290.14710.34470.108*
H11C0.39390.20410.43350.108*
C80.0013 (6)0.2864 (4)0.5667 (3)0.0746 (11)
H8A0.09550.33690.53570.112*
H8B0.02280.26380.62980.112*
H8C0.12110.35650.55770.112*
N20.4979 (3)0.8877 (3)0.07258 (16)0.0445 (6)
C130.4340 (4)1.0395 (3)0.07898 (19)0.0430 (7)
C140.5640 (4)0.8474 (3)0.0059 (2)0.0456 (7)
C150.6336 (5)0.6763 (3)0.0097 (3)0.0706 (11)
H15A0.76810.65650.01740.106*
H15B0.57960.64500.05940.106*
H15C0.59870.61550.04520.106*
C120.3603 (5)1.0792 (4)0.1680 (2)0.0667 (10)
H12A0.38720.98550.21190.100*
H12B0.22681.11660.16590.100*
H12C0.41891.16140.18430.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C220.0461 (19)0.062 (2)0.066 (3)0.0022 (16)0.0163 (16)0.0124 (19)
C200.0425 (18)0.057 (2)0.068 (3)0.0035 (14)0.0147 (17)0.0157 (17)
C190.061 (2)0.074 (3)0.108 (4)0.0100 (18)0.017 (2)0.035 (2)
C160.066 (2)0.118 (4)0.063 (3)0.021 (2)0.014 (2)0.006 (2)
C180.061 (3)0.148 (5)0.112 (5)0.002 (3)0.002 (3)0.075 (4)
C170.066 (3)0.175 (6)0.069 (4)0.021 (3)0.004 (2)0.037 (4)
N30.051 (7)0.021 (4)0.085 (11)0.010 (4)0.011 (6)0.012 (5)
C230.057 (10)0.114 (14)0.042 (8)0.027 (8)0.030 (7)0.023 (7)
N10.0616 (16)0.0418 (14)0.0427 (17)0.0199 (11)0.0032 (12)0.0011 (10)
C10.0403 (15)0.0387 (15)0.0397 (18)0.0079 (11)0.0006 (12)0.0048 (11)
C20.0481 (16)0.0414 (16)0.0391 (18)0.0130 (12)0.0039 (13)0.0008 (12)
O10.0735 (16)0.0718 (16)0.0582 (17)0.0363 (12)0.0183 (12)0.0236 (11)
O20.0603 (14)0.0688 (16)0.0607 (18)0.0265 (11)0.0098 (11)0.0229 (11)
C60.0438 (16)0.0390 (15)0.0436 (19)0.0076 (12)0.0028 (13)0.0030 (12)
C50.0518 (18)0.0541 (18)0.043 (2)0.0073 (13)0.0077 (14)0.0040 (13)
C30.0478 (17)0.0505 (17)0.047 (2)0.0197 (13)0.0030 (13)0.0066 (13)
C100.0635 (19)0.0413 (16)0.0295 (17)0.0112 (13)0.0023 (13)0.0014 (11)
C40.0468 (17)0.0601 (19)0.050 (2)0.0089 (14)0.0144 (14)0.0079 (14)
C90.073 (2)0.0360 (15)0.0357 (18)0.0154 (14)0.0050 (14)0.0012 (11)
C70.0539 (19)0.070 (2)0.051 (2)0.0222 (15)0.0140 (15)0.0057 (15)
C110.082 (3)0.074 (2)0.055 (2)0.0093 (19)0.0154 (19)0.0066 (17)
C80.113 (3)0.048 (2)0.071 (3)0.0245 (19)0.008 (2)0.0212 (17)
N20.0483 (14)0.0439 (14)0.0388 (16)0.0093 (10)0.0011 (11)0.0032 (10)
C130.0427 (16)0.0474 (17)0.0389 (18)0.0078 (12)0.0003 (12)0.0072 (12)
C140.0451 (16)0.0370 (15)0.053 (2)0.0058 (11)0.0039 (13)0.0026 (12)
C150.082 (2)0.0380 (18)0.090 (3)0.0060 (16)0.004 (2)0.0083 (16)
C120.070 (2)0.081 (2)0.046 (2)0.0063 (18)0.0056 (17)0.0141 (17)
Geometric parameters (Å, º) top
C22—C231.33 (2)C5—H50.9500
C22—N31.420 (13)C3—C41.375 (4)
C22—C161.424 (6)C3—H30.9500
C22—C201.424 (5)C10—C9ii1.399 (4)
C20—N3i1.291 (17)C10—C111.493 (5)
C20—C191.433 (5)C4—H40.9500
C20—C23i1.45 (2)C9—C10ii1.399 (4)
C19—C181.354 (7)C9—C81.504 (4)
C19—H190.9500C7—H7A0.9800
C16—C171.354 (7)C7—H7B0.9800
C16—H160.9500C7—H7C0.9800
C18—C171.411 (7)C11—H11A0.9800
C18—H180.9500C11—H11B0.9800
C17—H170.9500C11—H11C0.9800
N3—C20i1.291 (17)C8—H8A0.9800
C23—C20i1.45 (2)C8—H8B0.9800
C23—H230.9500C8—H8C0.9800
N1—C91.332 (4)N2—C131.339 (4)
N1—C101.337 (4)N2—C141.343 (4)
C1—C61.382 (4)C13—C14iii1.388 (4)
C1—C21.402 (4)C13—C121.505 (5)
C1—C71.506 (4)C14—C13iii1.388 (4)
C2—O11.366 (4)C14—C151.498 (4)
C2—C31.390 (4)C15—H15A0.9800
O1—H10.8400C15—H15B0.9800
O2—C61.381 (3)C15—H15C0.9800
O2—H20.8400C12—H12A0.9800
C6—C51.382 (4)C12—H12B0.9800
C5—C41.378 (4)C12—H12C0.9800
C23—C22—N35.6 (15)N1—C10—C9ii119.9 (3)
C23—C22—C16118.2 (11)N1—C10—C11116.9 (3)
N3—C22—C16123.8 (7)C9ii—C10—C11123.2 (3)
C23—C22—C20122.1 (11)C3—C4—C5120.6 (3)
N3—C22—C20116.5 (7)C3—C4—H4119.7
C16—C22—C20119.6 (4)C5—C4—H4119.7
N3i—C20—C22121.2 (6)N1—C9—C10ii120.7 (3)
N3i—C20—C19120.8 (5)N1—C9—C8117.1 (3)
C22—C20—C19117.9 (4)C10ii—C9—C8122.1 (3)
N3i—C20—C23i0.8 (13)C1—C7—H7A109.5
C22—C20—C23i120.7 (8)C1—C7—H7B109.5
C19—C20—C23i121.4 (9)H7A—C7—H7B109.5
C18—C19—C20120.0 (4)C1—C7—H7C109.5
C18—C19—H19120.0H7A—C7—H7C109.5
C20—C19—H19120.0H7B—C7—H7C109.5
C17—C16—C22120.7 (5)C10—C11—H11A109.5
C17—C16—H16119.6C10—C11—H11B109.5
C22—C16—H16119.6H11A—C11—H11B109.5
C19—C18—C17122.2 (5)C10—C11—H11C109.5
C19—C18—H18118.9H11A—C11—H11C109.5
C17—C18—H18118.9H11B—C11—H11C109.5
C16—C17—C18119.5 (5)C9—C8—H8A109.5
C16—C17—H17120.2C9—C8—H8B109.5
C18—C17—H17120.2H8A—C8—H8B109.5
C20i—N3—C22122.2 (9)C9—C8—H8C109.5
C22—C23—C20i117.2 (16)H8A—C8—H8C109.5
C22—C23—H23121.4H8B—C8—H8C109.5
C20i—C23—H23121.4C13—N2—C14118.6 (2)
C9—N1—C10119.3 (2)N2—C13—C14iii120.6 (3)
C6—C1—C2117.3 (3)N2—C13—C12116.8 (3)
C6—C1—C7122.2 (2)C14iii—C13—C12122.5 (3)
C2—C1—C7120.5 (3)N2—C14—C13iii120.8 (3)
O1—C2—C3122.4 (2)N2—C14—C15116.6 (3)
O1—C2—C1116.1 (3)C13iii—C14—C15122.6 (3)
C3—C2—C1121.4 (3)C14—C15—H15A109.5
C2—O1—H1109.5C14—C15—H15B109.5
C6—O2—H2109.5H15A—C15—H15B109.5
O2—C6—C1116.3 (3)C14—C15—H15C109.5
O2—C6—C5122.0 (3)H15A—C15—H15C109.5
C1—C6—C5121.8 (3)H15B—C15—H15C109.5
C4—C5—C6119.6 (3)C13—C12—H12A109.5
C4—C5—H5120.2C13—C12—H12B109.5
C6—C5—H5120.2H12A—C12—H12B109.5
C4—C3—C2119.2 (3)C13—C12—H12C109.5
C4—C3—H3120.4H12A—C12—H12C109.5
C2—C3—H3120.4H12B—C12—H12C109.5
C23—C22—C20—N3i2.0 (6)C20—C22—C23—C20i1.2 (17)
N3—C22—C20—N3i2.5 (14)C6—C1—C2—O1179.9 (3)
C16—C22—C20—N3i178.8 (8)C7—C1—C2—O10.7 (4)
C23—C22—C20—C19180.0 (10)C6—C1—C2—C30.3 (4)
N3—C22—C20—C19179.5 (6)C7—C1—C2—C3179.1 (3)
C16—C22—C20—C190.8 (5)C2—C1—C6—O2179.8 (2)
C23—C22—C20—C23i1.3 (18)C7—C1—C6—O20.9 (4)
N3—C22—C20—C23i1.8 (6)C2—C1—C6—C50.4 (4)
C16—C22—C20—C23i179.5 (8)C7—C1—C6—C5178.9 (3)
N3i—C20—C19—C18178.6 (8)O2—C6—C5—C4179.8 (3)
C22—C20—C19—C180.7 (5)C1—C6—C5—C40.1 (5)
C23i—C20—C19—C18179.4 (9)O1—C2—C3—C4179.6 (3)
C23—C22—C16—C17179.6 (9)C1—C2—C3—C40.2 (4)
N3—C22—C16—C17179.8 (7)C9—N1—C10—C9ii0.2 (5)
C20—C22—C16—C171.1 (5)C9—N1—C10—C11178.7 (3)
C20—C19—C18—C170.9 (6)C2—C3—C4—C50.6 (5)
C22—C16—C17—C181.3 (6)C6—C5—C4—C30.5 (5)
C19—C18—C17—C161.2 (7)C10—N1—C9—C10ii0.3 (5)
C23—C22—N3—C20i173 (14)C10—N1—C9—C8178.8 (3)
C16—C22—N3—C20i178.8 (7)C14—N2—C13—C14iii0.1 (4)
C20—C22—N3—C20i2.5 (14)C14—N2—C13—C12179.7 (3)
N3—C22—C23—C20i6 (12)C13—N2—C14—C13iii0.1 (4)
C16—C22—C23—C20i179.5 (8)C13—N2—C14—C15179.9 (3)
Symmetry codes: (i) x, y+2, z; (ii) x, y, z+1; (iii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.992.821 (4)173
O2—H2···N20.842.012.836 (4)170
C11—H11C···O1iv0.982.573.370 (6)139
Symmetry code: (iv) x+1, y, z+1.
(MRE_TMP_ANT) top
Crystal data top
C29H30N2O2Z = 4
Mr = 438.55F(000) = 936
Monoclinic, P21/cDx = 1.236 Mg m3
a = 7.5571 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 24.125 (2) ŵ = 0.08 mm1
c = 12.9363 (13) ÅT = 150 K
β = 92.034 (4)°Block, colorless
V = 2356.9 (4) Å30.45 × 0.37 × 0.18 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4396 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.116
profile data from ω–scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 99
Tmin = 0.829, Tmax = 1.000k = 3131
24797 measured reflectionsl = 1616
5411 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.097P)2 + 0.2524P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
5411 reflectionsΔρmax = 0.42 e Å3
305 parametersΔρmin = 0.50 e Å3
Crystal data top
C29H30N2O2V = 2356.9 (4) Å3
Mr = 438.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5571 (7) ŵ = 0.08 mm1
b = 24.125 (2) ÅT = 150 K
c = 12.9363 (13) Å0.45 × 0.37 × 0.18 mm
β = 92.034 (4)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
5411 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
4396 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 1.000Rint = 0.116
24797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.205H-atom parameters constrained
S = 1.18Δρmax = 0.42 e Å3
5411 reflectionsΔρmin = 0.50 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.11069 (19)0.32214 (6)0.24426 (11)0.0268 (3)
O10.25713 (17)0.21837 (5)0.21642 (11)0.0368 (3)
H10.20500.24880.22410.055*
O20.16046 (18)0.02652 (5)0.22167 (12)0.0412 (4)
H20.08450.00250.23560.062*
N20.0430 (2)0.43409 (6)0.24585 (12)0.0296 (3)
C60.0933 (2)0.07805 (7)0.23876 (13)0.0275 (4)
C10.2059 (2)0.12230 (7)0.21789 (12)0.0243 (4)
C110.0399 (2)0.34711 (7)0.15990 (13)0.0270 (4)
C80.1474 (2)0.35190 (7)0.32966 (13)0.0261 (4)
C100.0052 (2)0.40417 (7)0.16084 (13)0.0280 (4)
C90.1146 (2)0.40902 (7)0.33006 (13)0.0275 (4)
C20.1434 (2)0.17590 (7)0.23537 (13)0.0264 (4)
C120.2217 (3)0.32197 (8)0.42320 (15)0.0367 (4)
H12A0.23570.28260.40690.055*
H12B0.14060.32600.48020.055*
H12C0.33710.33780.44360.055*
C30.0252 (2)0.18512 (7)0.27210 (14)0.0309 (4)
H30.06600.22180.28310.037*
C70.3890 (2)0.11209 (7)0.18060 (15)0.0316 (4)
H7A0.46380.09710.23740.047*
H7B0.43950.14710.15680.047*
H7C0.38320.08550.12330.047*
C50.0752 (2)0.08643 (8)0.27605 (13)0.0313 (4)
H50.14950.05580.29010.038*
C40.1328 (2)0.14009 (8)0.29234 (14)0.0331 (4)
H40.24760.14620.31770.040*
C150.0027 (3)0.31195 (9)0.06647 (15)0.0380 (5)
H15A0.04470.27450.07780.057*
H15B0.05100.32840.00580.057*
H15C0.13140.31000.05490.057*
C130.1586 (3)0.44442 (8)0.42263 (16)0.0411 (5)
H13A0.11000.48170.41140.062*
H13B0.28750.44670.43300.062*
H13C0.10710.42800.48400.062*
C140.0723 (3)0.43380 (9)0.06771 (15)0.0403 (5)
H14A0.09850.47230.08600.061*
H14B0.18170.41520.04410.061*
H14C0.01270.43320.01230.061*
C220.4055 (2)0.68969 (8)0.77034 (15)0.0338 (4)
H220.39210.72870.77590.041*
C230.4733 (2)0.65993 (8)0.85528 (14)0.0316 (4)
C290.4484 (3)0.57486 (8)0.75360 (14)0.0341 (4)
H290.46410.53590.74760.041*
C160.3777 (2)0.60464 (8)0.66886 (14)0.0321 (4)
C210.3568 (2)0.66351 (8)0.67727 (14)0.0316 (4)
C170.3266 (3)0.57818 (10)0.57370 (15)0.0417 (5)
H170.33750.53910.56750.050*
C280.4960 (2)0.60103 (8)0.84651 (14)0.0319 (4)
C270.5646 (3)0.57103 (9)0.93493 (15)0.0403 (5)
H270.58370.53220.92990.048*
C190.2438 (3)0.66654 (11)0.49923 (16)0.0473 (6)
H190.19990.68710.44110.057*
C260.6026 (3)0.59755 (11)1.02582 (16)0.0458 (5)
H260.64580.57701.08400.055*
C180.2623 (3)0.60842 (11)0.49166 (16)0.0473 (6)
H180.22960.59020.42870.057*
C200.2882 (3)0.69333 (10)0.58883 (15)0.0405 (5)
H200.27350.73240.59290.049*
C240.5183 (3)0.68582 (10)0.95219 (16)0.0408 (5)
H240.50580.72480.95900.049*
C250.5785 (3)0.65553 (11)1.03455 (16)0.0463 (5)
H250.60480.67341.09870.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0311 (7)0.0203 (7)0.0293 (7)0.0001 (5)0.0028 (6)0.0003 (5)
O10.0402 (7)0.0182 (6)0.0525 (9)0.0006 (5)0.0084 (6)0.0003 (6)
O20.0453 (8)0.0185 (6)0.0601 (9)0.0022 (5)0.0071 (7)0.0014 (6)
N20.0353 (8)0.0218 (7)0.0318 (8)0.0026 (6)0.0019 (6)0.0002 (6)
C60.0348 (9)0.0229 (8)0.0246 (8)0.0001 (7)0.0033 (7)0.0004 (6)
C10.0303 (8)0.0219 (8)0.0204 (8)0.0003 (6)0.0029 (6)0.0002 (6)
C110.0290 (8)0.0271 (8)0.0252 (8)0.0017 (7)0.0032 (6)0.0013 (6)
C80.0281 (8)0.0246 (8)0.0256 (8)0.0002 (6)0.0028 (6)0.0006 (6)
C100.0291 (8)0.0269 (9)0.0280 (9)0.0025 (7)0.0026 (7)0.0033 (7)
C90.0303 (8)0.0255 (8)0.0266 (8)0.0015 (6)0.0011 (7)0.0020 (6)
C20.0328 (9)0.0219 (8)0.0245 (8)0.0007 (6)0.0015 (7)0.0003 (6)
C120.0409 (10)0.0397 (10)0.0294 (9)0.0062 (8)0.0009 (8)0.0077 (8)
C30.0356 (9)0.0277 (9)0.0294 (9)0.0055 (7)0.0002 (7)0.0036 (7)
C70.0335 (9)0.0286 (9)0.0328 (9)0.0010 (7)0.0036 (7)0.0022 (7)
C50.0347 (9)0.0315 (9)0.0277 (9)0.0078 (7)0.0004 (7)0.0007 (7)
C40.0297 (9)0.0412 (10)0.0284 (9)0.0005 (7)0.0022 (7)0.0033 (7)
C150.0413 (10)0.0408 (11)0.0318 (10)0.0017 (8)0.0010 (8)0.0119 (8)
C130.0482 (11)0.0360 (10)0.0388 (11)0.0020 (9)0.0034 (9)0.0127 (8)
C140.0473 (11)0.0423 (11)0.0315 (10)0.0090 (9)0.0020 (8)0.0118 (8)
C220.0327 (9)0.0367 (10)0.0323 (10)0.0005 (7)0.0051 (7)0.0006 (7)
C230.0272 (8)0.0416 (10)0.0261 (9)0.0039 (7)0.0025 (7)0.0029 (7)
C290.0394 (10)0.0325 (10)0.0304 (9)0.0064 (8)0.0015 (8)0.0009 (7)
C160.0304 (9)0.0418 (10)0.0242 (9)0.0083 (8)0.0039 (7)0.0001 (7)
C210.0272 (8)0.0428 (11)0.0250 (9)0.0007 (7)0.0038 (7)0.0040 (7)
C170.0454 (11)0.0522 (12)0.0276 (10)0.0142 (9)0.0018 (8)0.0047 (8)
C280.0295 (9)0.0398 (10)0.0264 (9)0.0048 (7)0.0018 (7)0.0048 (7)
C270.0412 (10)0.0474 (12)0.0321 (10)0.0020 (9)0.0003 (8)0.0099 (8)
C190.0353 (10)0.0803 (17)0.0266 (10)0.0059 (10)0.0021 (8)0.0138 (10)
C260.0374 (10)0.0716 (16)0.0280 (10)0.0027 (10)0.0044 (8)0.0097 (10)
C180.0392 (11)0.0783 (17)0.0244 (10)0.0135 (11)0.0014 (8)0.0044 (9)
C200.0366 (10)0.0548 (13)0.0306 (10)0.0085 (9)0.0064 (8)0.0107 (8)
C240.0367 (10)0.0525 (13)0.0332 (10)0.0050 (9)0.0025 (8)0.0108 (9)
C250.0379 (10)0.0740 (16)0.0268 (10)0.0062 (10)0.0030 (8)0.0071 (10)
Geometric parameters (Å, º) top
N1—C81.338 (2)C5—C41.384 (3)
N1—C111.341 (2)C22—C231.395 (3)
O1—C21.365 (2)C22—C211.397 (3)
O2—C61.364 (2)C23—C241.431 (3)
N2—C101.338 (2)C23—C281.436 (3)
N2—C91.343 (2)C29—C281.394 (3)
C6—C51.393 (3)C29—C161.400 (3)
C6—C11.397 (2)C16—C171.428 (3)
C1—C21.397 (2)C16—C211.434 (3)
C1—C71.502 (2)C21—C201.433 (3)
C11—C101.401 (2)C17—C181.363 (3)
C11—C151.502 (2)C28—C271.435 (3)
C8—C91.400 (2)C27—C261.360 (3)
C8—C121.501 (2)C19—C201.359 (3)
C10—C141.502 (2)C19—C181.413 (4)
C9—C131.498 (2)C26—C251.415 (4)
C2—C31.394 (3)C24—C251.357 (3)
C3—C41.388 (3)
C8—N1—C11119.73 (14)C4—C5—C6119.01 (17)
C10—N2—C9119.48 (14)C5—C4—C3120.92 (17)
O2—C6—C5122.59 (16)C23—C22—C21121.62 (18)
O2—C6—C1115.63 (15)C22—C23—C24122.33 (19)
C5—C6—C1121.77 (16)C22—C23—C28119.26 (16)
C6—C1—C2117.66 (16)C24—C23—C28118.40 (17)
C6—C1—C7120.72 (15)C28—C29—C16121.50 (18)
C2—C1—C7121.60 (15)C29—C16—C17121.98 (19)
N1—C11—C10120.23 (15)C29—C16—C21119.25 (16)
N1—C11—C15117.96 (16)C17—C16—C21118.77 (17)
C10—C11—C15121.80 (15)C22—C21—C20122.53 (19)
N1—C8—C9119.96 (15)C22—C21—C16119.14 (16)
N1—C8—C12117.92 (15)C20—C21—C16118.33 (17)
C9—C8—C12122.12 (15)C18—C17—C16120.7 (2)
N2—C10—C11120.16 (15)C29—C28—C27122.28 (19)
N2—C10—C14117.95 (16)C29—C28—C23119.22 (16)
C11—C10—C14121.89 (16)C27—C28—C23118.49 (17)
N2—C9—C8120.43 (15)C26—C27—C28120.7 (2)
N2—C9—C13117.60 (16)C20—C19—C18120.60 (19)
C8—C9—C13121.97 (15)C27—C26—C25120.66 (19)
O1—C2—C3122.03 (15)C17—C18—C19120.71 (19)
O1—C2—C1116.56 (15)C19—C20—C21120.9 (2)
C3—C2—C1121.39 (16)C25—C24—C23121.0 (2)
C4—C3—C2119.24 (16)C24—C25—C26120.66 (18)
(MRE_TMP_DP) top
Crystal data top
C34H38N2O4Z = 2
Mr = 538.66F(000) = 576
Monoclinic, P21/nDx = 1.237 Mg m3
a = 8.292 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 20.615 (15) ŵ = 0.08 mm1
c = 8.470 (6) ÅT = 150 K
β = 92.435 (7)°Block, colorless
V = 1446.7 (18) Å30.49 × 0.34 × 0.25 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
2644 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.076
profile data from ω–scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 1010
Tmin = 0.640, Tmax = 1.000k = 2626
14988 measured reflectionsl = 1011
3328 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.214 w = 1/[σ2(Fo2) + (0.121P)2 + 0.2294P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3328 reflectionsΔρmax = 0.31 e Å3
186 parametersΔρmin = 0.40 e Å3
Crystal data top
C34H38N2O4V = 1446.7 (18) Å3
Mr = 538.66Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.292 (6) ŵ = 0.08 mm1
b = 20.615 (15) ÅT = 150 K
c = 8.470 (6) Å0.49 × 0.34 × 0.25 mm
β = 92.435 (7)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3328 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
2644 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 1.000Rint = 0.076
14988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
3328 reflectionsΔρmin = 0.40 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12172 (19)0.14627 (7)0.18830 (16)0.0514 (4)
H10.09510.11590.24790.077*
O20.10403 (19)0.29227 (7)0.18937 (16)0.0521 (4)
H20.19360.30680.22330.078*
C10.0135 (3)0.17003 (8)0.10788 (19)0.0422 (4)
C20.0090 (3)0.21904 (8)0.00324 (19)0.0420 (4)
C30.1283 (3)0.24347 (8)0.08319 (19)0.0421 (5)
C40.2821 (3)0.21928 (9)0.0583 (2)0.0474 (5)
H40.37370.23590.11610.057*
C60.1665 (3)0.14597 (9)0.1364 (2)0.0474 (5)
H60.17930.11290.21300.057*
C170.4697 (2)0.01628 (10)0.4289 (3)0.0478 (5)
C50.2988 (3)0.17031 (10)0.0530 (2)0.0512 (5)
H50.40300.15350.07150.061*
C70.1734 (3)0.24538 (11)0.0364 (3)0.0598 (6)
H7A0.17840.25520.14930.090*
H7B0.25580.21300.00680.090*
H7C0.19310.28510.02520.090*
C160.4549 (4)0.08305 (12)0.4201 (3)0.0689 (7)
H160.48440.10880.50730.083*
C120.4244 (4)0.01865 (13)0.2991 (4)0.0936 (12)
H120.43330.06460.30030.112*
C140.3534 (3)0.07737 (14)0.1596 (4)0.0720 (7)
H140.31440.09770.06800.086*
C130.3668 (5)0.01141 (15)0.1682 (5)0.1036 (13)
H130.33560.01430.08150.124*
C150.3978 (4)0.11351 (13)0.2869 (3)0.0780 (8)
H150.38950.15950.28390.094*
N10.04511 (18)0.04860 (7)0.39942 (16)0.0393 (4)
C80.0574 (2)0.01365 (9)0.35683 (18)0.0364 (4)
C90.0118 (2)0.06307 (9)0.54172 (19)0.0391 (4)
C100.1217 (3)0.02800 (11)0.1973 (2)0.0519 (5)
H10A0.14800.01280.14490.078*
H10B0.03980.05140.13300.078*
H10C0.21910.05470.21020.078*
C110.0230 (4)0.13335 (11)0.5861 (3)0.0668 (7)
H11A0.06350.14400.66420.100*
H11B0.12790.14170.63120.100*
H11C0.01200.16020.49180.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0720 (10)0.0487 (8)0.0334 (7)0.0051 (7)0.0002 (6)0.0086 (5)
O20.0691 (9)0.0433 (7)0.0434 (8)0.0103 (6)0.0024 (7)0.0114 (6)
C10.0673 (12)0.0366 (8)0.0231 (8)0.0048 (8)0.0057 (7)0.0036 (6)
C20.0660 (12)0.0347 (8)0.0251 (8)0.0092 (8)0.0008 (7)0.0036 (6)
C30.0687 (12)0.0312 (8)0.0266 (8)0.0093 (8)0.0033 (8)0.0028 (6)
C40.0647 (12)0.0428 (9)0.0350 (9)0.0036 (9)0.0046 (8)0.0014 (7)
C60.0699 (13)0.0416 (9)0.0318 (9)0.0023 (9)0.0139 (9)0.0033 (7)
C170.0308 (9)0.0519 (11)0.0604 (12)0.0050 (7)0.0002 (8)0.0183 (9)
C50.0646 (13)0.0472 (10)0.0428 (10)0.0067 (9)0.0138 (9)0.0010 (8)
C70.0698 (15)0.0540 (12)0.0550 (13)0.0178 (10)0.0055 (10)0.0133 (10)
C160.103 (2)0.0526 (12)0.0501 (13)0.0141 (12)0.0120 (13)0.0161 (10)
C120.119 (3)0.0544 (14)0.113 (3)0.0116 (14)0.078 (2)0.0304 (14)
C140.0701 (15)0.0732 (16)0.0738 (17)0.0048 (13)0.0168 (13)0.0033 (13)
C130.133 (3)0.0695 (17)0.115 (3)0.0103 (17)0.084 (2)0.0293 (17)
C150.117 (2)0.0551 (13)0.0615 (15)0.0090 (14)0.0064 (15)0.0041 (11)
N10.0470 (9)0.0467 (8)0.0241 (7)0.0061 (6)0.0015 (6)0.0031 (6)
C80.0372 (8)0.0489 (9)0.0229 (7)0.0092 (7)0.0008 (6)0.0001 (6)
C90.0476 (10)0.0442 (9)0.0253 (8)0.0109 (7)0.0001 (7)0.0003 (6)
C100.0624 (12)0.0676 (13)0.0267 (9)0.0119 (10)0.0115 (8)0.0020 (8)
C110.111 (2)0.0474 (11)0.0422 (11)0.0156 (12)0.0049 (12)0.0030 (9)
Geometric parameters (Å, º) top
O1—C11.377 (3)C16—H160.9500
O1—H10.8400C12—C131.374 (4)
O2—C31.370 (2)C12—H120.9500
O2—H20.8400C14—C131.366 (4)
C1—C61.393 (3)C14—C151.374 (4)
C1—C21.399 (2)C14—H140.9500
C2—C31.394 (3)C13—H130.9500
C2—C71.505 (3)C15—H150.9500
C3—C41.393 (3)N1—C81.338 (2)
C4—C51.392 (3)N1—C91.346 (2)
C4—H40.9500C8—C9ii1.395 (3)
C6—C51.374 (3)C8—C101.503 (2)
C6—H60.9500C9—C8ii1.395 (3)
C17—C121.379 (3)C9—C111.501 (3)
C17—C161.384 (3)C10—H10A0.9800
C17—C17i1.486 (5)C10—H10B0.9800
C5—H50.9500C10—H10C0.9800
C7—H7A0.9800C11—H11A0.9800
C7—H7B0.9800C11—H11B0.9800
C7—H7C0.9800C11—H11C0.9800
C16—C151.392 (4)
C1—O1—H1109.5C13—C12—C17121.6 (3)
C3—O2—H2109.5C13—C12—H12119.2
O1—C1—C6121.06 (16)C17—C12—H12119.2
O1—C1—C2117.46 (18)C13—C14—C15118.2 (3)
C6—C1—C2121.48 (19)C13—C14—H14120.9
C3—C2—C1117.29 (18)C15—C14—H14120.9
C3—C2—C7120.43 (17)C14—C13—C12121.6 (3)
C1—C2—C7122.27 (18)C14—C13—H13119.2
O2—C3—C4121.55 (18)C12—C13—H13119.2
O2—C3—C2116.38 (17)C14—C15—C16120.2 (3)
C4—C3—C2122.07 (17)C14—C15—H15119.9
C5—C4—C3118.7 (2)C16—C15—H15119.9
C5—C4—H4120.7C8—N1—C9119.16 (15)
C3—C4—H4120.7N1—C8—C9ii120.57 (16)
C5—C6—C1119.61 (18)N1—C8—C10117.72 (16)
C5—C6—H6120.2C9ii—C8—C10121.71 (17)
C1—C6—H6120.2N1—C9—C8ii120.27 (16)
C12—C17—C16116.7 (2)N1—C9—C11117.76 (17)
C12—C17—C17i121.6 (2)C8ii—C9—C11121.97 (17)
C16—C17—C17i121.8 (2)C8—C10—H10A109.5
C6—C5—C4120.8 (2)C8—C10—H10B109.5
C6—C5—H5119.6H10A—C10—H10B109.5
C4—C5—H5119.6C8—C10—H10C109.5
C2—C7—H7A109.5H10A—C10—H10C109.5
C2—C7—H7B109.5H10B—C10—H10C109.5
H7A—C7—H7B109.5C9—C11—H11A109.5
C2—C7—H7C109.5C9—C11—H11B109.5
H7A—C7—H7C109.5H11A—C11—H11B109.5
H7B—C7—H7C109.5C9—C11—H11C109.5
C17—C16—C15121.7 (2)H11A—C11—H11C109.5
C17—C16—H16119.1H11B—C11—H11C109.5
C15—C16—H16119.1
O1—C1—C2—C3179.33 (14)C3—C4—C5—C60.3 (3)
C6—C1—C2—C30.8 (2)C12—C17—C16—C150.3 (4)
O1—C1—C2—C70.3 (3)C17i—C17—C16—C15179.9 (3)
C6—C1—C2—C7179.61 (17)C16—C17—C12—C130.3 (5)
C1—C2—C3—O2178.82 (15)C17i—C17—C12—C13179.3 (3)
C7—C2—C3—O20.8 (2)C15—C14—C13—C120.6 (6)
C1—C2—C3—C41.9 (3)C17—C12—C13—C140.7 (6)
C7—C2—C3—C4178.48 (17)C13—C14—C15—C160.1 (5)
O2—C3—C4—C5179.07 (17)C17—C16—C15—C140.4 (4)
C2—C3—C4—C51.7 (3)C9—N1—C8—C9ii0.0 (3)
O1—C1—C6—C5179.37 (17)C9—N1—C8—C10179.88 (16)
C2—C1—C6—C50.6 (3)C8—N1—C9—C8ii0.0 (3)
C1—C6—C5—C40.8 (3)C8—N1—C9—C11179.64 (18)
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z+1.
(MRE_TMP_DPE-I_22BP) top
Crystal data top
C44H46N6O4V = 924.6 (13) Å3
Mr = 722.87Z = 1
Triclinic, P1F(000) = 384
a = 7.485 (6) ÅDx = 1.298 Mg m3
b = 8.797 (7) ÅMo Kα radiation, λ = 0.71073 Å
c = 14.171 (12) ŵ = 0.09 mm1
α = 96.618 (13)°T = 150 K
β = 93.306 (12)°Block, colorless
γ = 91.826 (14)°0.38 × 0.25 × 0.18 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3749 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.069
profile data from ω–scansθmax = 27.6°, θmin = 1.5°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 99
Tmin = 0.841, Tmax = 1.000k = 1111
9807 measured reflectionsl = 1818
4241 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0909P)2 + 0.1533P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4241 reflectionsΔρmax = 0.31 e Å3
253 parametersΔρmin = 0.32 e Å3
Crystal data top
C44H46N6O4γ = 91.826 (14)°
Mr = 722.87V = 924.6 (13) Å3
Triclinic, P1Z = 1
a = 7.485 (6) ÅMo Kα radiation
b = 8.797 (7) ŵ = 0.09 mm1
c = 14.171 (12) ÅT = 150 K
α = 96.618 (13)°0.38 × 0.25 × 0.18 mm
β = 93.306 (12)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4241 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
3749 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 1.000Rint = 0.069
9807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.31 e Å3
4241 reflectionsΔρmin = 0.32 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.05668 (15)0.80443 (14)0.58576 (8)0.0276 (3)
H170.449 (3)1.117 (2)0.5731 (14)0.043 (5)*
O20.35824 (13)0.63264 (11)0.60615 (7)0.0272 (2)
H20.26490.68260.60190.041*
O10.61536 (13)0.25477 (12)0.77565 (7)0.0284 (2)
H10.59300.20090.81910.043*
N10.53876 (14)0.08303 (12)0.92632 (8)0.0226 (2)
C50.16892 (18)0.49318 (16)0.70161 (10)0.0260 (3)
H50.06800.54990.68540.031*
C20.46575 (17)0.33039 (14)0.75139 (9)0.0211 (3)
C10.48523 (16)0.44146 (14)0.68883 (8)0.0197 (3)
C160.27043 (17)0.94411 (15)0.55200 (9)0.0236 (3)
C60.33415 (17)0.52338 (14)0.66575 (9)0.0212 (3)
C100.56826 (17)0.14526 (14)1.01728 (9)0.0216 (3)
C30.29998 (18)0.29797 (16)0.78686 (10)0.0258 (3)
H30.28840.22080.82810.031*
C90.47047 (17)0.06057 (15)0.90820 (9)0.0222 (3)
C40.15294 (18)0.37928 (17)0.76140 (10)0.0277 (3)
H40.03990.35710.78500.033*
C110.6422 (2)0.30721 (15)1.03452 (11)0.0314 (3)
H11A0.66220.34500.97340.047*
H11B0.75590.31081.07280.047*
H11C0.55670.37171.06870.047*
C120.02464 (19)0.94443 (17)0.62782 (10)0.0291 (3)
H120.11640.99700.66940.035*
C70.65978 (18)0.47146 (16)0.64559 (9)0.0257 (3)
H7A0.75650.42440.68020.039*
H7B0.68460.58220.64970.039*
H7C0.65210.42730.57870.039*
C80.4349 (2)0.12486 (17)0.80571 (10)0.0319 (3)
H8A0.48190.05250.76470.048*
H8B0.30560.14160.79160.048*
H8C0.49410.22240.79390.048*
C130.13457 (19)1.01654 (16)0.61409 (10)0.0279 (3)
H130.15131.11500.64680.033*
C170.43674 (18)1.02289 (16)0.53395 (10)0.0267 (3)
C150.2367 (2)0.79864 (16)0.50778 (11)0.0303 (3)
H150.32470.74380.46480.036*
C140.0745 (2)0.73541 (16)0.52710 (11)0.0308 (3)
H140.05490.63590.49660.037*
N20.07637 (17)0.18543 (14)0.97256 (9)0.0313 (3)
C220.03526 (17)0.07416 (15)1.02579 (9)0.0242 (3)
C180.1399 (2)0.32020 (17)1.01808 (12)0.0351 (4)
H180.16950.39970.98100.042*
C190.1647 (2)0.34980 (17)1.11594 (11)0.0339 (3)
H190.20980.44701.14540.041*
C210.05751 (19)0.09367 (17)1.12457 (10)0.0290 (3)
H210.02900.01211.16030.035*
C200.1218 (2)0.23357 (18)1.16980 (11)0.0349 (3)
H200.13650.25011.23730.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0296 (6)0.0277 (6)0.0277 (6)0.0071 (5)0.0003 (4)0.0116 (5)
O20.0324 (5)0.0275 (5)0.0244 (5)0.0094 (4)0.0032 (4)0.0108 (4)
O10.0277 (5)0.0318 (5)0.0293 (5)0.0088 (4)0.0035 (4)0.0158 (4)
N10.0251 (5)0.0195 (5)0.0237 (6)0.0021 (4)0.0014 (4)0.0061 (4)
C50.0253 (6)0.0266 (7)0.0267 (7)0.0074 (5)0.0012 (5)0.0044 (5)
C20.0248 (6)0.0196 (6)0.0190 (6)0.0037 (5)0.0001 (4)0.0027 (4)
C10.0240 (6)0.0188 (6)0.0159 (5)0.0007 (4)0.0003 (4)0.0011 (4)
C160.0273 (6)0.0220 (6)0.0225 (6)0.0034 (5)0.0003 (5)0.0064 (5)
C60.0279 (6)0.0194 (6)0.0162 (5)0.0032 (5)0.0002 (4)0.0013 (4)
C100.0230 (6)0.0162 (5)0.0257 (6)0.0018 (4)0.0017 (4)0.0037 (5)
C30.0291 (6)0.0244 (6)0.0255 (6)0.0022 (5)0.0043 (5)0.0081 (5)
C90.0230 (6)0.0199 (6)0.0236 (6)0.0029 (5)0.0020 (4)0.0032 (5)
C40.0248 (6)0.0301 (7)0.0294 (7)0.0028 (5)0.0060 (5)0.0061 (5)
C110.0366 (7)0.0184 (6)0.0388 (8)0.0043 (5)0.0013 (6)0.0050 (5)
C120.0310 (7)0.0309 (7)0.0253 (7)0.0029 (6)0.0051 (5)0.0060 (5)
C70.0266 (6)0.0290 (7)0.0229 (6)0.0014 (5)0.0021 (5)0.0077 (5)
C80.0394 (8)0.0310 (7)0.0240 (7)0.0010 (6)0.0026 (6)0.0000 (5)
C130.0339 (7)0.0236 (6)0.0254 (7)0.0058 (5)0.0031 (5)0.0014 (5)
C170.0294 (6)0.0219 (6)0.0284 (7)0.0061 (5)0.0012 (5)0.0018 (5)
C150.0329 (7)0.0217 (7)0.0350 (7)0.0039 (5)0.0075 (6)0.0020 (5)
C140.0367 (7)0.0217 (6)0.0344 (7)0.0080 (5)0.0020 (6)0.0051 (5)
N20.0380 (7)0.0264 (6)0.0295 (6)0.0052 (5)0.0071 (5)0.0019 (5)
C220.0239 (6)0.0234 (7)0.0253 (6)0.0010 (5)0.0049 (5)0.0012 (5)
C180.0403 (8)0.0262 (7)0.0383 (8)0.0068 (6)0.0099 (6)0.0003 (6)
C190.0336 (7)0.0267 (7)0.0393 (8)0.0033 (6)0.0069 (6)0.0066 (6)
C210.0344 (7)0.0274 (7)0.0250 (7)0.0000 (5)0.0043 (5)0.0012 (5)
C200.0387 (8)0.0342 (8)0.0295 (7)0.0009 (6)0.0046 (6)0.0061 (6)
Geometric parameters (Å, º) top
N3—C141.333 (2)C11—H11C0.9800
N3—C121.340 (2)C12—C131.382 (2)
O2—C61.3651 (17)C12—H120.9500
O2—H20.8400C7—H7A0.9800
O1—C21.3676 (17)C7—H7B0.9800
O1—H10.8400C7—H7C0.9800
N1—C91.3386 (19)C8—H8A0.9800
N1—C101.344 (2)C8—H8B0.9800
C5—C41.391 (2)C8—H8C0.9800
C5—C61.393 (2)C13—H130.9500
C5—H50.9500C17—C17ii1.329 (3)
C2—C31.398 (2)C17—H170.95 (2)
C2—C11.4027 (19)C15—C141.378 (2)
C1—C61.4030 (19)C15—H150.9500
C1—C71.503 (2)C14—H140.9500
C16—C131.393 (2)N2—C221.341 (2)
C16—C151.396 (2)N2—C181.342 (2)
C16—C171.468 (2)C22—C211.390 (2)
C10—C9i1.399 (2)C22—C22iii1.486 (3)
C10—C111.500 (2)C18—C191.382 (3)
C3—C41.385 (2)C18—H180.9500
C3—H30.9500C19—C201.385 (2)
C9—C10i1.399 (2)C19—H190.9500
C9—C81.502 (2)C21—C201.379 (2)
C4—H40.9500C21—H210.9500
C11—H11A0.9800C20—H200.9500
C11—H11B0.9800
C14—N3—C12116.32 (12)C1—C7—H7A109.5
C6—O2—H2109.5C1—C7—H7B109.5
C2—O1—H1109.5H7A—C7—H7B109.5
C9—N1—C10119.01 (11)C1—C7—H7C109.5
C4—C5—C6119.44 (12)H7A—C7—H7C109.5
C4—C5—H5120.3H7B—C7—H7C109.5
C6—C5—H5120.3C9—C8—H8A109.5
O1—C2—C3121.55 (12)C9—C8—H8B109.5
O1—C2—C1117.16 (11)H8A—C8—H8B109.5
C3—C2—C1121.28 (12)C9—C8—H8C109.5
C2—C1—C6117.76 (12)H8A—C8—H8C109.5
C2—C1—C7122.01 (11)H8B—C8—H8C109.5
C6—C1—C7120.22 (12)C12—C13—C16119.68 (14)
C13—C16—C15116.72 (13)C12—C13—H13120.2
C13—C16—C17119.92 (13)C16—C13—H13120.2
C15—C16—C17123.34 (12)C17ii—C17—C16125.50 (17)
O2—C6—C5122.29 (12)C17ii—C17—H17118.9 (12)
O2—C6—C1116.35 (12)C16—C17—H17115.5 (12)
C5—C6—C1121.36 (13)C14—C15—C16119.28 (13)
N1—C10—C9i120.41 (13)C14—C15—H15120.4
N1—C10—C11117.35 (12)C16—C15—H15120.4
C9i—C10—C11122.24 (13)N3—C14—C15124.38 (14)
C4—C3—C2119.42 (13)N3—C14—H14117.8
C4—C3—H3120.3C15—C14—H14117.8
C2—C3—H3120.3C22—N2—C18117.58 (14)
N1—C9—C10i120.58 (13)N2—C22—C21122.58 (13)
N1—C9—C8117.50 (12)N2—C22—C22iii116.84 (16)
C10i—C9—C8121.91 (13)C21—C22—C22iii120.58 (15)
C3—C4—C5120.70 (13)N2—C18—C19123.62 (14)
C3—C4—H4119.7N2—C18—H18118.2
C5—C4—H4119.6C19—C18—H18118.2
C10—C11—H11A109.5C18—C19—C20118.03 (14)
C10—C11—H11B109.5C18—C19—H19121.0
H11A—C11—H11B109.5C20—C19—H19121.0
C10—C11—H11C109.5C20—C21—C22118.78 (14)
H11A—C11—H11C109.5C20—C21—H21120.6
H11B—C11—H11C109.5C22—C21—H21120.6
N3—C12—C13123.60 (13)C21—C20—C19119.39 (15)
N3—C12—H12118.2C21—C20—H20120.3
C13—C12—H12118.2C19—C20—H20120.3
Symmetry codes: (i) x+1, y, z+2; (ii) x1, y+2, z+1; (iii) x, y, z+2.
(MRE_TMP_DPE-I_22TP) top
Crystal data top
C42H44N4O4S2V = 916.5 (11) Å3
Mr = 732.93Z = 1
Triclinic, P1F(000) = 388
a = 7.492 (5) ÅDx = 1.328 Mg m3
b = 9.069 (6) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.643 (10) ŵ = 0.20 mm1
α = 98.069 (13)°T = 150 K
β = 92.516 (6)°Block, brown
γ = 91.428 (8)°0.44 × 0.32 × 0.20 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3841 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.074
profile data from ω–scansθmax = 27.6°, θmin = 1.5°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 99
Tmin = 0.834, Tmax = 1.000k = 1111
9797 measured reflectionsl = 1717
4205 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.4643P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4205 reflectionsΔρmax = 0.53 e Å3
244 parametersΔρmin = 0.45 e Å3
Crystal data top
C42H44N4O4S2γ = 91.428 (8)°
Mr = 732.93V = 916.5 (11) Å3
Triclinic, P1Z = 1
a = 7.492 (5) ÅMo Kα radiation
b = 9.069 (6) ŵ = 0.20 mm1
c = 13.643 (10) ÅT = 150 K
α = 98.069 (13)°0.44 × 0.32 × 0.20 mm
β = 92.516 (6)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4205 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
3841 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 1.000Rint = 0.074
9797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.53 e Å3
4205 reflectionsΔρmin = 0.45 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C190.1411 (2)0.8359 (2)0.56403 (14)0.0246 (4)
H190.17820.92970.60020.029*
H180.450 (3)0.373 (3)0.9388 (17)0.028 (6)*
S10.07132 (6)0.68663 (5)0.61752 (3)0.02433 (15)
C220.0335 (2)0.57649 (18)0.50353 (12)0.0186 (3)
C210.0751 (2)0.65527 (18)0.42590 (13)0.0194 (3)
H210.06390.61540.35760.023*
C200.1373 (2)0.8047 (2)0.46349 (14)0.0233 (4)
H200.17250.87500.42200.028*
O10.35570 (15)0.85395 (13)0.88697 (9)0.0196 (3)
H10.26020.80680.89390.029*
O20.57797 (15)1.23945 (13)0.72288 (9)0.0190 (3)
H20.54461.29440.68130.029*
C50.1152 (2)1.12712 (18)0.76131 (12)0.0170 (3)
H50.00371.15480.74710.020*
C70.4322 (2)1.16643 (17)0.75288 (11)0.0150 (3)
C10.4668 (2)1.04942 (17)0.80735 (11)0.0147 (3)
C30.3197 (2)0.96938 (17)0.83586 (11)0.0150 (3)
C40.1446 (2)1.00753 (18)0.81259 (12)0.0164 (3)
H40.04630.95180.83180.020*
C60.2585 (2)1.20693 (18)0.73049 (12)0.0172 (3)
H60.23811.28800.69470.021*
C80.6560 (2)1.01188 (19)0.83424 (14)0.0214 (4)
H8A0.72180.98880.77370.032*
H8B0.65470.92530.86990.032*
H8C0.71471.09710.87660.032*
N10.51206 (18)0.58232 (15)0.42266 (10)0.0166 (3)
C110.4648 (2)0.43654 (18)0.40511 (12)0.0160 (3)
C100.5478 (2)0.64675 (17)0.51642 (12)0.0156 (3)
C120.4284 (3)0.3684 (2)0.29895 (13)0.0238 (4)
H12A0.44910.44390.25550.036*
H12B0.30400.33140.28950.036*
H12C0.50840.28560.28260.036*
C90.6052 (2)0.80863 (18)0.53311 (14)0.0211 (4)
H9A0.73490.81770.54650.032*
H9B0.54490.85990.58990.032*
H9C0.57330.85390.47380.032*
N20.04982 (18)0.69181 (15)0.90918 (10)0.0177 (3)
C150.2731 (2)0.55122 (17)0.94930 (11)0.0152 (3)
C180.4381 (2)0.47199 (18)0.96998 (12)0.0177 (3)
C160.2294 (2)0.69822 (17)0.99034 (12)0.0174 (3)
H160.30870.75361.03270.021*
C130.0079 (2)0.55041 (18)0.86962 (12)0.0176 (3)
H130.09010.49810.82760.021*
C140.1497 (2)0.47722 (18)0.88730 (12)0.0175 (3)
H140.17390.37720.85740.021*
C170.0696 (2)0.76191 (18)0.96849 (12)0.0184 (3)
H170.04200.86190.99730.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C190.0235 (8)0.0227 (9)0.0259 (9)0.0012 (7)0.0004 (7)0.0023 (7)
S10.0283 (3)0.0248 (3)0.0189 (2)0.00097 (18)0.00169 (17)0.00026 (17)
C220.0162 (7)0.0215 (9)0.0180 (8)0.0055 (6)0.0003 (6)0.0016 (6)
C210.0184 (7)0.0155 (7)0.0251 (9)0.0036 (6)0.0019 (6)0.0048 (6)
C200.0259 (8)0.0207 (8)0.0235 (9)0.0018 (7)0.0010 (7)0.0037 (7)
O10.0182 (5)0.0181 (6)0.0252 (6)0.0007 (4)0.0023 (5)0.0119 (5)
O20.0191 (6)0.0199 (6)0.0201 (6)0.0026 (4)0.0017 (4)0.0103 (5)
C50.0171 (7)0.0181 (8)0.0162 (7)0.0041 (6)0.0018 (6)0.0025 (6)
C70.0184 (7)0.0142 (7)0.0123 (7)0.0010 (6)0.0028 (6)0.0008 (6)
C10.0165 (7)0.0131 (7)0.0144 (7)0.0012 (5)0.0016 (5)0.0014 (6)
C30.0195 (7)0.0124 (7)0.0133 (7)0.0015 (6)0.0020 (6)0.0020 (5)
C40.0173 (7)0.0166 (7)0.0156 (7)0.0004 (6)0.0040 (6)0.0023 (6)
C60.0220 (8)0.0146 (7)0.0158 (7)0.0029 (6)0.0023 (6)0.0037 (6)
C80.0170 (8)0.0210 (8)0.0279 (9)0.0002 (6)0.0002 (6)0.0098 (7)
N10.0182 (6)0.0146 (6)0.0183 (7)0.0023 (5)0.0019 (5)0.0055 (5)
C110.0164 (7)0.0143 (7)0.0174 (8)0.0033 (6)0.0018 (6)0.0023 (6)
C100.0155 (7)0.0138 (7)0.0179 (8)0.0027 (5)0.0011 (6)0.0033 (6)
C120.0325 (9)0.0218 (8)0.0166 (8)0.0000 (7)0.0008 (7)0.0024 (7)
C90.0242 (8)0.0136 (8)0.0258 (9)0.0001 (6)0.0003 (7)0.0042 (6)
N20.0196 (6)0.0174 (7)0.0174 (7)0.0002 (5)0.0030 (5)0.0058 (5)
C150.0172 (7)0.0158 (7)0.0130 (7)0.0001 (6)0.0002 (6)0.0036 (6)
C180.0199 (8)0.0147 (7)0.0179 (8)0.0020 (6)0.0005 (6)0.0013 (6)
C160.0218 (8)0.0138 (7)0.0170 (8)0.0023 (6)0.0042 (6)0.0019 (6)
C130.0198 (7)0.0187 (8)0.0147 (7)0.0024 (6)0.0028 (6)0.0032 (6)
C140.0211 (8)0.0148 (7)0.0161 (7)0.0005 (6)0.0008 (6)0.0010 (6)
C170.0230 (8)0.0138 (7)0.0190 (8)0.0009 (6)0.0032 (6)0.0037 (6)
Geometric parameters (Å, º) top
C19—C201.360 (3)N1—C101.342 (2)
C19—S11.707 (2)N1—C111.346 (2)
C19—H190.9500C11—C10ii1.399 (2)
S1—C221.734 (2)C11—C121.503 (2)
C22—C211.400 (2)C10—C11ii1.399 (2)
C22—C22i1.452 (3)C10—C91.503 (2)
C21—C201.438 (2)C12—H12A0.9800
C21—H210.9500C12—H12B0.9800
C20—H200.9500C12—H12C0.9800
O1—C31.363 (2)C9—H9A0.9800
O1—H10.8400C9—H9B0.9800
O2—C71.3703 (19)C9—H9C0.9800
O2—H20.8400N2—C131.343 (2)
C5—C41.388 (2)N2—C171.344 (2)
C5—C61.393 (2)C15—C161.397 (2)
C5—H50.9500C15—C141.400 (2)
C7—C61.393 (2)C15—C181.472 (2)
C7—C11.401 (2)C18—C18iii1.328 (3)
C1—C31.404 (2)C18—H180.94 (2)
C1—C81.508 (2)C16—C171.379 (2)
C3—C41.399 (2)C16—H160.9500
C4—H40.9500C13—C141.387 (2)
C6—H60.9500C13—H130.9500
C8—H8A0.9800C14—H140.9500
C8—H8B0.9800C17—H170.9500
C8—H8C0.9800
C20—C19—S1112.00 (14)C10—N1—C11119.14 (14)
C20—C19—H19124.0N1—C11—C10ii120.48 (15)
S1—C19—H19124.0N1—C11—C12117.40 (14)
C19—S1—C2292.39 (10)C10ii—C11—C12122.13 (15)
C21—C22—C22i127.7 (2)N1—C10—C11ii120.38 (15)
C21—C22—S1111.08 (13)N1—C10—C9117.74 (14)
C22i—C22—S1121.18 (17)C11ii—C10—C9121.86 (15)
C22—C21—C20110.83 (16)C11—C12—H12A109.5
C22—C21—H21124.6C11—C12—H12B109.5
C20—C21—H21124.6H12A—C12—H12B109.5
C19—C20—C21113.69 (16)C11—C12—H12C109.5
C19—C20—H20123.2H12A—C12—H12C109.5
C21—C20—H20123.2H12B—C12—H12C109.5
C3—O1—H1109.5C10—C9—H9A109.5
C7—O2—H2109.5C10—C9—H9B109.5
C4—C5—C6120.51 (15)H9A—C9—H9B109.5
C4—C5—H5119.7C10—C9—H9C109.5
C6—C5—H5119.7H9A—C9—H9C109.5
O2—C7—C6121.59 (14)H9B—C9—H9C109.5
O2—C7—C1116.61 (14)C13—N2—C17116.70 (14)
C6—C7—C1121.80 (14)C16—C15—C14117.08 (15)
C7—C1—C3117.69 (14)C16—C15—C18123.28 (15)
C7—C1—C8120.78 (14)C14—C15—C18119.63 (15)
C3—C1—C8121.54 (14)C18iii—C18—C15125.3 (2)
O1—C3—C4122.01 (14)C18iii—C18—H18119.8 (14)
O1—C3—C1116.94 (14)C15—C18—H18114.8 (14)
C4—C3—C1121.05 (14)C17—C16—C15119.08 (15)
C5—C4—C3119.73 (14)C17—C16—H16120.5
C5—C4—H4120.1C15—C16—H16120.5
C3—C4—H4120.1N2—C13—C14123.07 (15)
C5—C6—C7119.18 (15)N2—C13—H13118.5
C5—C6—H6120.4C14—C13—H13118.5
C7—C6—H6120.4C13—C14—C15119.78 (15)
C1—C8—H8A109.5C13—C14—H14120.1
C1—C8—H8B109.5C15—C14—H14120.1
H8A—C8—H8B109.5N2—C17—C16124.29 (16)
C1—C8—H8C109.5N2—C17—H17117.9
H8A—C8—H8C109.5C16—C17—H17117.9
H8B—C8—H8C109.5
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y+1, z+2.
(Form_I_MRE_TMP_DPE-I_ACR) top
Crystal data top
C90H96N10O8V = 1919.9 (5) Å3
Mr = 1445.76Z = 1
Triclinic, P1F(000) = 770
a = 7.3795 (10) ÅDx = 1.250 Mg m3
b = 8.8871 (13) ÅMo Kα radiation, λ = 0.71073 Å
c = 29.533 (5) ŵ = 0.08 mm1
α = 89.495 (17)°T = 150 K
β = 84.054 (16)°Block, green
γ = 85.281 (10)°0.35 × 0.25 × 0.15 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
6196 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.091
profile data from ω–scansθmax = 27.6°, θmin = 0.7°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 99
Tmin = 0.693, Tmax = 1.000k = 1111
19146 measured reflectionsl = 3838
8793 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.229 w = 1/[σ2(Fo2) + (0.1126P)2 + 0.0124P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.040
8793 reflectionsΔρmax = 0.32 e Å3
503 parametersΔρmin = 0.32 e Å3
Crystal data top
C90H96N10O8γ = 85.281 (10)°
Mr = 1445.76V = 1919.9 (5) Å3
Triclinic, P1Z = 1
a = 7.3795 (10) ÅMo Kα radiation
b = 8.8871 (13) ŵ = 0.08 mm1
c = 29.533 (5) ÅT = 150 K
α = 89.495 (17)°0.35 × 0.25 × 0.15 mm
β = 84.054 (16)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
8793 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
6196 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 1.000Rint = 0.091
19146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.229H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.32 e Å3
8793 reflectionsΔρmin = 0.32 e Å3
503 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H321.436 (4)2.101 (3)0.0363 (10)0.044 (7)*
C10.4745 (3)0.4820 (2)0.40922 (7)0.0271 (4)
C20.3547 (3)0.3747 (2)0.42537 (7)0.0273 (4)
C30.1990 (3)0.3512 (2)0.40442 (8)0.0323 (5)
H30.11870.27860.41610.039*
C40.1632 (3)0.4352 (3)0.36626 (8)0.0369 (5)
H40.05700.42020.35180.044*
C50.2798 (3)0.5410 (3)0.34879 (8)0.0350 (5)
H50.25420.59760.32240.042*
C60.4344 (3)0.5632 (2)0.37019 (7)0.0300 (5)
C70.6408 (3)0.5085 (3)0.43257 (8)0.0365 (5)
H7A0.69990.59430.41830.055*
H7B0.72650.41810.42980.055*
H7C0.60420.53060.46480.055*
C80.3537 (3)0.1027 (3)0.45711 (9)0.0408 (6)
H8A0.42570.01570.45070.061*
H8B0.34190.15490.42860.061*
H8C0.41520.17220.47770.061*
C90.1669 (3)0.0495 (2)0.47919 (7)0.0295 (5)
C100.0253 (3)0.1461 (2)0.51307 (7)0.0308 (5)
C110.0512 (4)0.3085 (3)0.52744 (9)0.0417 (6)
H11A0.06050.35800.51800.063*
H11B0.07740.31440.56060.063*
H11C0.15360.35920.51310.063*
C120.5047 (3)0.7658 (2)0.23437 (8)0.0321 (5)
C130.4898 (3)0.8621 (3)0.19668 (8)0.0338 (5)
C140.3745 (3)1.0583 (2)0.24526 (8)0.0315 (5)
C150.3860 (3)0.9620 (3)0.28265 (8)0.0319 (5)
C160.5763 (4)0.6036 (3)0.22865 (10)0.0466 (6)
H16A0.58320.55680.25870.070*
H16B0.69850.59780.21190.070*
H16C0.49410.55030.21160.070*
C170.5484 (4)0.8089 (3)0.14901 (9)0.0492 (7)
H17A0.50930.88640.12750.074*
H17B0.49230.71530.14360.074*
H17C0.68180.79020.14480.074*
C180.3067 (4)1.2213 (3)0.24988 (10)0.0464 (6)
H18A0.33971.27400.22130.070*
H18B0.36251.26670.27460.070*
H18C0.17351.22980.25680.070*
C190.3258 (4)1.0144 (3)0.33031 (9)0.0459 (6)
H19A0.32970.92780.35110.069*
H19B0.20061.06180.33190.069*
H19C0.40761.08790.33920.069*
C200.5166 (3)1.4038 (2)0.09189 (7)0.0261 (4)
C210.5319 (3)1.2832 (2)0.12216 (7)0.0302 (5)
C220.6932 (3)1.2466 (3)0.14198 (8)0.0354 (5)
H220.70211.16390.16250.042*
C230.8411 (3)1.3325 (3)0.13138 (9)0.0380 (5)
H230.95151.30770.14470.046*
C240.8299 (3)1.4531 (3)0.10181 (8)0.0346 (5)
H240.93151.51140.09490.042*
C250.6676 (3)1.4887 (2)0.08220 (7)0.0275 (4)
C260.3444 (3)1.4416 (3)0.06954 (8)0.0331 (5)
H26A0.31051.55040.07190.050*
H26B0.24561.38650.08480.050*
H26C0.36511.41240.03740.050*
C270.9595 (3)1.9179 (3)0.06054 (8)0.0346 (5)
H270.85841.96300.07960.042*
C281.1161 (3)1.9948 (3)0.05372 (8)0.0332 (5)
H281.12172.08850.06850.040*
C291.2666 (3)1.9332 (2)0.02471 (7)0.0293 (5)
C301.2487 (3)1.7946 (2)0.00539 (8)0.0356 (5)
H301.34691.74700.01410.043*
C311.0877 (3)1.7255 (3)0.01445 (8)0.0364 (5)
H311.07911.63080.00050.044*
C321.4314 (3)2.0162 (2)0.01617 (8)0.0322 (5)
N10.1382 (3)0.09501 (19)0.49244 (6)0.0308 (4)
N20.4531 (3)0.8185 (2)0.27655 (7)0.0332 (4)
N30.4259 (3)1.0054 (2)0.20279 (6)0.0324 (4)
N40.9426 (3)1.7840 (2)0.04185 (7)0.0345 (4)
O10.3996 (2)0.29454 (18)0.46281 (5)0.0369 (4)
H10.31510.24010.47170.055*
O20.5559 (2)0.6635 (2)0.35396 (6)0.0419 (4)
H20.52080.70540.33040.063*
O30.3813 (2)1.20263 (19)0.13095 (6)0.0396 (4)
H3A0.40211.13550.15040.059*
O40.6478 (2)1.60550 (18)0.05248 (5)0.0354 (4)
H4A0.73911.65640.05160.053*
C330.8657 (3)0.0690 (3)0.31393 (10)0.0453 (6)
C340.8102 (4)0.0280 (4)0.36042 (12)0.0637 (9)
H340.81170.10310.38350.076*
C350.7548 (5)0.1192 (5)0.37183 (14)0.0753 (12)
H350.71990.14520.40280.090*
C360.7491 (4)0.2313 (4)0.33841 (15)0.0746 (11)
H360.70870.33220.34710.089*
C370.7996 (4)0.1993 (3)0.29411 (13)0.0608 (9)
H370.79500.27740.27200.073*
C380.8605 (3)0.0473 (3)0.28027 (10)0.0448 (6)
C400.9753 (3)0.1190 (3)0.22282 (9)0.0398 (6)
C411.0334 (4)0.1446 (4)0.17583 (10)0.0528 (7)
H411.02680.06340.15480.063*
C421.0984 (4)0.2853 (4)0.16110 (11)0.0591 (8)
H421.13650.30130.12970.071*
C431.1101 (4)0.4074 (3)0.19155 (12)0.0585 (8)
H431.15640.50460.18060.070*
C441.0559 (4)0.3871 (3)0.23630 (11)0.0504 (7)
H441.06470.47070.25640.060*
C450.9855 (3)0.2423 (3)0.25405 (9)0.0408 (6)
C460.9270 (3)0.2130 (3)0.29950 (9)0.0430 (6)
H460.92930.29330.32100.052*
N50.9131 (3)0.0225 (2)0.23576 (8)0.0460 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0279 (11)0.0278 (11)0.0252 (10)0.0011 (8)0.0036 (8)0.0013 (8)
C20.0344 (12)0.0237 (10)0.0231 (10)0.0011 (8)0.0029 (8)0.0018 (7)
C30.0328 (12)0.0312 (11)0.0337 (12)0.0072 (9)0.0035 (9)0.0026 (8)
C40.0355 (13)0.0419 (13)0.0358 (13)0.0079 (10)0.0116 (10)0.0013 (9)
C50.0375 (13)0.0382 (13)0.0308 (12)0.0028 (9)0.0112 (9)0.0067 (9)
C60.0322 (12)0.0289 (11)0.0284 (11)0.0021 (8)0.0017 (9)0.0034 (8)
C70.0361 (13)0.0426 (13)0.0321 (12)0.0055 (10)0.0085 (10)0.0018 (9)
C80.0410 (14)0.0387 (13)0.0410 (14)0.0017 (10)0.0009 (10)0.0028 (10)
C90.0396 (13)0.0268 (11)0.0218 (10)0.0002 (9)0.0039 (8)0.0001 (8)
C100.0409 (13)0.0242 (10)0.0276 (11)0.0014 (9)0.0069 (9)0.0016 (8)
C110.0497 (16)0.0257 (12)0.0494 (15)0.0001 (10)0.0051 (12)0.0061 (10)
C120.0265 (12)0.0288 (11)0.0405 (13)0.0012 (8)0.0026 (9)0.0031 (9)
C130.0313 (12)0.0338 (12)0.0355 (12)0.0023 (9)0.0005 (9)0.0005 (9)
C140.0304 (12)0.0300 (11)0.0347 (12)0.0038 (8)0.0055 (9)0.0017 (8)
C150.0300 (12)0.0347 (12)0.0317 (12)0.0045 (9)0.0057 (9)0.0016 (9)
C160.0415 (15)0.0307 (13)0.0663 (19)0.0052 (10)0.0053 (12)0.0025 (11)
C170.0550 (18)0.0495 (16)0.0402 (15)0.0015 (12)0.0065 (12)0.0043 (11)
C180.0592 (18)0.0300 (13)0.0493 (16)0.0022 (11)0.0067 (13)0.0014 (10)
C190.0545 (17)0.0521 (16)0.0315 (13)0.0063 (12)0.0048 (11)0.0031 (10)
C200.0280 (11)0.0280 (10)0.0221 (10)0.0010 (8)0.0024 (8)0.0008 (7)
C210.0328 (12)0.0310 (11)0.0275 (11)0.0047 (9)0.0053 (9)0.0008 (8)
C220.0390 (13)0.0301 (11)0.0382 (13)0.0008 (9)0.0121 (10)0.0065 (9)
C230.0315 (13)0.0393 (13)0.0447 (14)0.0005 (9)0.0133 (10)0.0027 (10)
C240.0309 (12)0.0372 (12)0.0372 (13)0.0077 (9)0.0072 (9)0.0014 (9)
C250.0300 (11)0.0283 (11)0.0241 (10)0.0029 (8)0.0012 (8)0.0012 (8)
C260.0288 (12)0.0374 (12)0.0329 (12)0.0002 (9)0.0045 (9)0.0036 (9)
C270.0333 (13)0.0391 (13)0.0304 (12)0.0032 (9)0.0018 (9)0.0023 (9)
C280.0365 (13)0.0338 (12)0.0283 (11)0.0039 (9)0.0012 (9)0.0019 (8)
C290.0307 (12)0.0276 (11)0.0295 (11)0.0038 (8)0.0024 (9)0.0045 (8)
C300.0345 (13)0.0282 (11)0.0424 (13)0.0027 (9)0.0041 (10)0.0014 (9)
C310.0381 (14)0.0280 (11)0.0430 (14)0.0056 (9)0.0019 (10)0.0022 (9)
C320.0348 (13)0.0287 (11)0.0332 (12)0.0053 (9)0.0013 (9)0.0018 (9)
N10.0361 (11)0.0276 (9)0.0284 (10)0.0018 (8)0.0022 (8)0.0033 (7)
N20.0337 (11)0.0341 (10)0.0330 (10)0.0058 (8)0.0081 (8)0.0069 (8)
N30.0353 (11)0.0310 (10)0.0308 (10)0.0035 (8)0.0026 (8)0.0040 (7)
N40.0334 (11)0.0354 (11)0.0353 (11)0.0080 (8)0.0032 (8)0.0099 (8)
O10.0446 (10)0.0380 (9)0.0302 (9)0.0102 (7)0.0092 (7)0.0094 (6)
O20.0390 (10)0.0467 (10)0.0430 (10)0.0144 (8)0.0110 (7)0.0175 (8)
O30.0367 (10)0.0426 (10)0.0422 (10)0.0134 (7)0.0106 (7)0.0164 (7)
O40.0376 (10)0.0358 (9)0.0347 (9)0.0107 (7)0.0075 (7)0.0097 (6)
C330.0281 (13)0.0569 (16)0.0524 (16)0.0084 (11)0.0061 (11)0.0138 (12)
C340.0411 (17)0.092 (3)0.057 (2)0.0158 (16)0.0071 (14)0.0161 (16)
C350.0452 (19)0.094 (3)0.084 (3)0.0119 (18)0.0151 (17)0.047 (2)
C360.0447 (19)0.068 (2)0.108 (3)0.0047 (16)0.0105 (18)0.047 (2)
C370.0360 (16)0.0483 (17)0.097 (3)0.0043 (12)0.0039 (15)0.0261 (16)
C380.0291 (13)0.0433 (15)0.0628 (18)0.0015 (10)0.0084 (11)0.0162 (12)
C400.0366 (14)0.0386 (13)0.0462 (14)0.0035 (10)0.0178 (11)0.0099 (10)
C410.0534 (18)0.0621 (18)0.0448 (16)0.0027 (13)0.0191 (13)0.0120 (13)
C420.0546 (19)0.074 (2)0.0497 (17)0.0044 (15)0.0175 (14)0.0267 (15)
C430.0482 (17)0.0545 (18)0.075 (2)0.0103 (13)0.0263 (15)0.0335 (15)
C440.0451 (16)0.0400 (14)0.069 (2)0.0054 (11)0.0262 (13)0.0109 (12)
C450.0342 (13)0.0371 (13)0.0538 (16)0.0008 (10)0.0188 (11)0.0083 (11)
C460.0328 (13)0.0488 (15)0.0497 (16)0.0053 (10)0.0134 (11)0.0016 (11)
N50.0408 (13)0.0415 (12)0.0569 (15)0.0027 (9)0.0144 (10)0.0059 (10)
Geometric parameters (Å, º) top
C1—C61.400 (3)C21—C221.394 (3)
C1—C21.400 (3)C22—C231.390 (3)
C1—C71.504 (3)C22—H220.9500
C2—O11.365 (2)C23—C241.379 (3)
C2—C31.391 (3)C23—H230.9500
C3—C41.383 (3)C24—C251.396 (3)
C3—H30.9500C24—H240.9500
C4—C51.387 (3)C25—O41.362 (2)
C4—H40.9500C26—H26A0.9800
C5—C61.389 (3)C26—H26B0.9800
C5—H50.9500C26—H26C0.9800
C6—O21.365 (3)C27—N41.337 (3)
C7—H7A0.9800C27—C281.386 (3)
C7—H7B0.9800C27—H270.9500
C7—H7C0.9800C28—C291.407 (3)
C8—C91.504 (3)C28—H280.9500
C8—H8A0.9800C29—C301.384 (3)
C8—H8B0.9800C29—C321.472 (3)
C8—H8C0.9800C30—C311.383 (3)
C9—N11.339 (3)C30—H300.9500
C9—C10i1.406 (3)C31—N41.345 (3)
C10—N11.340 (3)C31—H310.9500
C10—C9i1.406 (3)C32—C32ii1.333 (4)
C10—C111.499 (3)C32—H320.97 (3)
C11—H11A0.9800O1—H10.8400
C11—H11B0.9800O2—H20.8400
C11—H11C0.9800O3—H3A0.8400
C12—N21.342 (3)O4—H4A0.8400
C12—C131.406 (3)C33—C461.379 (4)
C12—C161.498 (3)C33—C381.429 (4)
C13—N31.328 (3)C33—C341.433 (4)
C13—C171.498 (3)C34—C351.372 (5)
C14—N31.349 (3)C34—H340.9500
C14—C151.397 (3)C35—C361.397 (6)
C14—C181.495 (3)C35—H350.9500
C15—N21.336 (3)C36—C371.349 (5)
C15—C191.498 (3)C36—H360.9500
C16—H16A0.9800C37—C381.437 (4)
C16—H16B0.9800C37—H370.9500
C16—H16C0.9800C38—N51.346 (4)
C17—H17A0.9800C40—N51.347 (3)
C17—H17B0.9800C40—C411.424 (4)
C17—H17C0.9800C40—C451.429 (4)
C18—H18A0.9800C41—C421.360 (4)
C18—H18B0.9800C41—H410.9500
C18—H18C0.9800C42—C431.406 (5)
C19—H19A0.9800C42—H420.9500
C19—H19B0.9800C43—C441.350 (4)
C19—H19C0.9800C43—H430.9500
C20—C211.395 (3)C44—C451.430 (4)
C20—C251.400 (3)C44—H440.9500
C20—C261.504 (3)C45—C461.387 (4)
C21—O31.373 (3)C46—H460.9500
C6—C1—C2117.41 (19)C23—C22—C21119.2 (2)
C6—C1—C7121.05 (19)C23—C22—H22120.4
C2—C1—C7121.54 (19)C21—C22—H22120.4
O1—C2—C3121.96 (19)C24—C23—C22121.0 (2)
O1—C2—C1116.12 (19)C24—C23—H23119.5
C3—C2—C1121.92 (19)C22—C23—H23119.5
C4—C3—C2118.8 (2)C23—C24—C25119.3 (2)
C4—C3—H3120.6C23—C24—H24120.4
C2—C3—H3120.6C25—C24—H24120.4
C3—C4—C5121.1 (2)O4—C25—C24122.32 (19)
C3—C4—H4119.5O4—C25—C20116.52 (19)
C5—C4—H4119.5C24—C25—C20121.16 (19)
C4—C5—C6119.3 (2)C20—C26—H26A109.5
C4—C5—H5120.3C20—C26—H26B109.5
C6—C5—H5120.3H26A—C26—H26B109.5
O2—C6—C5121.87 (19)C20—C26—H26C109.5
O2—C6—C1116.69 (19)H26A—C26—H26C109.5
C5—C6—C1121.4 (2)H26B—C26—H26C109.5
C1—C7—H7A109.5N4—C27—C28123.8 (2)
C1—C7—H7B109.5N4—C27—H27118.1
H7A—C7—H7B109.5C28—C27—H27118.1
C1—C7—H7C109.5C27—C28—C29119.6 (2)
H7A—C7—H7C109.5C27—C28—H28120.2
H7B—C7—H7C109.5C29—C28—H28120.2
C9—C8—H8A109.5C30—C29—C28116.5 (2)
C9—C8—H8B109.5C30—C29—C32123.6 (2)
H8A—C8—H8B109.5C28—C29—C32120.0 (2)
C9—C8—H8C109.5C31—C30—C29119.9 (2)
H8A—C8—H8C109.5C31—C30—H30120.0
H8B—C8—H8C109.5C29—C30—H30120.0
N1—C9—C10i119.8 (2)N4—C31—C30124.0 (2)
N1—C9—C8117.8 (2)N4—C31—H31118.0
C10i—C9—C8122.4 (2)C30—C31—H31118.0
N1—C10—C9i120.55 (19)C32ii—C32—C29125.6 (3)
N1—C10—C11117.8 (2)C32ii—C32—H32119.8 (16)
C9i—C10—C11121.6 (2)C29—C32—H32114.7 (16)
C10—C11—H11A109.5C9—N1—C10119.64 (19)
C10—C11—H11B109.5C15—N2—C12119.99 (18)
H11A—C11—H11B109.5C13—N3—C14119.89 (18)
C10—C11—H11C109.5C27—N4—C31116.15 (19)
H11A—C11—H11C109.5C2—O1—H1109.5
H11B—C11—H11C109.5C6—O2—H2109.5
N2—C12—C13119.9 (2)C21—O3—H3A109.5
N2—C12—C16118.7 (2)C25—O4—H4A109.5
C13—C12—C16121.5 (2)C46—C33—C38117.6 (3)
N3—C13—C12120.1 (2)C46—C33—C34124.4 (3)
N3—C13—C17118.1 (2)C38—C33—C34118.1 (3)
C12—C13—C17121.8 (2)C35—C34—C33120.4 (3)
N3—C14—C15120.0 (2)C35—C34—H34119.8
N3—C14—C18117.3 (2)C33—C34—H34119.8
C15—C14—C18122.7 (2)C34—C35—C36120.8 (3)
N2—C15—C14120.1 (2)C34—C35—H35119.6
N2—C15—C19117.9 (2)C36—C35—H35119.6
C14—C15—C19122.0 (2)C37—C36—C35121.4 (3)
C12—C16—H16A109.5C37—C36—H36119.3
C12—C16—H16B109.5C35—C36—H36119.3
H16A—C16—H16B109.5C36—C37—C38120.2 (4)
C12—C16—H16C109.5C36—C37—H37119.9
H16A—C16—H16C109.5C38—C37—H37119.9
H16B—C16—H16C109.5N5—C38—C33123.2 (2)
C13—C17—H17A109.5N5—C38—C37117.6 (3)
C13—C17—H17B109.5C33—C38—C37119.2 (3)
H17A—C17—H17B109.5N5—C40—C41117.8 (2)
C13—C17—H17C109.5N5—C40—C45122.9 (2)
H17A—C17—H17C109.5C41—C40—C45119.3 (2)
H17B—C17—H17C109.5C42—C41—C40120.0 (3)
C14—C18—H18A109.5C42—C41—H41120.0
C14—C18—H18B109.5C40—C41—H41120.0
H18A—C18—H18B109.5C41—C42—C43121.2 (3)
C14—C18—H18C109.5C41—C42—H42119.4
H18A—C18—H18C109.5C43—C42—H42119.4
H18B—C18—H18C109.5C44—C43—C42120.3 (3)
C15—C19—H19A109.5C44—C43—H43119.8
C15—C19—H19B109.5C42—C43—H43119.8
H19A—C19—H19B109.5C43—C44—C45121.4 (3)
C15—C19—H19C109.5C43—C44—H44119.3
H19A—C19—H19C109.5C45—C44—H44119.3
H19B—C19—H19C109.5C46—C45—C40117.6 (2)
C21—C20—C25118.14 (19)C46—C45—C44124.6 (3)
C21—C20—C26121.45 (19)C40—C45—C44117.8 (3)
C25—C20—C26120.40 (18)C33—C46—C45120.8 (2)
O3—C21—C22122.15 (19)C33—C46—H46119.6
O3—C21—C20116.61 (19)C45—C46—H46119.6
C22—C21—C20121.2 (2)C38—N5—C40117.9 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+3, y+4, z.
(Form_II_MRE_TMP_DPE-I_ACR) top
Crystal data top
C75H73N8O6V = 1524 (4) Å3
Mr = 1182.41Z = 1
Triclinic, P1F(000) = 627
a = 7.478 (12) ÅDx = 1.288 Mg m3
b = 8.739 (14) ÅMo Kα radiation, λ = 0.71073 Å
c = 23.37 (3) ŵ = 0.08 mm1
α = 92.36 (3)°T = 150 K
β = 90.29 (3)°Block, pale yellow
γ = 93.131 (19)°0.30 × 0.30 × 0.12 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4024 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.114
profile data from ω–scansθmax = 27.9°, θmin = 0.9°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 99
Tmin = 0.532, Tmax = 1.000k = 1111
13754 measured reflectionsl = 3030
7022 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.092 w = 1/[σ2(Fo2) + (0.1605P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.300(Δ/σ)max = 0.006
S = 1.01Δρmax = 0.55 e Å3
7022 reflectionsΔρmin = 0.41 e Å3
418 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.058 (9)
Crystal data top
C75H73N8O6γ = 93.131 (19)°
Mr = 1182.41V = 1524 (4) Å3
Triclinic, P1Z = 1
a = 7.478 (12) ÅMo Kα radiation
b = 8.739 (14) ŵ = 0.08 mm1
c = 23.37 (3) ÅT = 150 K
α = 92.36 (3)°0.30 × 0.30 × 0.12 mm
β = 90.29 (3)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
7022 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
4024 reflections with I > 2σ(I)
Tmin = 0.532, Tmax = 1.000Rint = 0.114
13754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0920 restraints
wR(F2) = 0.300H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.55 e Å3
7022 reflectionsΔρmin = 0.41 e Å3
418 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5502 (3)0.5810 (3)0.38476 (9)0.0318 (5)
C20.6963 (4)0.4975 (3)0.39779 (10)0.0343 (6)
C30.8632 (4)0.5291 (3)0.37337 (11)0.0418 (6)
H30.96210.47050.38240.050*
C40.8825 (4)0.6461 (3)0.33613 (12)0.0462 (7)
H40.99670.66960.32010.055*
C50.7411 (4)0.7296 (3)0.32160 (11)0.0435 (7)
H50.75640.80940.29540.052*
C60.5733 (4)0.6958 (3)0.34586 (10)0.0358 (6)
C70.3745 (4)0.5491 (3)0.41315 (11)0.0386 (6)
H7A0.37910.59380.45230.058*
H7B0.34960.43800.41420.058*
H7C0.27960.59450.39160.058*
C80.4571 (4)0.0158 (3)0.14518 (11)0.0406 (6)
C90.4496 (4)0.0837 (3)0.18974 (11)0.0404 (6)
C100.5622 (4)0.1097 (3)0.25176 (12)0.0412 (6)
C110.5713 (4)0.2096 (3)0.20717 (12)0.0409 (6)
C120.3965 (5)0.0316 (4)0.08584 (13)0.0552 (8)
H12A0.41530.05510.06090.083*
H12B0.26900.06390.08620.083*
H12C0.46560.11710.07150.083*
C130.3846 (5)0.2474 (3)0.18159 (15)0.0570 (8)
H13A0.41040.30230.21620.085*
H13B0.44550.29440.14880.085*
H13C0.25510.25320.17440.085*
C140.6179 (5)0.1587 (4)0.31122 (14)0.0591 (9)
H14A0.58800.07560.33700.089*
H14B0.55500.24980.32340.089*
H14C0.74740.18290.31240.089*
C150.6382 (5)0.3730 (3)0.21598 (16)0.0557 (8)
H15A0.65330.41950.17870.084*
H15B0.75360.37760.23620.084*
H15C0.55160.42910.23880.084*
C160.5885 (7)0.3940 (4)0.02995 (17)0.0764 (14)
C170.4256 (7)0.4388 (5)0.04836 (17)0.0781 (14)
C180.3345 (6)0.5464 (4)0.01903 (16)0.0724 (13)
C190.1786 (8)0.5809 (7)0.0332 (2)0.0449 (13)0.5
H19A0.15780.68470.02130.067*0.5
H19B0.16630.57680.07480.067*0.5
H19C0.09070.50780.01440.067*0.5
C200.9897 (4)0.0739 (3)0.42562 (11)0.0426 (7)
H200.89920.02640.40120.051*
C211.1426 (4)0.0024 (3)0.43415 (11)0.0403 (6)
H211.15640.09990.41570.048*
C221.2775 (4)0.0634 (3)0.46990 (10)0.0358 (6)
C231.2475 (4)0.2058 (3)0.49455 (12)0.0429 (6)
H231.33500.25660.51930.052*
C241.0925 (4)0.2731 (3)0.48332 (12)0.0456 (7)
H241.07650.37170.50060.055*
C251.4382 (4)0.0190 (3)0.48023 (11)0.0389 (6)
C260.0613 (4)0.0830 (4)0.16475 (13)0.0469 (7)
C270.1243 (5)0.2359 (4)0.15087 (18)0.0673 (10)
H270.12910.30980.17960.081*
C280.1776 (6)0.2765 (6)0.0968 (2)0.0887 (16)
H280.21790.37980.08780.106*
C290.1748 (6)0.1701 (6)0.0537 (2)0.0853 (15)
H290.21080.20190.01580.102*
C300.1218 (6)0.0248 (5)0.06557 (16)0.0725 (11)
H300.12400.04700.03620.087*
C310.0621 (4)0.0254 (4)0.12115 (13)0.0510 (8)
C320.0004 (5)0.1737 (4)0.13456 (15)0.0564 (8)
H320.00040.24830.10610.068*
C330.0598 (5)0.2138 (4)0.18861 (15)0.0551 (9)
C340.1294 (6)0.3637 (4)0.2079 (2)0.0805 (14)
H340.13780.44440.18190.097*
C350.1836 (6)0.3904 (6)0.2634 (3)0.0937 (18)
H350.22460.49110.27590.112*
C360.1801 (6)0.2740 (8)0.3020 (2)0.102 (2)
H360.22170.29500.34010.123*
C370.1195 (6)0.1348 (6)0.28604 (17)0.0823 (13)
H370.11770.05650.31300.099*
C380.0569 (4)0.0988 (4)0.22963 (13)0.0539 (8)
N10.5175 (3)0.1613 (3)0.15461 (10)0.0425 (6)
N20.5004 (4)0.0352 (3)0.24242 (10)0.0433 (6)
N30.0040 (4)0.0464 (3)0.21761 (11)0.0542 (7)
N40.9615 (3)0.2109 (3)0.44984 (9)0.0413 (6)
O10.6684 (3)0.3841 (2)0.43529 (7)0.0415 (5)
H10.75970.33250.43670.062*
O20.4279 (3)0.7752 (2)0.33323 (8)0.0482 (5)
H20.45110.83010.30530.072*
O30.6583 (6)0.3039 (5)0.06205 (18)0.0529 (10)*0.5
H3A0.59050.28700.08990.079*0.5
O40.3688 (6)0.3742 (5)0.08905 (17)0.0507 (10)*0.5
H4A0.44220.31100.09920.076*0.5
H251.451 (4)0.113 (4)0.4546 (13)0.051 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0349 (14)0.0324 (12)0.0281 (11)0.0038 (10)0.0005 (9)0.0026 (9)
C20.0386 (15)0.0358 (13)0.0293 (11)0.0082 (11)0.0006 (9)0.0010 (9)
C30.0345 (15)0.0472 (15)0.0451 (15)0.0135 (12)0.0037 (10)0.0049 (11)
C40.0376 (16)0.0522 (17)0.0498 (16)0.0076 (13)0.0112 (11)0.0083 (12)
C50.0482 (18)0.0421 (14)0.0417 (14)0.0067 (13)0.0090 (11)0.0121 (11)
C60.0370 (14)0.0380 (13)0.0332 (12)0.0076 (11)0.0002 (9)0.0017 (10)
C70.0303 (14)0.0449 (14)0.0407 (14)0.0037 (11)0.0022 (10)0.0029 (11)
C80.0370 (15)0.0444 (15)0.0409 (14)0.0069 (12)0.0015 (10)0.0003 (11)
C90.0387 (16)0.0378 (14)0.0448 (14)0.0047 (12)0.0031 (11)0.0003 (11)
C100.0405 (16)0.0379 (14)0.0456 (15)0.0067 (12)0.0081 (11)0.0004 (11)
C110.0351 (15)0.0377 (14)0.0503 (15)0.0055 (12)0.0031 (11)0.0029 (11)
C120.054 (2)0.071 (2)0.0413 (15)0.0080 (17)0.0055 (12)0.0035 (14)
C130.066 (2)0.0385 (15)0.065 (2)0.0016 (15)0.0065 (15)0.0028 (14)
C140.066 (2)0.0586 (19)0.0520 (18)0.0060 (17)0.0223 (15)0.0049 (14)
C150.0433 (19)0.0397 (16)0.083 (2)0.0018 (14)0.0013 (15)0.0007 (15)
C160.101 (4)0.057 (2)0.069 (2)0.031 (2)0.041 (2)0.0262 (18)
C170.111 (4)0.058 (2)0.063 (2)0.034 (2)0.040 (2)0.0264 (17)
C180.101 (3)0.0528 (19)0.060 (2)0.030 (2)0.035 (2)0.0119 (15)
C190.030 (3)0.058 (4)0.047 (3)0.011 (3)0.006 (2)0.006 (2)
C200.0398 (16)0.0498 (16)0.0388 (14)0.0081 (13)0.0093 (11)0.0028 (11)
C210.0404 (16)0.0409 (14)0.0401 (13)0.0077 (12)0.0052 (10)0.0001 (11)
C220.0340 (14)0.0364 (13)0.0377 (13)0.0051 (11)0.0024 (10)0.0063 (10)
C230.0415 (16)0.0344 (13)0.0529 (16)0.0042 (12)0.0091 (12)0.0000 (11)
C240.0463 (18)0.0353 (14)0.0562 (17)0.0099 (13)0.0040 (12)0.0051 (12)
C250.0390 (16)0.0351 (13)0.0430 (14)0.0069 (11)0.0063 (10)0.0014 (11)
C260.0386 (17)0.0483 (16)0.0523 (17)0.0037 (13)0.0114 (12)0.0089 (13)
C270.060 (2)0.0534 (19)0.086 (3)0.0131 (18)0.0181 (18)0.0140 (18)
C280.061 (3)0.086 (3)0.112 (4)0.018 (2)0.009 (2)0.056 (3)
C290.057 (3)0.119 (4)0.077 (3)0.007 (3)0.0110 (19)0.043 (3)
C300.061 (2)0.103 (3)0.054 (2)0.023 (2)0.0047 (16)0.015 (2)
C310.0389 (17)0.064 (2)0.0498 (17)0.0062 (15)0.0069 (12)0.0087 (14)
C320.053 (2)0.0532 (18)0.065 (2)0.0102 (16)0.0210 (15)0.0096 (15)
C330.0426 (19)0.0458 (16)0.075 (2)0.0027 (14)0.0258 (15)0.0140 (15)
C340.058 (2)0.056 (2)0.125 (4)0.0103 (19)0.041 (2)0.023 (2)
C350.055 (3)0.083 (3)0.134 (4)0.020 (2)0.038 (3)0.072 (3)
C360.058 (3)0.141 (5)0.099 (3)0.020 (3)0.026 (2)0.071 (4)
C370.065 (3)0.121 (4)0.057 (2)0.007 (2)0.0155 (17)0.037 (2)
C380.0403 (17)0.067 (2)0.0511 (17)0.0087 (15)0.0176 (13)0.0189 (15)
N10.0429 (14)0.0413 (12)0.0445 (13)0.0073 (11)0.0014 (9)0.0082 (10)
N20.0502 (16)0.0367 (12)0.0438 (13)0.0056 (11)0.0084 (10)0.0063 (9)
N30.0541 (17)0.0596 (16)0.0476 (14)0.0051 (14)0.0139 (11)0.0027 (12)
N40.0372 (13)0.0453 (13)0.0430 (12)0.0088 (10)0.0024 (9)0.0126 (10)
O10.0412 (12)0.0454 (11)0.0401 (10)0.0120 (9)0.0046 (8)0.0130 (8)
O20.0437 (13)0.0522 (12)0.0517 (12)0.0146 (10)0.0029 (8)0.0209 (9)
Geometric parameters (Å, º) top
C1—C61.386 (4)C19—H19B0.9800
C1—C21.386 (4)C19—H19C0.9800
C1—C71.492 (4)C20—N41.331 (4)
C2—O11.358 (3)C20—C211.373 (4)
C2—C31.394 (4)C20—H200.9500
C3—C41.373 (4)C21—C221.391 (4)
C3—H30.9500C21—H210.9500
C4—C51.366 (4)C22—C231.380 (4)
C4—H40.9500C22—C251.459 (4)
C5—C61.401 (4)C23—C241.357 (4)
C5—H50.9500C23—H230.9500
C6—O21.359 (4)C24—N41.329 (4)
C7—H7A0.9800C24—H240.9500
C7—H7B0.9800C25—C25ii1.323 (5)
C7—H7C0.9800C25—H251.00 (3)
C8—N11.335 (4)C26—N31.327 (4)
C8—C91.384 (4)C26—C271.416 (5)
C8—C121.492 (4)C26—C311.420 (5)
C9—N21.332 (4)C27—C281.352 (6)
C9—C131.490 (4)C27—H270.9500
C10—N21.333 (4)C28—C291.398 (7)
C10—C111.387 (4)C28—H280.9500
C10—C141.488 (4)C29—C301.327 (7)
C11—N11.336 (4)C29—H290.9500
C11—C151.492 (4)C30—C311.416 (5)
C12—H12A0.9800C30—H300.9500
C12—H12B0.9800C31—C321.375 (5)
C12—H12C0.9800C32—C331.365 (5)
C13—H13A0.9800C32—H320.9500
C13—H13B0.9800C33—C381.417 (5)
C13—H13C0.9800C33—C341.436 (5)
C14—H14A0.9800C34—C351.365 (7)
C14—H14B0.9800C34—H340.9500
C14—H14C0.9800C35—C361.386 (8)
C15—H15A0.9800C35—H350.9500
C15—H15B0.9800C36—C371.313 (7)
C15—H15C0.9800C36—H360.9500
C16—O31.243 (6)C37—C381.414 (5)
C16—C171.366 (7)C37—H370.9500
C16—C18i1.391 (6)C38—N31.342 (5)
C17—O41.194 (6)O1—H10.8400
C17—C181.392 (6)O2—H20.8400
C18—C191.262 (7)O3—H3A0.8400
C18—C16i1.392 (6)O4—H4A0.8400
C19—H19A0.9800
C6—C1—C2118.2 (2)C18—C19—H19B109.5
C6—C1—C7121.5 (2)H19A—C19—H19B109.5
C2—C1—C7120.3 (2)C18—C19—H19C109.5
O1—C2—C1116.8 (2)H19A—C19—H19C109.5
O1—C2—C3122.0 (2)H19B—C19—H19C109.5
C1—C2—C3121.2 (3)N4—C20—C21123.4 (3)
C4—C3—C2119.0 (3)N4—C20—H20118.3
C4—C3—H3120.5C21—C20—H20118.3
C2—C3—H3120.5C20—C21—C22119.8 (3)
C5—C4—C3121.5 (3)C20—C21—H21120.1
C5—C4—H4119.3C22—C21—H21120.1
C3—C4—H4119.3C23—C22—C21116.3 (3)
C4—C5—C6119.1 (3)C23—C22—C25123.7 (3)
C4—C5—H5120.4C21—C22—C25120.0 (2)
C6—C5—H5120.4C24—C23—C22119.7 (3)
O2—C6—C1117.3 (2)C24—C23—H23120.1
O2—C6—C5121.8 (2)C22—C23—H23120.1
C1—C6—C5120.9 (2)N4—C24—C23124.6 (3)
C1—C7—H7A109.5N4—C24—H24117.7
C1—C7—H7B109.5C23—C24—H24117.7
H7A—C7—H7B109.5C25ii—C25—C22125.7 (3)
C1—C7—H7C109.5C25ii—C25—H25119.8 (19)
H7A—C7—H7C109.5C22—C25—H25114.6 (19)
H7B—C7—H7C109.5N3—C26—C27119.1 (3)
N1—C8—C9120.1 (3)N3—C26—C31122.5 (3)
N1—C8—C12117.3 (3)C27—C26—C31118.3 (3)
C9—C8—C12122.6 (3)C28—C27—C26120.0 (4)
N2—C9—C8120.5 (3)C28—C27—H27120.0
N2—C9—C13117.2 (3)C26—C27—H27120.0
C8—C9—C13122.3 (3)C27—C28—C29121.5 (4)
N2—C10—C11120.3 (3)C27—C28—H28119.3
N2—C10—C14117.6 (3)C29—C28—H28119.3
C11—C10—C14122.1 (3)C30—C29—C28120.2 (4)
N1—C11—C10120.1 (3)C30—C29—H29119.9
N1—C11—C15118.0 (3)C28—C29—H29119.9
C10—C11—C15121.9 (3)C29—C30—C31121.3 (4)
C8—C12—H12A109.5C29—C30—H30119.3
C8—C12—H12B109.5C31—C30—H30119.3
H12A—C12—H12B109.5C32—C31—C26118.3 (3)
C8—C12—H12C109.5C32—C31—C30123.0 (4)
H12A—C12—H12C109.5C26—C31—C30118.6 (3)
H12B—C12—H12C109.5C33—C32—C31120.1 (3)
C9—C13—H13A109.5C33—C32—H32119.9
C9—C13—H13B109.5C31—C32—H32119.9
H13A—C13—H13B109.5C32—C33—C38118.1 (3)
C9—C13—H13C109.5C32—C33—C34125.6 (4)
H13A—C13—H13C109.5C38—C33—C34116.3 (4)
H13B—C13—H13C109.5C35—C34—C33120.2 (4)
C10—C14—H14A109.5C35—C34—H34119.9
C10—C14—H14B109.5C33—C34—H34119.9
H14A—C14—H14B109.5C34—C35—C36121.5 (4)
C10—C14—H14C109.5C34—C35—H35119.2
H14A—C14—H14C109.5C36—C35—H35119.2
H14B—C14—H14C109.5C37—C36—C35120.2 (5)
C11—C15—H15A109.5C37—C36—H36119.9
C11—C15—H15B109.5C35—C36—H36119.9
H15A—C15—H15B109.5C36—C37—C38121.6 (5)
C11—C15—H15C109.5C36—C37—H37119.2
H15A—C15—H15C109.5C38—C37—H37119.2
H15B—C15—H15C109.5N3—C38—C37117.2 (4)
O3—C16—C17113.6 (5)N3—C38—C33122.8 (3)
O3—C16—C18i125.8 (6)C37—C38—C33120.0 (3)
C17—C16—C18i120.6 (4)C8—N1—C11119.6 (2)
O4—C17—C16114.6 (4)C10—N2—C9119.5 (2)
O4—C17—C18124.6 (6)C26—N3—C38118.1 (3)
C16—C17—C18120.7 (4)C24—N4—C20116.0 (3)
C19—C18—C16i119.7 (5)C2—O1—H1109.5
C19—C18—C17121.4 (5)C6—O2—H2109.5
C16i—C18—C17118.7 (5)C16—O3—H3A109.5
C18—C19—H19A109.5C17—O4—H4A109.5
C6—C1—C2—O1178.9 (2)C31—C26—C27—C282.2 (5)
C7—C1—C2—O12.4 (3)C26—C27—C28—C291.0 (6)
C6—C1—C2—C31.1 (4)C27—C28—C29—C301.1 (7)
C7—C1—C2—C3177.6 (2)C28—C29—C30—C311.9 (6)
O1—C2—C3—C4179.5 (2)N3—C26—C31—C320.2 (5)
C1—C2—C3—C40.5 (4)C27—C26—C31—C32179.8 (3)
C2—C3—C4—C51.5 (4)N3—C26—C31—C30178.6 (3)
C3—C4—C5—C60.8 (4)C27—C26—C31—C301.4 (4)
C2—C1—C6—O2179.3 (2)C29—C30—C31—C32177.7 (3)
C7—C1—C6—O22.0 (3)C29—C30—C31—C260.6 (5)
C2—C1—C6—C51.8 (4)C26—C31—C32—C330.0 (5)
C7—C1—C6—C5176.9 (2)C30—C31—C32—C33178.2 (3)
C4—C5—C6—O2179.7 (2)C31—C32—C33—C380.2 (5)
C4—C5—C6—C10.9 (4)C31—C32—C33—C34179.2 (3)
N1—C8—C9—N20.8 (4)C32—C33—C34—C35179.1 (3)
C12—C8—C9—N2178.1 (3)C38—C33—C34—C351.8 (5)
N1—C8—C9—C13179.6 (3)C33—C34—C35—C362.6 (6)
C12—C8—C9—C131.5 (5)C34—C35—C36—C371.8 (7)
N2—C10—C11—N10.2 (4)C35—C36—C37—C380.2 (7)
C14—C10—C11—N1179.0 (3)C36—C37—C38—N3179.4 (4)
N2—C10—C11—C15179.4 (3)C36—C37—C38—C330.5 (6)
C14—C10—C11—C150.1 (5)C32—C33—C38—N30.7 (5)
O3—C16—C17—O46.6 (5)C34—C33—C38—N3179.8 (3)
C18i—C16—C17—O4176.3 (4)C32—C33—C38—C37179.4 (3)
O3—C16—C17—C18176.2 (3)C34—C33—C38—C370.3 (5)
C18i—C16—C17—C180.9 (6)C9—C8—N1—C110.3 (4)
O4—C17—C18—C192.0 (7)C12—C8—N1—C11179.3 (3)
C16—C17—C18—C19175.0 (4)C10—C11—N1—C80.8 (4)
O4—C17—C18—C16i176.0 (4)C15—C11—N1—C8179.9 (3)
C16—C17—C18—C16i0.9 (6)C11—C10—N2—C90.9 (4)
N4—C20—C21—C220.3 (4)C14—C10—N2—C9179.8 (3)
C20—C21—C22—C230.6 (4)C8—C9—N2—C101.4 (4)
C20—C21—C22—C25178.4 (2)C13—C9—N2—C10179.0 (3)
C21—C22—C23—C240.2 (4)C27—C26—N3—C38179.3 (3)
C25—C22—C23—C24178.8 (3)C31—C26—N3—C380.7 (5)
C22—C23—C24—N40.7 (5)C37—C38—N3—C26179.2 (3)
C23—C22—C25—C25ii10.3 (6)C33—C38—N3—C261.0 (5)
C21—C22—C25—C25ii168.6 (4)C23—C24—N4—C201.0 (5)
N3—C26—C27—C28177.8 (3)C21—C20—N4—C240.5 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3, y, z+1.
(MRE_TMP_DPE-I_DP) top
Crystal data top
C46H48N4O4V = 942 (2) Å3
Mr = 720.88Z = 1
Triclinic, P1F(000) = 384
a = 7.528 (11) ÅDx = 1.271 Mg m3
b = 8.948 (14) ÅMo Kα radiation, λ = 0.71073 Å
c = 14.11 (2) ŵ = 0.08 mm1
α = 96.219 (17)°T = 150 K
β = 94.61 (2)°Block, light green
γ = 90.598 (13)°0.47 × 0.34 × 0.23 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
2970 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.066
profile data from ω–scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 99
Tmin = 0.714, Tmax = 1.000k = 1111
8263 measured reflectionsl = 1717
3646 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0997P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3646 reflectionsΔρmax = 0.25 e Å3
253 parametersΔρmin = 0.24 e Å3
Crystal data top
C46H48N4O4γ = 90.598 (13)°
Mr = 720.88V = 942 (2) Å3
Triclinic, P1Z = 1
a = 7.528 (11) ÅMo Kα radiation
b = 8.948 (14) ŵ = 0.08 mm1
c = 14.11 (2) ÅT = 150 K
α = 96.219 (17)°0.47 × 0.34 × 0.23 mm
β = 94.61 (2)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3646 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
2970 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 1.000Rint = 0.066
8263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
3646 reflectionsΔρmin = 0.24 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H170.444 (3)1.107 (2)0.5688 (14)0.037 (5)*
O10.37218 (16)0.63621 (13)0.60508 (8)0.0309 (3)
H10.27930.68700.60030.046*
O20.62466 (15)0.25137 (14)0.77458 (9)0.0330 (3)
H20.60040.19630.81650.050*
N10.53636 (18)0.08253 (15)0.92627 (9)0.0263 (3)
C10.4977 (2)0.44128 (17)0.68696 (10)0.0232 (4)
C20.3483 (2)0.52653 (17)0.66374 (11)0.0243 (4)
C60.4771 (2)0.33145 (18)0.74917 (11)0.0256 (4)
C30.1851 (2)0.5011 (2)0.69874 (12)0.0306 (4)
H30.08560.56020.68220.037*
C100.5637 (2)0.14368 (18)1.01764 (12)0.0252 (4)
C230.9672 (2)0.07469 (19)0.97608 (12)0.0287 (4)
C40.1681 (2)0.3885 (2)0.75816 (13)0.0343 (4)
H40.05590.36970.78140.041*
C90.4726 (2)0.05919 (18)0.90782 (12)0.0266 (4)
C110.6316 (2)0.30416 (19)1.03581 (14)0.0354 (4)
H11A0.63840.34560.97470.053*
H11B0.75040.30721.07000.053*
H11C0.55010.36401.07460.053*
C70.6709 (2)0.4662 (2)0.64450 (12)0.0307 (4)
H7A0.76750.42010.68130.046*
H7B0.69510.57440.64660.046*
H7C0.66300.42030.57800.046*
C80.4378 (3)0.1230 (2)0.80494 (13)0.0380 (4)
H8A0.47340.04890.76350.057*
H8B0.31050.14740.79110.057*
H8C0.50680.21450.79320.057*
C50.3129 (2)0.3039 (2)0.78373 (12)0.0324 (4)
H50.30080.22750.82460.039*
C220.9334 (3)0.1943 (2)1.02800 (14)0.0424 (5)
H220.95440.18081.09570.051*
C200.8407 (3)0.3572 (2)0.88588 (14)0.0403 (5)
H200.79750.45190.85540.048*
C180.9363 (3)0.1024 (2)0.87693 (13)0.0412 (5)
H180.95750.02380.83880.049*
C190.8756 (3)0.2408 (2)0.83261 (14)0.0458 (5)
H190.85770.25620.76480.055*
C210.8695 (3)0.3332 (2)0.98343 (15)0.0459 (5)
H210.84580.41191.02100.055*
N20.06357 (19)0.80524 (16)0.58357 (10)0.0319 (4)
C140.2680 (2)0.94290 (18)0.55156 (11)0.0276 (4)
C120.0305 (2)0.9421 (2)0.62581 (12)0.0328 (4)
H120.12300.99340.66690.039*
C130.1302 (2)1.0133 (2)0.61317 (12)0.0316 (4)
H130.14701.10970.64620.038*
C150.2336 (2)0.8001 (2)0.50744 (13)0.0339 (4)
H150.32260.74650.46510.041*
C170.4360 (2)1.0211 (2)0.53399 (13)0.0311 (4)
C160.0699 (2)0.7375 (2)0.52561 (13)0.0350 (4)
H160.05030.63980.49510.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0336 (7)0.0315 (7)0.0299 (6)0.0087 (5)0.0053 (5)0.0117 (5)
O20.0278 (6)0.0381 (7)0.0369 (7)0.0112 (5)0.0070 (5)0.0171 (5)
N10.0240 (7)0.0249 (7)0.0309 (7)0.0032 (6)0.0010 (6)0.0073 (5)
C10.0246 (8)0.0242 (8)0.0204 (7)0.0009 (6)0.0018 (6)0.0005 (6)
C20.0300 (8)0.0226 (8)0.0201 (7)0.0029 (6)0.0014 (6)0.0021 (6)
C60.0253 (8)0.0259 (8)0.0258 (8)0.0059 (6)0.0014 (6)0.0041 (6)
C30.0268 (9)0.0328 (9)0.0334 (9)0.0101 (7)0.0032 (7)0.0084 (7)
C100.0207 (8)0.0231 (8)0.0323 (8)0.0030 (6)0.0006 (6)0.0054 (6)
C230.0227 (8)0.0325 (10)0.0317 (9)0.0044 (7)0.0073 (6)0.0027 (7)
C40.0259 (9)0.0408 (11)0.0394 (10)0.0055 (7)0.0089 (7)0.0139 (8)
C90.0226 (8)0.0260 (8)0.0311 (9)0.0044 (6)0.0002 (6)0.0045 (6)
C110.0359 (10)0.0247 (9)0.0455 (10)0.0024 (7)0.0023 (8)0.0044 (7)
C70.0274 (9)0.0360 (10)0.0300 (9)0.0005 (7)0.0052 (7)0.0076 (7)
C80.0426 (11)0.0392 (11)0.0312 (9)0.0007 (8)0.0011 (8)0.0020 (8)
C50.0315 (9)0.0339 (10)0.0353 (9)0.0055 (7)0.0086 (7)0.0144 (7)
C220.0482 (12)0.0446 (12)0.0350 (10)0.0145 (9)0.0107 (8)0.0039 (8)
C200.0337 (10)0.0364 (11)0.0491 (11)0.0009 (8)0.0093 (8)0.0066 (8)
C180.0554 (12)0.0349 (10)0.0332 (10)0.0043 (9)0.0041 (9)0.0027 (8)
C190.0562 (13)0.0435 (12)0.0354 (10)0.0052 (10)0.0026 (9)0.0060 (8)
C210.0486 (12)0.0422 (12)0.0483 (12)0.0143 (9)0.0126 (9)0.0059 (9)
N20.0301 (8)0.0329 (8)0.0348 (8)0.0067 (6)0.0021 (6)0.0134 (6)
C140.0286 (9)0.0270 (9)0.0287 (8)0.0036 (7)0.0032 (7)0.0089 (6)
C120.0310 (9)0.0372 (10)0.0303 (9)0.0021 (7)0.0030 (7)0.0085 (7)
C130.0341 (9)0.0309 (9)0.0294 (9)0.0065 (7)0.0001 (7)0.0027 (7)
C150.0328 (9)0.0266 (9)0.0411 (10)0.0019 (7)0.0045 (8)0.0034 (7)
C170.0315 (9)0.0267 (9)0.0351 (9)0.0071 (7)0.0010 (7)0.0036 (7)
C160.0370 (10)0.0247 (9)0.0437 (10)0.0065 (7)0.0008 (8)0.0069 (7)
Geometric parameters (Å, º) top
O1—C21.370 (2)C7—H7C0.9800
O1—H10.8400C8—H8A0.9800
O2—C61.373 (2)C8—H8B0.9800
O2—H20.8400C8—H8C0.9800
N1—C91.342 (3)C5—H50.9500
N1—C101.344 (3)C22—C211.392 (3)
C1—C61.402 (3)C22—H220.9500
C1—C21.403 (3)C20—C211.369 (3)
C1—C71.502 (3)C20—C191.384 (3)
C2—C31.386 (3)C20—H200.9500
C6—C51.394 (3)C18—C191.381 (3)
C3—C41.390 (3)C18—H180.9500
C3—H30.9500C19—H190.9500
C10—C9i1.402 (3)C21—H210.9500
C10—C111.508 (3)N2—C121.338 (3)
C23—C221.394 (3)N2—C161.340 (3)
C23—C181.395 (3)C14—C151.395 (3)
C23—C23ii1.491 (4)C14—C131.397 (3)
C4—C51.380 (3)C14—C171.468 (3)
C4—H40.9500C12—C131.381 (3)
C9—C10i1.402 (3)C12—H120.9500
C9—C81.503 (3)C13—H130.9500
C11—H11A0.9800C15—C161.376 (3)
C11—H11B0.9800C15—H150.9500
C11—H11C0.9800C17—C17iii1.326 (4)
C7—H7A0.9800C17—H170.87 (2)
C7—H7B0.9800C16—H160.9500
C2—O1—H1109.5H8A—C8—H8B109.5
C6—O2—H2109.5C9—C8—H8C109.5
C9—N1—C10119.06 (14)H8A—C8—H8C109.5
C6—C1—C2117.42 (16)H8B—C8—H8C109.5
C6—C1—C7122.04 (15)C4—C5—C6119.56 (17)
C2—C1—C7120.53 (17)C4—C5—H5120.2
O1—C2—C3121.86 (15)C6—C5—H5120.2
O1—C2—C1116.61 (16)C21—C22—C23121.8 (2)
C3—C2—C1121.53 (17)C21—C22—H22119.1
O2—C6—C5121.11 (16)C23—C22—H22119.1
O2—C6—C1117.53 (15)C21—C20—C19118.71 (19)
C5—C6—C1121.36 (15)C21—C20—H20120.6
C2—C3—C4119.55 (16)C19—C20—H20120.6
C2—C3—H3120.2C19—C18—C23121.85 (18)
C4—C3—H3120.2C19—C18—H18119.1
N1—C10—C9i120.04 (18)C23—C18—H18119.1
N1—C10—C11117.73 (15)C18—C19—C20120.7 (2)
C9i—C10—C11122.22 (17)C18—C19—H19119.6
C22—C23—C18116.31 (18)C20—C19—H19119.6
C22—C23—C23ii121.8 (2)C20—C21—C22120.56 (19)
C18—C23—C23ii121.85 (19)C20—C21—H21119.7
C5—C4—C3120.53 (17)C22—C21—H21119.7
C5—C4—H4119.7C12—N2—C16116.13 (16)
C3—C4—H4119.7C15—C14—C13116.47 (17)
N1—C9—C10i120.89 (16)C15—C14—C17123.51 (16)
N1—C9—C8117.93 (15)C13—C14—C17120.00 (18)
C10i—C9—C8121.17 (18)N2—C12—C13123.85 (16)
C10—C11—H11A109.5N2—C12—H12118.1
C10—C11—H11B109.5C13—C12—H12118.1
H11A—C11—H11B109.5C12—C13—C14119.71 (18)
C10—C11—H11C109.5C12—C13—H13120.1
H11A—C11—H11C109.5C14—C13—H13120.1
H11B—C11—H11C109.5C16—C15—C14119.57 (17)
C1—C7—H7A109.5C16—C15—H15120.2
C1—C7—H7B109.5C14—C15—H15120.2
H7A—C7—H7B109.5C17iii—C17—C14125.9 (2)
C1—C7—H7C109.5C17iii—C17—H17119.0 (13)
H7A—C7—H7C109.5C14—C17—H17114.9 (13)
H7B—C7—H7C109.5N2—C16—C15124.26 (18)
C9—C8—H8A109.5N2—C16—H16117.9
C9—C8—H8B109.5C15—C16—H16117.9
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2; (iii) x1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N10.952.633.345 (4)132
(MRE_TMP_DPE-II_22BP) top
Crystal data top
C44H48N6O4V = 932.0 (3) Å3
Mr = 724.88Z = 1
Triclinic, P1F(000) = 386
a = 7.4957 (13) ÅDx = 1.292 Mg m3
b = 8.7882 (17) ÅMo Kα radiation, λ = 0.71073 Å
c = 14.308 (3) ŵ = 0.08 mm1
α = 97.049 (11)°T = 150 K
β = 94.334 (13)°Block, colorless
γ = 91.781 (10)°0.45 × 0.35 × 0.24 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3702 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.108
profile data from ω–scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 99
Tmin = 0.791, Tmax = 1.000k = 1111
10002 measured reflectionsl = 1818
4287 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.0854P)2 + 0.1366P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
4287 reflectionsΔρmax = 0.31 e Å3
257 parametersΔρmin = 0.35 e Å3
Crystal data top
C44H48N6O4γ = 91.781 (10)°
Mr = 724.88V = 932.0 (3) Å3
Triclinic, P1Z = 1
a = 7.4957 (13) ÅMo Kα radiation
b = 8.7882 (17) ŵ = 0.08 mm1
c = 14.308 (3) ÅT = 150 K
α = 97.049 (11)°0.45 × 0.35 × 0.24 mm
β = 94.334 (13)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4287 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
3702 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 1.000Rint = 0.108
10002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.31 e Å3
4287 reflectionsΔρmin = 0.35 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H17A1.479 (3)0.585 (3)0.4080 (16)0.041 (6)*
H17B1.569 (3)0.406 (3)0.4287 (17)0.046 (6)*
O10.39213 (15)0.24678 (13)0.22096 (8)0.0273 (3)
H10.41380.29990.17790.041*
O20.65263 (15)0.12469 (13)0.39418 (8)0.0258 (3)
H20.74220.17980.39550.039*
N10.46322 (16)0.41704 (14)0.07248 (9)0.0215 (3)
N20.94292 (18)0.30944 (16)0.41538 (10)0.0266 (3)
C10.52452 (19)0.06309 (16)0.30928 (10)0.0187 (3)
C20.54165 (19)0.17141 (16)0.24587 (10)0.0201 (3)
C90.43035 (19)0.35469 (16)0.01755 (11)0.0205 (3)
C50.8391 (2)0.00808 (18)0.29678 (11)0.0244 (3)
H50.94000.04860.31350.029*
C40.8531 (2)0.11930 (18)0.23582 (12)0.0265 (3)
H40.96510.13940.21190.032*
C141.2860 (2)0.42917 (18)0.43745 (11)0.0235 (3)
C60.6746 (2)0.01893 (16)0.33300 (10)0.0201 (3)
C30.7068 (2)0.20063 (17)0.20973 (11)0.0244 (3)
H30.71770.27560.16780.029*
C160.9781 (2)0.44921 (18)0.37486 (12)0.0277 (4)
H160.88380.50850.33800.033*
C100.53360 (19)0.56087 (16)0.09161 (11)0.0211 (3)
C151.1446 (2)0.51251 (18)0.38353 (12)0.0273 (3)
H151.16240.61240.35280.033*
C110.5729 (2)0.6247 (2)0.19333 (12)0.0303 (4)
H11A0.52530.55310.23350.045*
H11B0.51650.72360.20540.045*
H11C0.70270.63930.20760.045*
C70.3505 (2)0.03710 (18)0.35287 (11)0.0248 (3)
H7A0.32030.07320.34670.037*
H7B0.25490.08900.32030.037*
H7C0.36330.07860.41990.037*
C80.3547 (2)0.19253 (17)0.03538 (13)0.0301 (4)
H8A0.33700.15480.02510.045*
H8B0.43820.12740.06980.045*
H8C0.23970.18950.07310.045*
C171.4720 (2)0.4894 (2)0.44871 (12)0.0296 (4)
C131.2483 (2)0.28552 (19)0.48095 (13)0.0301 (4)
H131.33920.22450.51940.036*
C121.0784 (2)0.23107 (18)0.46844 (12)0.0296 (4)
H121.05630.13220.49930.035*
N30.07827 (19)0.68570 (15)0.97510 (10)0.0298 (3)
C180.03678 (19)0.57365 (17)1.02683 (11)0.0231 (3)
C200.1279 (2)0.7310 (2)1.17150 (13)0.0328 (4)
H200.14520.74651.23850.039*
C190.0604 (2)0.59174 (19)1.12501 (12)0.0281 (4)
H190.03070.50991.15940.034*
C210.1702 (2)0.84809 (19)1.11908 (13)0.0325 (4)
H210.21640.94511.14930.039*
C220.1436 (2)0.81987 (19)1.02186 (13)0.0332 (4)
H220.17320.90000.98610.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0234 (6)0.0313 (6)0.0308 (6)0.0063 (4)0.0041 (5)0.0161 (5)
O20.0257 (6)0.0269 (6)0.0278 (6)0.0061 (4)0.0044 (5)0.0135 (5)
N10.0206 (6)0.0195 (6)0.0251 (7)0.0003 (5)0.0003 (5)0.0070 (5)
N20.0238 (7)0.0286 (7)0.0293 (7)0.0043 (5)0.0004 (5)0.0115 (5)
C10.0196 (7)0.0189 (6)0.0175 (7)0.0017 (5)0.0012 (5)0.0028 (5)
C20.0207 (7)0.0189 (6)0.0206 (7)0.0001 (5)0.0006 (5)0.0036 (5)
C90.0184 (6)0.0168 (6)0.0265 (7)0.0002 (5)0.0001 (5)0.0053 (5)
C50.0184 (7)0.0271 (7)0.0285 (8)0.0042 (6)0.0012 (6)0.0060 (6)
C40.0208 (7)0.0293 (8)0.0307 (8)0.0006 (6)0.0063 (6)0.0073 (6)
C140.0239 (7)0.0260 (7)0.0216 (7)0.0033 (6)0.0001 (6)0.0071 (6)
C60.0229 (7)0.0183 (6)0.0193 (7)0.0001 (5)0.0004 (5)0.0041 (5)
C30.0252 (8)0.0228 (7)0.0266 (8)0.0019 (6)0.0056 (6)0.0078 (6)
C160.0241 (8)0.0278 (8)0.0306 (8)0.0018 (6)0.0039 (6)0.0065 (6)
C100.0188 (7)0.0202 (7)0.0244 (7)0.0001 (5)0.0001 (5)0.0045 (6)
C150.0300 (8)0.0235 (7)0.0273 (8)0.0039 (6)0.0027 (6)0.0012 (6)
C110.0334 (9)0.0307 (8)0.0255 (8)0.0018 (7)0.0017 (7)0.0023 (6)
C70.0200 (7)0.0297 (8)0.0263 (8)0.0014 (6)0.0029 (6)0.0093 (6)
C80.0307 (8)0.0200 (7)0.0390 (9)0.0063 (6)0.0002 (7)0.0050 (6)
C170.0254 (8)0.0372 (9)0.0265 (9)0.0086 (7)0.0010 (6)0.0056 (7)
C130.0278 (8)0.0258 (8)0.0349 (9)0.0009 (6)0.0075 (7)0.0024 (7)
C120.0329 (9)0.0215 (7)0.0338 (9)0.0070 (6)0.0028 (7)0.0033 (6)
N30.0327 (7)0.0256 (7)0.0311 (7)0.0076 (6)0.0069 (6)0.0036 (6)
C180.0189 (7)0.0229 (7)0.0278 (8)0.0008 (6)0.0061 (6)0.0017 (6)
C200.0313 (8)0.0352 (9)0.0300 (9)0.0026 (7)0.0042 (7)0.0039 (7)
C190.0286 (8)0.0265 (8)0.0292 (8)0.0019 (6)0.0056 (6)0.0029 (6)
C210.0272 (8)0.0272 (8)0.0407 (10)0.0064 (6)0.0073 (7)0.0058 (7)
C220.0342 (9)0.0255 (8)0.0395 (10)0.0096 (7)0.0095 (7)0.0017 (7)
Geometric parameters (Å, º) top
O1—C21.3659 (18)C14—C131.385 (2)
O2—C61.3671 (18)C14—C151.394 (2)
N1—C91.338 (2)C14—C171.511 (2)
N1—C101.3426 (18)C16—C151.385 (2)
N2—C161.335 (2)C10—C9i1.404 (2)
N2—C121.339 (2)C10—C111.498 (2)
C1—C61.397 (2)C17—C17ii1.531 (3)
C1—C21.403 (2)C13—C121.381 (2)
C1—C71.5109 (19)N3—C221.341 (2)
C2—C31.406 (2)N3—C181.345 (2)
C9—C10i1.404 (2)C18—C191.391 (2)
C9—C81.5020 (19)C18—C18iii1.489 (3)
C5—C41.394 (2)C20—C191.381 (2)
C5—C61.398 (2)C20—C211.388 (3)
C4—C31.380 (2)C21—C221.381 (3)
C9—N1—C10119.39 (13)C1—C6—C5121.35 (14)
C16—N2—C12116.30 (14)C4—C3—C2119.34 (14)
C6—C1—C2118.20 (13)N2—C16—C15123.62 (14)
C6—C1—C7120.36 (13)N1—C10—C9i120.05 (14)
C2—C1—C7121.43 (14)N1—C10—C11117.66 (14)
O1—C2—C1117.43 (12)C9i—C10—C11122.28 (13)
O1—C2—C3121.63 (13)C16—C15—C14119.79 (14)
C1—C2—C3120.94 (14)C14—C17—C17ii112.22 (17)
N1—C9—C10i120.55 (13)C12—C13—C14119.93 (15)
N1—C9—C8117.44 (14)N2—C12—C13123.84 (14)
C10i—C9—C8122.01 (14)C22—N3—C18117.39 (15)
C4—C5—C6119.10 (15)N3—C18—C19122.79 (14)
C3—C4—C5121.04 (14)N3—C18—C18iii116.26 (18)
C13—C14—C15116.49 (15)C19—C18—C18iii120.95 (18)
C13—C14—C17120.72 (14)C19—C20—C21119.16 (16)
C15—C14—C17122.79 (14)C20—C19—C18118.70 (16)
O2—C6—C1116.65 (12)C22—C21—C20118.29 (15)
O2—C6—C5121.99 (14)N3—C22—C21123.67 (16)
C6—C1—C2—O1177.82 (12)C9—N1—C10—C11178.38 (13)
C7—C1—C2—O13.5 (2)N2—C16—C15—C140.4 (3)
C6—C1—C2—C32.2 (2)C13—C14—C15—C160.9 (2)
C7—C1—C2—C3176.49 (13)C17—C14—C15—C16178.87 (15)
C10—N1—C9—C10i0.9 (2)C13—C14—C17—C17ii63.6 (3)
C10—N1—C9—C8178.91 (13)C15—C14—C17—C17ii116.6 (2)
C6—C5—C4—C31.1 (2)C15—C14—C13—C121.0 (2)
C2—C1—C6—O2179.32 (12)C17—C14—C13—C12178.77 (15)
C7—C1—C6—O21.95 (19)C16—N2—C12—C131.4 (2)
C2—C1—C6—C51.6 (2)C14—C13—C12—N20.2 (3)
C7—C1—C6—C5177.13 (14)C22—N3—C18—C190.6 (2)
C4—C5—C6—O2179.00 (13)C22—N3—C18—C18iii179.54 (17)
C4—C5—C6—C10.0 (2)C21—C20—C19—C180.1 (3)
C5—C4—C3—C20.5 (2)N3—C18—C19—C200.6 (3)
O1—C2—C3—C4178.82 (13)C18iii—C18—C19—C20179.55 (18)
C1—C2—C3—C41.2 (2)C19—C20—C21—C220.3 (3)
C12—N2—C16—C151.5 (2)C18—N3—C22—C210.1 (3)
C9—N1—C10—C9i0.9 (2)C20—C21—C22—N30.3 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3, y1, z+1; (iii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.982.8174 (17)178
O2—H2···N20.841.942.7755 (18)173
C3—H3···N10.952.693.376 (2)130
C3—H3···N3iv0.952.693.432 (2)135
O1—H1···N10.841.982.8174 (17)178
O2—H2···N20.841.942.7755 (18)173
C3—H3···N10.952.693.376 (2)130
C3—H3···N3iv0.952.693.432 (2)135
Symmetry code: (iv) x+1, y+1, z+1.
(MRE_TMP_DPE-II_22TP) top
Crystal data top
C42H46N4O4S2V = 937 (2) Å3
Mr = 734.95Z = 1
Triclinic, P1F(000) = 390
a = 7.531 (9) ÅDx = 1.302 Mg m3
b = 9.026 (12) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.941 (17) ŵ = 0.19 mm1
α = 98.18 (2)°T = 150 K
β = 92.03 (3)°Block, colorless
γ = 91.235 (12)°0.39 × 0.22 × 0.15 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3059 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.061
profile data from ω–scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 99
Tmin = 0.622, Tmax = 1.000k = 1111
8797 measured reflectionsl = 1717
3673 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.082H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.282 w = 1/[σ2(Fo2) + (0.1017P)2 + 3.9487P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.004
3673 reflectionsΔρmax = 0.51 e Å3
248 parametersΔρmin = 0.52 e Å3
Crystal data top
C42H46N4O4S2γ = 91.235 (12)°
Mr = 734.95V = 937 (2) Å3
Triclinic, P1Z = 1
a = 7.531 (9) ÅMo Kα radiation
b = 9.026 (12) ŵ = 0.19 mm1
c = 13.941 (17) ÅT = 150 K
α = 98.18 (2)°0.39 × 0.22 × 0.15 mm
β = 92.03 (3)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3673 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
3059 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 1.000Rint = 0.061
8797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.282H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.51 e Å3
3673 reflectionsΔρmin = 0.52 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C170.0468 (10)0.0232 (11)0.0427 (5)0.067 (3)
H17A0.006 (10)0.079 (9)0.087 (6)0.06 (2)*
H17B0.032 (13)0.072 (11)0.055 (7)0.09 (3)*
S10.42951 (19)0.81287 (15)0.38463 (10)0.0345 (4)
C210.4663 (6)0.9227 (5)0.4964 (4)0.0256 (10)
C200.4245 (6)0.8436 (5)0.5723 (4)0.0282 (10)
H200.43460.88400.63910.034*
C190.3640 (7)0.6928 (6)0.5359 (4)0.0336 (11)
H190.33070.62160.57650.040*
C180.3595 (7)0.6629 (6)0.4364 (4)0.0335 (12)
H180.32180.56930.40060.040*
O10.1510 (4)0.6445 (4)0.1150 (3)0.0315 (8)
H10.24330.69800.11400.047*
O20.0732 (4)0.2616 (4)0.2798 (3)0.0280 (8)
H20.04350.21920.32760.042*
C40.3878 (6)0.3731 (5)0.2412 (3)0.0256 (10)
H40.50580.34550.25550.031*
C20.1859 (6)0.5301 (5)0.1675 (3)0.0235 (10)
C10.0393 (6)0.4497 (5)0.1955 (3)0.0230 (9)
C50.2452 (6)0.2939 (5)0.2721 (3)0.0265 (10)
H50.26560.21360.30810.032*
N20.5483 (5)0.1927 (5)0.0875 (3)0.0285 (9)
C150.5043 (7)0.0515 (6)0.1293 (4)0.0280 (10)
H150.58750.00160.16980.034*
C60.0717 (6)0.3334 (5)0.2499 (3)0.0226 (9)
C30.3600 (6)0.4917 (5)0.1898 (3)0.0242 (10)
H30.45810.54630.16990.029*
C120.2199 (7)0.0547 (6)0.0574 (4)0.0315 (11)
C160.3462 (7)0.0185 (6)0.1162 (4)0.0303 (11)
H160.32210.11780.14750.036*
C130.2660 (7)0.1995 (6)0.0133 (4)0.0326 (11)
H130.18610.25430.02850.039*
C140.4281 (7)0.2628 (6)0.0305 (4)0.0304 (11)
H140.45570.36200.00010.036*
C70.1488 (6)0.4859 (6)0.1676 (4)0.0324 (11)
H7A0.21360.39350.13990.049*
H7B0.14660.55520.11950.049*
H7C0.20810.53240.22530.049*
N10.0129 (5)0.9171 (4)0.5758 (3)0.0242 (8)
C100.0347 (6)1.0637 (5)0.5933 (3)0.0233 (9)
C90.0485 (6)0.8526 (5)0.4834 (3)0.0230 (9)
C110.0704 (8)1.1326 (6)0.6966 (4)0.0360 (12)
H11A0.06491.05450.73870.054*
H11B0.01921.20730.71530.054*
H11C0.18881.18100.70340.054*
C80.1060 (7)0.6904 (5)0.4686 (4)0.0291 (11)
H8A0.07130.64540.52630.044*
H8B0.04870.63790.41200.044*
H8C0.23540.68190.45810.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C170.057 (4)0.090 (6)0.040 (4)0.051 (5)0.024 (3)0.034 (4)
S10.0416 (8)0.0310 (7)0.0296 (7)0.0022 (5)0.0005 (5)0.0005 (5)
C210.023 (2)0.023 (2)0.030 (2)0.0034 (18)0.0029 (18)0.0018 (19)
C200.029 (2)0.022 (2)0.035 (3)0.0010 (19)0.002 (2)0.008 (2)
C190.035 (3)0.027 (3)0.038 (3)0.001 (2)0.001 (2)0.005 (2)
C180.035 (3)0.024 (2)0.040 (3)0.000 (2)0.001 (2)0.002 (2)
O10.0263 (17)0.0318 (19)0.040 (2)0.0053 (14)0.0004 (15)0.0190 (16)
O20.0288 (17)0.0260 (17)0.0321 (19)0.0064 (14)0.0015 (14)0.0159 (14)
C40.025 (2)0.026 (2)0.026 (2)0.0013 (18)0.0012 (18)0.0033 (19)
C20.028 (2)0.020 (2)0.023 (2)0.0039 (18)0.0000 (18)0.0034 (17)
C10.025 (2)0.021 (2)0.024 (2)0.0011 (18)0.0006 (18)0.0056 (18)
C50.030 (2)0.025 (2)0.026 (2)0.0005 (19)0.0003 (19)0.0097 (19)
N20.028 (2)0.026 (2)0.033 (2)0.0047 (17)0.0012 (17)0.0111 (17)
C150.031 (2)0.029 (2)0.025 (2)0.001 (2)0.0018 (19)0.0034 (19)
C60.026 (2)0.019 (2)0.022 (2)0.0040 (17)0.0013 (18)0.0038 (17)
C30.026 (2)0.021 (2)0.026 (2)0.0031 (18)0.0034 (18)0.0027 (18)
C120.032 (3)0.032 (3)0.029 (3)0.013 (2)0.002 (2)0.001 (2)
C160.037 (3)0.029 (3)0.024 (2)0.010 (2)0.000 (2)0.0003 (19)
C130.033 (3)0.033 (3)0.031 (3)0.005 (2)0.007 (2)0.002 (2)
C140.037 (3)0.024 (2)0.030 (3)0.009 (2)0.003 (2)0.005 (2)
C70.026 (2)0.030 (3)0.043 (3)0.004 (2)0.005 (2)0.014 (2)
N10.028 (2)0.0194 (19)0.027 (2)0.0010 (15)0.0012 (16)0.0087 (15)
C100.025 (2)0.018 (2)0.028 (2)0.0007 (17)0.0005 (18)0.0035 (18)
C90.023 (2)0.015 (2)0.032 (2)0.0007 (17)0.0014 (18)0.0065 (18)
C110.051 (3)0.030 (3)0.027 (3)0.005 (2)0.002 (2)0.006 (2)
C80.035 (3)0.015 (2)0.037 (3)0.0038 (19)0.002 (2)0.0057 (19)
Geometric parameters (Å, º) top
C17—C17i1.420 (13)N2—C141.335 (7)
C17—C121.502 (8)N2—C151.354 (7)
C17—H17A0.79 (8)C15—C161.366 (7)
C17—H17B1.08 (10)C15—H150.9500
S1—C181.705 (6)C3—H30.9500
S1—C211.733 (5)C12—C161.393 (8)
C21—C201.399 (7)C12—C131.394 (7)
C21—C21ii1.463 (10)C16—H160.9500
C20—C191.441 (7)C13—C141.380 (7)
C20—H200.9500C13—H130.9500
C19—C181.374 (8)C14—H140.9500
C19—H190.9500C7—H7A0.9800
C18—H180.9500C7—H7B0.9800
O1—C21.372 (6)C7—H7C0.9800
O1—H10.8400N1—C101.349 (6)
O2—C61.366 (6)N1—C91.352 (6)
O2—H20.8400C10—C9iii1.400 (7)
C4—C31.386 (7)C10—C111.498 (7)
C4—C51.392 (7)C9—C10iii1.400 (7)
C4—H40.9500C9—C81.501 (6)
C2—C31.399 (7)C11—H11A0.9800
C2—C11.405 (6)C11—H11B0.9800
C1—C61.400 (6)C11—H11C0.9800
C1—C71.510 (7)C8—H8A0.9800
C5—C61.397 (7)C8—H8B0.9800
C5—H50.9500C8—H8C0.9800
C17i—C17—C12119.1 (7)C4—C3—C2119.2 (4)
C17i—C17—H17A123 (6)C4—C3—H3120.4
C12—C17—H17A117 (6)C2—C3—H3120.4
C17i—C17—H17B72 (5)C16—C12—C13116.3 (5)
C12—C17—H17B94 (5)C16—C12—C17120.3 (5)
H17A—C17—H17B97 (7)C13—C12—C17123.4 (5)
C18—S1—C2192.4 (3)C15—C16—C12120.5 (5)
C20—C21—C21ii127.6 (6)C15—C16—H16119.7
C20—C21—S1111.3 (4)C12—C16—H16119.7
C21ii—C21—S1121.1 (5)C14—C13—C12119.8 (5)
C21—C20—C19111.1 (5)C14—C13—H13120.1
C21—C20—H20124.4C12—C13—H13120.1
C19—C20—H20124.4N2—C14—C13123.8 (5)
C18—C19—C20113.0 (5)N2—C14—H14118.1
C18—C19—H19123.5C13—C14—H14118.1
C20—C19—H19123.5C1—C7—H7A109.5
C19—C18—S1112.2 (4)C1—C7—H7B109.5
C19—C18—H18123.9H7A—C7—H7B109.5
S1—C18—H18123.9C1—C7—H7C109.5
C2—O1—H1109.5H7A—C7—H7C109.5
C6—O2—H2109.5H7B—C7—H7C109.5
C3—C4—C5120.9 (4)C10—N1—C9119.1 (4)
C3—C4—H4119.6N1—C10—C9iii120.4 (4)
C5—C4—H4119.6N1—C10—C11117.9 (4)
O1—C2—C3121.6 (4)C9iii—C10—C11121.7 (4)
O1—C2—C1117.2 (4)N1—C9—C10iii120.5 (4)
C3—C2—C1121.2 (4)N1—C9—C8116.7 (4)
C6—C1—C2118.2 (4)C10iii—C9—C8122.8 (4)
C6—C1—C7120.4 (4)C10—C11—H11A109.5
C2—C1—C7121.4 (4)C10—C11—H11B109.5
C4—C5—C6119.5 (4)H11A—C11—H11B109.5
C4—C5—H5120.3C10—C11—H11C109.5
C6—C5—H5120.3H11A—C11—H11C109.5
C14—N2—C15116.4 (4)H11B—C11—H11C109.5
N2—C15—C16123.3 (5)C9—C8—H8A109.5
N2—C15—H15118.4C9—C8—H8B109.5
C16—C15—H15118.4H8A—C8—H8B109.5
O2—C6—C5122.0 (4)C9—C8—H8C109.5
O2—C6—C1117.0 (4)H8A—C8—H8C109.5
C5—C6—C1121.0 (4)H8B—C8—H8C109.5
Symmetry codes: (i) x, y, z; (ii) x+1, y+2, z+1; (iii) x, y+2, z+1.
(MRE_TMP_DPE-II_ACR) top
Crystal data top
C75H75N8O6V = 1533.34 (11) Å3
Mr = 1184.43Z = 1
Triclinic, P1F(000) = 629
a = 7.4611 (3) ÅDx = 1.283 Mg m3
b = 8.7285 (4) ÅMo Kα radiation, λ = 0.71073 Å
c = 23.6219 (10) ŵ = 0.08 mm1
α = 92.850 (1)°T = 150 K
β = 91.347 (1)°Block, pale yellow
γ = 93.317 (1)°0.61 × 0.32 × 0.24 mm
Data collection top
Bruker P4
diffractometer
6163 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.023
ω scansθmax = 27.6°, θmin = 3.2°
Absorption correction: analytical
Bruker, AXS, 2006
h = 99
Tmin = 0.969, Tmax = 0.981k = 1111
39279 measured reflectionsl = 3030
7056 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0472P)2 + 1.087P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
7056 reflectionsΔρmax = 0.37 e Å3
434 parametersΔρmin = 0.28 e Å3
Crystal data top
C75H75N8O6γ = 93.317 (1)°
Mr = 1184.43V = 1533.34 (11) Å3
Triclinic, P1Z = 1
a = 7.4611 (3) ÅMo Kα radiation
b = 8.7285 (4) ŵ = 0.08 mm1
c = 23.6219 (10) ÅT = 150 K
α = 92.850 (1)°0.61 × 0.32 × 0.24 mm
β = 91.347 (1)°
Data collection top
Bruker P4
diffractometer
7056 independent reflections
Absorption correction: analytical
Bruker, AXS, 2006
6163 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.981Rint = 0.023
39279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.37 e Å3
7056 reflectionsΔρmin = 0.28 e Å3
434 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
H22A1.073 (3)0.599 (2)0.4582 (8)0.034 (5)*
H22B0.987 (2)0.425 (2)0.4444 (8)0.027 (5)*
C10.05896 (19)1.09135 (16)0.38386 (6)0.0182 (3)
C20.2036 (2)1.00323 (16)0.39709 (6)0.0186 (3)
C30.3699 (2)1.02805 (18)0.37281 (7)0.0233 (3)
H30.46670.96720.38230.028*
C40.3931 (2)1.14273 (18)0.33457 (7)0.0253 (3)
H40.50711.16100.31830.030*
C50.2525 (2)1.23083 (18)0.31985 (7)0.0247 (3)
H50.26931.30860.29340.030*
C60.0860 (2)1.20406 (17)0.34430 (6)0.0209 (3)
C70.11880 (19)1.06719 (18)0.41171 (6)0.0217 (3)
H7A0.11401.12160.44910.033*
H7B0.14480.95720.41610.033*
H7C0.21351.10710.38810.033*
C80.0808 (2)1.61215 (18)0.24794 (7)0.0258 (3)
C90.0887 (2)1.70944 (18)0.20271 (7)0.0251 (3)
C100.0320 (2)1.51123 (18)0.14223 (7)0.0249 (3)
C110.0388 (2)1.41367 (18)0.18738 (7)0.0254 (3)
C120.1431 (3)1.6651 (2)0.30693 (8)0.0387 (4)
H12A0.11011.58540.33320.058*
H12B0.08611.75990.31810.058*
H12C0.27391.68450.30790.058*
C130.1584 (3)1.87401 (19)0.21062 (9)0.0378 (4)
H13A0.16311.92030.17370.057*
H13B0.27921.87870.22800.057*
H13C0.07831.93040.23530.057*
C140.0966 (3)1.4577 (2)0.08351 (7)0.0366 (4)
H14A0.07281.54000.05750.055*
H14B0.22601.43090.08360.055*
H14C0.03331.36720.07110.055*
C150.1078 (3)1.24893 (19)0.18044 (9)0.0385 (4)
H15A0.08311.19700.21540.058*
H15B0.04791.19810.14880.058*
H15C0.23771.24400.17260.058*
C170.5907 (2)0.77840 (18)0.47965 (7)0.0245 (3)
H170.56970.87630.49680.029*
C180.7589 (2)0.72284 (17)0.48693 (7)0.0239 (3)
H180.85020.78220.50820.029*
C190.7935 (2)0.57950 (17)0.46291 (6)0.0201 (3)
C200.6520 (2)0.49820 (17)0.43325 (6)0.0220 (3)
H200.66790.39850.41680.026*
C210.4878 (2)0.56340 (17)0.42775 (6)0.0226 (3)
H210.39340.50610.40710.027*
C220.9776 (2)0.51781 (19)0.46924 (6)0.0234 (3)
N10.45545 (17)0.70285 (15)0.44996 (5)0.0224 (3)
N20.0155 (2)1.46641 (15)0.23955 (6)0.0272 (3)
N30.03111 (19)1.65743 (15)0.15070 (6)0.0262 (3)
O10.17253 (14)0.89257 (12)0.43525 (5)0.0238 (2)
H10.25910.83530.43580.036*
O20.05784 (16)1.28662 (14)0.33110 (5)0.0295 (3)
H20.03311.34070.30360.044*
C230.5759 (2)0.5921 (2)0.23328 (7)0.0343 (4)
C240.6406 (3)0.6229 (3)0.29041 (8)0.0488 (5)
H240.63750.54240.31610.059*
C250.7055 (3)0.7639 (3)0.30811 (10)0.0548 (6)
H250.74650.78280.34630.066*
C260.7134 (3)0.8842 (3)0.27056 (10)0.0514 (6)
H260.75870.98380.28390.062*
C270.6568 (3)0.8600 (2)0.21509 (10)0.0446 (5)
H270.66590.94200.19010.054*
C280.5842 (2)0.7118 (2)0.19454 (8)0.0333 (4)
C290.5205 (2)0.6776 (2)0.13933 (8)0.0339 (4)
H290.52280.75530.11250.041*
C300.4533 (2)0.5295 (2)0.12335 (7)0.0324 (4)
C310.3917 (3)0.4845 (3)0.06710 (8)0.0450 (5)
H310.39130.55840.03890.054*
C320.3338 (3)0.3374 (3)0.05361 (10)0.0587 (7)
H320.29640.30830.01570.070*
C330.3284 (4)0.2270 (3)0.09495 (11)0.0646 (8)
H330.28570.12450.08470.077*
C340.3831 (3)0.2647 (2)0.14931 (10)0.0516 (6)
H340.37680.18910.17690.062*
C350.4501 (2)0.4177 (2)0.16524 (8)0.0335 (4)
N40.5096 (2)0.44878 (19)0.21887 (6)0.0380 (4)
C360.3269 (4)0.9247 (4)0.03392 (14)0.0263 (6)0.5
H36A0.41271.00920.02100.039*0.5
H36B0.32980.91050.07530.039*0.5
H36C0.35930.83000.01670.039*0.5
C370.1664 (3)0.9572 (2)0.01907 (9)0.0451 (5)
C380.0928 (3)0.8914 (2)0.02825 (9)0.0498 (6)
C390.0723 (3)0.9334 (2)0.04711 (9)0.0497 (6)
O30.1319 (3)0.8653 (3)0.08669 (10)0.0319 (5)0.5
H3A0.05140.81460.10090.048*0.5
O40.1701 (4)0.7986 (3)0.05950 (11)0.0371 (6)0.5
H4A0.09850.76740.08390.056*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0208 (7)0.0180 (7)0.0156 (6)0.0024 (5)0.0013 (5)0.0014 (5)
C20.0229 (7)0.0178 (6)0.0152 (6)0.0025 (5)0.0006 (5)0.0007 (5)
C30.0216 (7)0.0246 (7)0.0248 (8)0.0081 (6)0.0011 (6)0.0035 (6)
C40.0241 (8)0.0266 (8)0.0257 (8)0.0024 (6)0.0067 (6)0.0031 (6)
C50.0316 (8)0.0211 (7)0.0222 (7)0.0031 (6)0.0036 (6)0.0053 (6)
C60.0254 (7)0.0197 (7)0.0181 (7)0.0059 (6)0.0016 (6)0.0010 (5)
C70.0182 (7)0.0250 (7)0.0219 (7)0.0024 (6)0.0013 (5)0.0016 (6)
C80.0294 (8)0.0223 (7)0.0256 (8)0.0058 (6)0.0057 (6)0.0019 (6)
C90.0244 (8)0.0197 (7)0.0313 (8)0.0030 (6)0.0012 (6)0.0008 (6)
C100.0278 (8)0.0244 (8)0.0226 (7)0.0056 (6)0.0017 (6)0.0001 (6)
C110.0307 (8)0.0192 (7)0.0262 (8)0.0031 (6)0.0026 (6)0.0002 (6)
C120.0463 (11)0.0376 (10)0.0311 (9)0.0069 (8)0.0144 (8)0.0071 (7)
C130.0358 (10)0.0208 (8)0.0564 (12)0.0007 (7)0.0017 (8)0.0004 (8)
C140.0438 (10)0.0421 (10)0.0233 (8)0.0052 (8)0.0052 (7)0.0032 (7)
C150.0526 (12)0.0199 (8)0.0420 (10)0.0011 (8)0.0023 (9)0.0018 (7)
C170.0278 (8)0.0191 (7)0.0272 (8)0.0075 (6)0.0019 (6)0.0006 (6)
C180.0239 (7)0.0207 (7)0.0269 (8)0.0025 (6)0.0064 (6)0.0005 (6)
C190.0219 (7)0.0218 (7)0.0174 (7)0.0055 (6)0.0011 (5)0.0045 (5)
C200.0272 (8)0.0198 (7)0.0193 (7)0.0055 (6)0.0024 (6)0.0005 (5)
C210.0232 (7)0.0235 (7)0.0211 (7)0.0006 (6)0.0036 (6)0.0027 (6)
C220.0221 (7)0.0263 (8)0.0227 (8)0.0083 (6)0.0017 (6)0.0017 (6)
N10.0214 (6)0.0233 (6)0.0234 (6)0.0061 (5)0.0002 (5)0.0063 (5)
N20.0369 (8)0.0206 (6)0.0244 (7)0.0048 (6)0.0045 (6)0.0034 (5)
N30.0304 (7)0.0235 (7)0.0256 (7)0.0039 (5)0.0006 (5)0.0060 (5)
O10.0223 (5)0.0251 (6)0.0258 (6)0.0080 (4)0.0033 (4)0.0096 (4)
O20.0312 (6)0.0318 (6)0.0282 (6)0.0127 (5)0.0026 (5)0.0134 (5)
C230.0313 (9)0.0426 (10)0.0277 (9)0.0038 (7)0.0110 (7)0.0104 (7)
C240.0458 (12)0.0707 (15)0.0283 (10)0.0009 (10)0.0092 (8)0.0136 (9)
C250.0423 (12)0.0776 (17)0.0411 (12)0.0017 (11)0.0082 (9)0.0298 (12)
C260.0315 (10)0.0510 (12)0.0670 (15)0.0051 (9)0.0097 (9)0.0402 (12)
C270.0332 (10)0.0338 (10)0.0651 (14)0.0047 (8)0.0157 (9)0.0133 (9)
C280.0259 (8)0.0308 (9)0.0417 (10)0.0039 (7)0.0123 (7)0.0102 (7)
C290.0324 (9)0.0313 (9)0.0386 (10)0.0014 (7)0.0108 (7)0.0044 (7)
C300.0284 (8)0.0395 (10)0.0284 (8)0.0031 (7)0.0068 (7)0.0050 (7)
C310.0384 (10)0.0641 (14)0.0310 (10)0.0007 (9)0.0012 (8)0.0076 (9)
C320.0485 (13)0.0816 (18)0.0405 (12)0.0161 (12)0.0013 (10)0.0271 (12)
C330.0655 (16)0.0561 (14)0.0649 (16)0.0325 (12)0.0194 (12)0.0351 (12)
C340.0624 (14)0.0364 (11)0.0526 (13)0.0211 (10)0.0189 (11)0.0104 (9)
C350.0358 (9)0.0320 (9)0.0310 (9)0.0097 (7)0.0113 (7)0.0065 (7)
N40.0455 (9)0.0389 (9)0.0286 (8)0.0077 (7)0.0125 (7)0.0015 (6)
C360.0249 (16)0.0274 (16)0.0276 (16)0.0055 (12)0.0070 (12)0.0033 (12)
C370.0585 (13)0.0294 (9)0.0447 (11)0.0161 (9)0.0246 (10)0.0079 (8)
C380.0661 (15)0.0324 (10)0.0483 (12)0.0183 (10)0.0303 (11)0.0155 (9)
C390.0681 (15)0.0315 (10)0.0465 (12)0.0203 (10)0.0301 (11)0.0141 (9)
O30.0363 (13)0.0364 (13)0.0256 (12)0.0095 (10)0.0068 (10)0.0162 (10)
O40.0410 (14)0.0374 (14)0.0358 (14)0.0091 (11)0.0083 (11)0.0203 (11)
Geometric parameters (Å, º) top
C1—C21.399 (2)C20—H200.9500
C1—C61.400 (2)C21—N11.339 (2)
C1—C71.503 (2)C21—H210.9500
C2—O11.3675 (17)C22—C22i1.534 (3)
C2—C31.389 (2)C22—H22A1.02 (2)
C3—C41.387 (2)C22—H22B0.98 (2)
C3—H30.9500O1—H10.8400
C4—C51.384 (2)O2—H20.8400
C4—H40.9500C23—N41.343 (2)
C5—C61.395 (2)C23—C281.423 (3)
C5—H50.9500C23—C241.430 (3)
C6—O21.3656 (18)C24—C251.340 (3)
C7—H7A0.9800C24—H240.9500
C7—H7B0.9800C25—C261.408 (4)
C7—H7C0.9800C25—H250.9500
C8—N21.339 (2)C26—C271.370 (3)
C8—C91.398 (2)C26—H260.9500
C8—C121.501 (2)C27—C281.431 (2)
C9—N31.341 (2)C27—H270.9500
C9—C131.500 (2)C28—C291.390 (3)
C10—N31.338 (2)C29—C301.390 (3)
C10—C111.397 (2)C29—H290.9500
C10—C141.501 (2)C30—C351.424 (3)
C11—N21.339 (2)C30—C311.425 (3)
C11—C151.499 (2)C31—C321.351 (3)
C12—H12A0.9800C31—H310.9500
C12—H12B0.9800C32—C331.405 (4)
C12—H12C0.9800C32—H320.9500
C13—H13A0.9800C33—C341.357 (3)
C13—H13B0.9800C33—H330.9500
C13—H13C0.9800C34—C351.427 (3)
C14—H14A0.9800C34—H340.9500
C14—H14B0.9800C35—N41.342 (2)
C14—H14C0.9800C36—C371.299 (4)
C15—H15A0.9800C36—H36A0.9800
C15—H15B0.9800C36—H36B0.9800
C15—H15C0.9800C36—H36C0.9800
C17—N11.337 (2)C37—C381.392 (3)
C17—C181.382 (2)C37—C39ii1.401 (3)
C17—H170.9500C38—O41.276 (3)
C18—C191.388 (2)C38—C391.383 (4)
C18—H180.9500C39—O31.212 (3)
C19—C201.392 (2)C39—C37ii1.401 (3)
C19—C221.511 (2)O3—H3A0.8400
C20—C211.386 (2)O4—H4A0.8400
C2—C1—C6117.75 (13)N1—C21—C20123.43 (14)
C2—C1—C7121.15 (13)N1—C21—H21118.3
C6—C1—C7121.09 (13)C20—C21—H21118.3
O1—C2—C3122.04 (13)C19—C22—C22i112.07 (16)
O1—C2—C1116.47 (13)C19—C22—H22A109.7 (11)
C3—C2—C1121.48 (13)C22i—C22—H22A106.2 (11)
C4—C3—C2119.26 (14)C19—C22—H22B110.5 (11)
C4—C3—H3120.4C22i—C22—H22B109.7 (11)
C2—C3—H3120.4H22A—C22—H22B108.5 (16)
C5—C4—C3120.92 (15)C17—N1—C21116.44 (13)
C5—C4—H4119.5C11—N2—C8119.61 (14)
C3—C4—H4119.5C10—N3—C9119.56 (13)
C4—C5—C6119.19 (14)C2—O1—H1109.5
C4—C5—H5120.4C6—O2—H2109.5
C6—C5—H5120.4N4—C23—C28123.03 (16)
O2—C6—C5121.79 (13)N4—C23—C24117.41 (19)
O2—C6—C1116.83 (13)C28—C23—C24119.56 (18)
C5—C6—C1121.37 (14)C25—C24—C23120.7 (2)
C1—C7—H7A109.5C25—C24—H24119.6
C1—C7—H7B109.5C23—C24—H24119.6
H7A—C7—H7B109.5C24—C25—C26120.6 (2)
C1—C7—H7C109.5C24—C25—H25119.7
H7A—C7—H7C109.5C26—C25—H25119.7
H7B—C7—H7C109.5C27—C26—C25121.02 (19)
N2—C8—C9120.15 (14)C27—C26—H26119.5
N2—C8—C12117.65 (15)C25—C26—H26119.5
C9—C8—C12122.21 (15)C26—C27—C28120.3 (2)
N3—C9—C8120.22 (14)C26—C27—H27119.8
N3—C9—C13118.08 (15)C28—C27—H27119.8
C8—C9—C13121.69 (15)C29—C28—C23118.00 (16)
N3—C10—C11120.21 (14)C29—C28—C27124.23 (19)
N3—C10—C14117.97 (15)C23—C28—C27117.77 (18)
C11—C10—C14121.82 (15)C28—C29—C30119.89 (17)
N2—C11—C10120.23 (14)C28—C29—H29120.1
N2—C11—C15117.19 (15)C30—C29—H29120.1
C10—C11—C15122.57 (15)C29—C30—C35117.93 (16)
C8—C12—H12A109.5C29—C30—C31123.10 (19)
C8—C12—H12B109.5C35—C30—C31118.96 (17)
H12A—C12—H12B109.5C32—C31—C30120.4 (2)
C8—C12—H12C109.5C32—C31—H31119.8
H12A—C12—H12C109.5C30—C31—H31119.8
H12B—C12—H12C109.5C31—C32—C33120.8 (2)
C9—C13—H13A109.5C31—C32—H32119.6
C9—C13—H13B109.5C33—C32—H32119.6
H13A—C13—H13B109.5C34—C33—C32120.9 (2)
C9—C13—H13C109.5C34—C33—H33119.5
H13A—C13—H13C109.5C32—C33—H33119.5
H13B—C13—H13C109.5C33—C34—C35120.2 (2)
C10—C14—H14A109.5C33—C34—H34119.9
C10—C14—H14B109.5C35—C34—H34119.9
H14A—C14—H14B109.5N4—C35—C30123.05 (16)
C10—C14—H14C109.5N4—C35—C34118.38 (18)
H14A—C14—H14C109.5C30—C35—C34118.56 (18)
H14B—C14—H14C109.5C23—N4—C35118.09 (16)
C11—C15—H15A109.5C37—C36—H36A109.5
C11—C15—H15B109.5C37—C36—H36B109.5
H15A—C15—H15B109.5H36A—C36—H36B109.5
C11—C15—H15C109.5C37—C36—H36C109.5
H15A—C15—H15C109.5H36A—C36—H36C109.5
H15B—C15—H15C109.5H36B—C36—H36C109.5
N1—C17—C18124.03 (14)C36—C37—C38119.4 (2)
N1—C17—H17118.0C36—C37—C39ii121.0 (2)
C18—C17—H17118.0C38—C37—C39ii119.5 (2)
C17—C18—C19119.47 (14)O4—C38—C39114.4 (2)
C17—C18—H18120.3O4—C38—C37125.4 (3)
C19—C18—H18120.3C39—C38—C37120.11 (19)
C18—C19—C20116.88 (14)O3—C39—C38116.3 (2)
C18—C19—C22120.42 (14)O3—C39—C37ii123.2 (3)
C20—C19—C22122.70 (14)C38—C39—C37ii120.4 (2)
C21—C20—C19119.71 (14)C39—O3—H3A109.5
C21—C20—H20120.1C38—O4—H4A109.5
C19—C20—H20120.1
C6—C1—C2—O1179.10 (12)C13—C9—N3—C10179.93 (15)
C7—C1—C2—O11.6 (2)N4—C23—C24—C25178.74 (19)
C6—C1—C2—C31.2 (2)C28—C23—C24—C251.4 (3)
C7—C1—C2—C3178.01 (14)C23—C24—C25—C260.8 (3)
O1—C2—C3—C4179.66 (14)C24—C25—C26—C270.6 (3)
C1—C2—C3—C40.0 (2)C25—C26—C27—C281.5 (3)
C2—C3—C4—C50.9 (2)N4—C23—C28—C290.0 (3)
C3—C4—C5—C60.5 (2)C24—C23—C28—C29179.84 (17)
C4—C5—C6—O2179.54 (14)N4—C23—C28—C27179.64 (17)
C4—C5—C6—C10.8 (2)C24—C23—C28—C270.5 (3)
C2—C1—C6—O2178.68 (13)C26—C27—C28—C29178.72 (18)
C7—C1—C6—O22.1 (2)C26—C27—C28—C230.9 (3)
C2—C1—C6—C51.6 (2)C23—C28—C29—C300.7 (3)
C7—C1—C6—C5177.63 (14)C27—C28—C29—C30179.61 (17)
N2—C8—C9—N30.1 (2)C28—C29—C30—C351.0 (3)
C12—C8—C9—N3179.85 (16)C28—C29—C30—C31177.69 (17)
N2—C8—C9—C13179.08 (15)C29—C30—C31—C32177.6 (2)
C12—C8—C9—C130.7 (3)C35—C30—C31—C321.0 (3)
N3—C10—C11—N21.0 (2)C30—C31—C32—C331.8 (4)
C14—C10—C11—N2178.18 (16)C31—C32—C33—C340.8 (4)
N3—C10—C11—C15179.90 (16)C32—C33—C34—C351.0 (4)
C14—C10—C11—C151.0 (3)C29—C30—C35—N40.4 (3)
N1—C17—C18—C190.6 (3)C31—C30—C35—N4178.28 (18)
C17—C18—C19—C201.1 (2)C29—C30—C35—C34179.39 (18)
C17—C18—C19—C22178.68 (14)C31—C30—C35—C340.7 (3)
C18—C19—C20—C211.6 (2)C33—C34—C35—N4177.3 (2)
C22—C19—C20—C21178.22 (14)C33—C34—C35—C301.7 (3)
C19—C20—C21—N10.4 (2)C28—C23—N4—C350.6 (3)
C18—C19—C22—C22i67.6 (2)C24—C23—N4—C35179.31 (17)
C20—C19—C22—C22i112.58 (19)C30—C35—N4—C230.3 (3)
C18—C17—N1—C211.9 (2)C34—C35—N4—C23178.64 (18)
C20—C21—N1—C171.4 (2)C36—C37—C38—O40.3 (4)
C10—C11—N2—C81.8 (2)C39ii—C37—C38—O4175.1 (2)
C15—C11—N2—C8179.04 (16)C36—C37—C38—C39175.2 (2)
C9—C8—N2—C111.3 (2)C39ii—C37—C38—C390.4 (3)
C12—C8—N2—C11178.86 (16)O4—C38—C39—O37.8 (3)
C11—C10—N3—C90.3 (2)C37—C38—C39—O3176.2 (2)
C14—C10—N3—C9179.50 (15)O4—C38—C39—C37ii175.6 (2)
C8—C9—N3—C100.8 (2)C37—C38—C39—C37ii0.4 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+2, z.
(MRE_TMP_DPE-II_ACR_TMBQ) top
Crystal data top
C77H79N8O5V = 1537.18 (10) Å3
Mr = 1196.48Z = 1
Triclinic, P1F(000) = 637
a = 7.4709 (3) ÅDx = 1.292 Mg m3
b = 8.7326 (3) ÅMo Kα radiation, λ = 0.71073 Å
c = 23.6381 (9) ŵ = 0.08 mm1
α = 92.857 (1)°T = 293 K
β = 91.317 (1)°Block, brown
γ = 93.293 (1)°0.53 × 0.18 × 0.16 mm
Data collection top
CCD area detector
diffractometer
5177 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.048
phi and ω scansθmax = 27.6°, θmin = 3.2°
Absorption correction: analytical
Bruker, AXS, 2008
h = 99
Tmin = 0.982, Tmax = 0.987k = 1111
80029 measured reflectionsl = 3030
7136 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0749P)2 + 1.0559P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.048
7136 reflectionsΔρmax = 0.42 e Å3
432 parametersΔρmin = 0.44 e Å3
Crystal data top
C77H79N8O5γ = 93.293 (1)°
Mr = 1196.48V = 1537.18 (10) Å3
Triclinic, P1Z = 1
a = 7.4709 (3) ÅMo Kα radiation
b = 8.7326 (3) ŵ = 0.08 mm1
c = 23.6381 (9) ÅT = 293 K
α = 92.857 (1)°0.53 × 0.18 × 0.16 mm
β = 91.317 (1)°
Data collection top
CCD area detector
diffractometer
7136 independent reflections
Absorption correction: analytical
Bruker, AXS, 2008
5177 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.987Rint = 0.048
80029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.42 e Å3
7136 reflectionsΔρmin = 0.44 e Å3
432 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4136 (2)0.2033 (2)0.15567 (7)0.0218 (4)
C20.4408 (2)0.09129 (19)0.11618 (7)0.0188 (4)
C30.2959 (2)0.00301 (19)0.10292 (7)0.0200 (4)
C40.1301 (2)0.0283 (2)0.12717 (8)0.0244 (4)
H40.03540.03110.11790.029*
C50.1069 (3)0.1426 (2)0.16528 (8)0.0267 (4)
H50.00460.16060.18120.032*
C60.2473 (3)0.2305 (2)0.18011 (8)0.0263 (4)
H60.23110.30660.20600.032*
C70.6180 (2)0.0669 (2)0.08829 (8)0.0236 (4)
H7A0.71080.10580.11140.035*
H7B0.64310.04080.08390.035*
H7C0.61340.12030.05170.035*
C80.4194 (3)0.6116 (2)0.25193 (8)0.0269 (4)
C90.4114 (3)0.7095 (2)0.29709 (8)0.0265 (4)
C100.5317 (3)0.5116 (2)0.35761 (8)0.0259 (4)
C110.5385 (3)0.4139 (2)0.31252 (8)0.0267 (4)
C120.3575 (3)0.6645 (3)0.19299 (9)0.0398 (5)
H12A0.22980.68500.19210.060*
H12B0.41470.75650.18180.060*
H12C0.38820.58590.16730.060*
C130.3415 (3)0.8737 (2)0.28909 (11)0.0391 (5)
H13A0.33590.91900.32520.059*
H13B0.42020.92920.26520.059*
H13C0.22370.87820.27180.059*
C140.5969 (3)0.4588 (3)0.41629 (9)0.0383 (5)
H14A0.57500.54000.44160.057*
H14B0.53430.37080.42880.057*
H14C0.72320.43160.41600.057*
C150.6072 (3)0.2491 (2)0.31952 (10)0.0403 (5)
H15A0.58360.19830.28530.060*
H15B0.73410.24420.32740.060*
H15C0.54800.19930.35040.060*
C160.0911 (3)0.2215 (2)0.02037 (8)0.0259 (4)
H160.07100.12550.00370.031*
C170.2588 (3)0.2775 (2)0.01301 (8)0.0256 (4)
H170.34780.21960.00790.031*
C180.2937 (2)0.4205 (2)0.03697 (7)0.0210 (4)
C190.1526 (2)0.5016 (2)0.06670 (7)0.0234 (4)
H190.16820.59910.08280.028*
C200.0116 (2)0.4363 (2)0.07224 (7)0.0237 (4)
H200.10390.49230.09240.028*
C210.4776 (3)0.4823 (2)0.03062 (8)0.0256 (4)
C220.0755 (3)0.4077 (3)0.26691 (9)0.0361 (5)
C230.1404 (3)0.3765 (3)0.20982 (10)0.0521 (7)
H230.13750.45510.18470.062*
C240.2054 (4)0.2358 (4)0.19211 (12)0.0575 (8)
H240.24560.21730.15470.069*
C250.2131 (3)0.1164 (3)0.22942 (12)0.0543 (8)
H250.25720.01900.21630.065*
C260.1569 (3)0.1402 (3)0.28511 (12)0.0471 (6)
H260.16610.06000.30950.057*
C270.0841 (3)0.2887 (2)0.30550 (9)0.0346 (5)
C280.0203 (3)0.3228 (2)0.36069 (9)0.0355 (5)
H280.02300.24680.38690.043*
C290.0473 (3)0.4704 (2)0.37670 (9)0.0339 (5)
C300.1087 (3)0.5158 (3)0.43279 (10)0.0468 (6)
H300.10920.44360.46040.056*
C310.1663 (4)0.6630 (4)0.44620 (12)0.0597 (8)
H310.20250.69170.48330.072*
C320.1721 (4)0.7733 (3)0.40475 (13)0.0655 (9)
H320.21440.87350.41460.079*
C330.1167 (4)0.7353 (3)0.35053 (12)0.0529 (7)
H330.12220.80930.32360.064*
C340.0501 (3)0.5827 (2)0.33467 (9)0.0354 (5)
C350.3356 (4)0.0422 (3)0.51899 (11)0.0461 (6)
C360.4070 (4)0.1084 (3)0.47180 (11)0.0530 (7)
C370.5725 (4)0.0665 (3)0.45300 (11)0.0529 (7)
C380.6294 (4)0.1338 (3)0.41311 (12)0.0317 (6)0.7196
H38A0.53560.18930.39670.048*0.7196
H38B0.67090.06120.38530.048*0.7196
H38C0.72710.20450.42570.048*0.7196
C390.3322 (4)0.1998 (3)0.44067 (12)0.0407 (7)0.7807
H39A0.29480.28560.46350.061*0.7807
H39B0.22950.14790.42160.061*0.7807
H39C0.41530.23560.41320.061*0.7807
N10.4842 (2)0.46644 (18)0.26035 (7)0.0280 (4)
N20.4689 (2)0.65755 (18)0.34903 (7)0.0279 (4)
N30.0439 (2)0.29676 (17)0.05003 (6)0.0233 (3)
N40.0097 (3)0.5511 (2)0.28124 (8)0.0400 (5)
O10.55755 (18)0.28582 (16)0.16893 (6)0.0310 (3)
H10.53250.34030.19520.047*
O20.32700 (17)0.10732 (14)0.06473 (5)0.0251 (3)
H20.24000.16010.06280.038*
O30.1750 (6)0.0753 (5)0.53408 (18)0.0650 (10)0.5
H21A0.575 (3)0.399 (3)0.0414 (9)0.037 (6)*
H21B0.485 (3)0.577 (3)0.0543 (9)0.031 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0262 (9)0.0200 (8)0.0196 (8)0.0061 (7)0.0024 (7)0.0004 (7)
C20.0206 (8)0.0191 (8)0.0164 (8)0.0019 (7)0.0014 (6)0.0018 (6)
C30.0251 (9)0.0187 (8)0.0161 (8)0.0030 (7)0.0019 (7)0.0004 (6)
C40.0225 (9)0.0256 (9)0.0259 (9)0.0079 (7)0.0009 (7)0.0034 (7)
C50.0250 (10)0.0290 (10)0.0268 (10)0.0024 (8)0.0059 (8)0.0033 (8)
C60.0338 (10)0.0225 (9)0.0236 (9)0.0036 (8)0.0045 (8)0.0072 (7)
C70.0215 (9)0.0267 (9)0.0224 (9)0.0010 (7)0.0030 (7)0.0022 (7)
C80.0290 (10)0.0226 (9)0.0290 (10)0.0059 (7)0.0062 (8)0.0013 (7)
C90.0258 (9)0.0209 (9)0.0328 (10)0.0031 (7)0.0017 (8)0.0006 (8)
C100.0282 (10)0.0252 (9)0.0243 (9)0.0043 (8)0.0027 (7)0.0000 (7)
C110.0325 (10)0.0205 (9)0.0269 (10)0.0034 (8)0.0031 (8)0.0004 (7)
C120.0474 (13)0.0397 (12)0.0312 (11)0.0067 (10)0.0135 (10)0.0064 (9)
C130.0380 (12)0.0223 (10)0.0566 (14)0.0008 (9)0.0018 (10)0.0000 (9)
C140.0451 (13)0.0448 (13)0.0245 (10)0.0044 (10)0.0049 (9)0.0036 (9)
C150.0544 (14)0.0215 (10)0.0440 (13)0.0007 (9)0.0024 (11)0.0020 (9)
C160.0299 (10)0.0201 (9)0.0281 (10)0.0073 (7)0.0022 (8)0.0007 (7)
C170.0260 (10)0.0215 (9)0.0290 (10)0.0023 (7)0.0066 (8)0.0003 (7)
C180.0225 (9)0.0233 (9)0.0180 (8)0.0066 (7)0.0019 (7)0.0046 (7)
C190.0289 (10)0.0205 (9)0.0208 (9)0.0058 (7)0.0039 (7)0.0004 (7)
C200.0241 (9)0.0252 (9)0.0215 (9)0.0002 (7)0.0049 (7)0.0033 (7)
C210.0254 (10)0.0292 (10)0.0231 (10)0.0099 (8)0.0034 (7)0.0022 (8)
C220.0312 (11)0.0458 (13)0.0299 (11)0.0040 (9)0.0117 (9)0.0103 (9)
C230.0488 (15)0.0742 (18)0.0314 (12)0.0006 (13)0.0102 (10)0.0144 (12)
C240.0463 (15)0.080 (2)0.0430 (14)0.0021 (14)0.0094 (11)0.0296 (14)
C250.0351 (13)0.0524 (15)0.0703 (18)0.0052 (11)0.0085 (12)0.0422 (14)
C260.0359 (13)0.0354 (12)0.0684 (17)0.0047 (10)0.0168 (11)0.0126 (11)
C270.0262 (10)0.0325 (11)0.0435 (12)0.0037 (8)0.0121 (9)0.0114 (9)
C280.0340 (11)0.0329 (11)0.0403 (12)0.0001 (9)0.0118 (9)0.0044 (9)
C290.0304 (11)0.0404 (12)0.0298 (10)0.0027 (9)0.0067 (8)0.0072 (9)
C300.0405 (13)0.0655 (17)0.0334 (12)0.0031 (11)0.0000 (10)0.0082 (11)
C310.0467 (15)0.083 (2)0.0442 (15)0.0110 (14)0.0002 (12)0.0298 (15)
C320.0641 (18)0.0555 (17)0.0698 (19)0.0310 (14)0.0152 (15)0.0342 (15)
C330.0627 (17)0.0384 (13)0.0544 (15)0.0206 (12)0.0193 (13)0.0103 (11)
C340.0368 (12)0.0346 (11)0.0331 (11)0.0093 (9)0.0121 (9)0.0074 (9)
C350.0546 (15)0.0326 (12)0.0487 (14)0.0135 (11)0.0221 (12)0.0069 (10)
C360.0740 (19)0.0341 (12)0.0480 (14)0.0215 (12)0.0330 (13)0.0169 (11)
C370.0736 (19)0.0335 (12)0.0482 (14)0.0222 (12)0.0314 (13)0.0142 (11)
C380.0357 (15)0.0338 (15)0.0275 (14)0.0060 (12)0.0055 (12)0.0119 (12)
C390.0448 (17)0.0390 (16)0.0403 (16)0.0069 (13)0.0070 (13)0.0145 (13)
N10.0377 (9)0.0217 (8)0.0250 (8)0.0056 (7)0.0040 (7)0.0038 (6)
N20.0328 (9)0.0246 (8)0.0272 (8)0.0040 (7)0.0009 (7)0.0064 (6)
N30.0230 (8)0.0243 (8)0.0237 (8)0.0068 (6)0.0013 (6)0.0072 (6)
N40.0464 (11)0.0409 (10)0.0316 (10)0.0076 (9)0.0127 (8)0.0021 (8)
O10.0322 (8)0.0337 (8)0.0299 (7)0.0131 (6)0.0030 (6)0.0148 (6)
O20.0243 (7)0.0263 (7)0.0266 (7)0.0085 (5)0.0034 (5)0.0105 (5)
O30.064 (3)0.064 (3)0.069 (3)0.010 (2)0.011 (2)0.005 (2)
Geometric parameters (Å, º) top
C1—O11.368 (2)C20—N31.340 (2)
C1—C61.395 (3)C20—H200.9300
C1—C21.395 (2)C21—C21i1.529 (4)
C2—C31.403 (2)C21—H21A1.04 (2)
C2—C71.501 (2)C21—H21B0.98 (2)
C3—O21.367 (2)C22—N41.343 (3)
C3—C41.387 (3)C22—C271.417 (3)
C4—C51.384 (3)C22—C231.431 (3)
C4—H40.9300C23—C241.338 (4)
C5—C61.384 (3)C23—H230.9300
C5—H50.9300C24—C251.398 (4)
C6—H60.9300C24—H240.9300
C7—H7A0.9600C25—C261.375 (4)
C7—H7B0.9600C25—H250.9300
C7—H7C0.9600C26—C271.433 (3)
C8—N11.334 (2)C26—H260.9300
C8—C91.401 (3)C27—C281.391 (3)
C8—C121.500 (3)C28—C291.388 (3)
C9—N21.340 (3)C28—H280.9300
C9—C131.499 (3)C29—C301.423 (3)
C10—N21.337 (2)C29—C341.430 (3)
C10—C111.398 (3)C30—C311.352 (4)
C10—C141.501 (3)C30—H300.9300
C11—N11.340 (2)C31—C321.408 (4)
C11—C151.500 (3)C31—H310.9300
C12—H12A0.9600C32—C331.357 (4)
C12—H12B0.9600C32—H320.9300
C12—H12C0.9600C33—C341.424 (3)
C13—H13A0.9600C33—H330.9300
C13—H13B0.9600C34—N41.340 (3)
C13—H13C0.9600C35—O31.303 (5)
C14—H14A0.9600C35—C361.385 (4)
C14—H14B0.9600C35—C37ii1.389 (3)
C14—H14C0.9600C36—C391.258 (4)
C15—H15A0.9600C36—C371.386 (4)
C15—H15B0.9600C37—C381.209 (4)
C15—H15C0.9600C37—C35ii1.389 (3)
C16—N31.337 (2)C38—H38A0.9600
C16—C171.381 (3)C38—H38B0.9600
C16—H160.9300C38—H38C0.9600
C17—C181.386 (2)C39—H39A0.9600
C17—H170.9300C39—H39B0.9600
C18—C191.392 (3)C39—H39C0.9600
C18—C211.512 (2)O1—H10.8200
C19—C201.388 (2)O2—H20.8200
C19—H190.9300
O1—C1—C6121.67 (16)C19—C20—H20118.3
O1—C1—C2116.71 (16)C18—C21—C21i112.18 (19)
C6—C1—C2121.62 (16)C18—C21—H21A109.5 (12)
C1—C2—C3117.62 (16)C21i—C21—H21A105.7 (12)
C1—C2—C7121.35 (15)C18—C21—H21B110.4 (13)
C3—C2—C7121.03 (15)C21i—C21—H21B108.1 (13)
O2—C3—C4122.29 (15)H21A—C21—H21B110.8 (18)
O2—C3—C2116.40 (15)N4—C22—C27123.12 (19)
C4—C3—C2121.31 (16)N4—C22—C23117.5 (2)
C5—C4—C3119.48 (16)C27—C22—C23119.4 (2)
C5—C4—H4120.3C24—C23—C22121.0 (3)
C3—C4—H4120.3C24—C23—H23119.5
C6—C5—C4120.94 (17)C22—C23—H23119.5
C6—C5—H5119.5C23—C24—C25120.4 (2)
C4—C5—H5119.5C23—C24—H24119.8
C5—C6—C1119.01 (17)C25—C24—H24119.8
C5—C6—H6120.5C26—C25—C24121.3 (2)
C1—C6—H6120.5C26—C25—H25119.3
C2—C7—H7A109.5C24—C25—H25119.3
C2—C7—H7B109.5C25—C26—C27119.9 (3)
H7A—C7—H7B109.5C25—C26—H26120.0
C2—C7—H7C109.5C27—C26—H26120.0
H7A—C7—H7C109.5C28—C27—C22117.99 (19)
H7B—C7—H7C109.5C28—C27—C26124.1 (2)
N1—C8—C9120.29 (17)C22—C27—C26117.9 (2)
N1—C8—C12117.70 (18)C29—C28—C27120.0 (2)
C9—C8—C12122.01 (18)C29—C28—H28120.0
N2—C9—C8120.02 (17)C27—C28—H28120.0
N2—C9—C13118.20 (18)C28—C29—C30123.4 (2)
C8—C9—C13121.78 (18)C28—C29—C34117.79 (19)
N2—C10—C11120.16 (17)C30—C29—C34118.8 (2)
N2—C10—C14117.93 (17)C31—C30—C29120.5 (3)
C11—C10—C14121.90 (18)C31—C30—H30119.8
N1—C11—C10120.22 (17)C29—C30—H30119.8
N1—C11—C15117.16 (17)C30—C31—C32120.9 (2)
C10—C11—C15122.61 (17)C30—C31—H31119.6
C8—C12—H12A109.5C32—C31—H31119.6
C8—C12—H12B109.5C33—C32—C31120.8 (2)
H12A—C12—H12B109.5C33—C32—H32119.6
C8—C12—H12C109.5C31—C32—H32119.6
H12A—C12—H12C109.5C32—C33—C34120.4 (3)
H12B—C12—H12C109.5C32—C33—H33119.8
C9—C13—H13A109.5C34—C33—H33119.8
C9—C13—H13B109.5N4—C34—C33118.6 (2)
H13A—C13—H13B109.5N4—C34—C29122.81 (19)
C9—C13—H13C109.5C33—C34—C29118.6 (2)
H13A—C13—H13C109.5O3—C35—C36118.8 (3)
H13B—C13—H13C109.5O3—C35—C37ii120.5 (3)
C10—C14—H14A109.5C36—C35—C37ii120.5 (3)
C10—C14—H14B109.5C39—C36—C35126.6 (3)
H14A—C14—H14B109.5C39—C36—C37113.9 (3)
C10—C14—H14C109.5C35—C36—C37119.4 (2)
H14A—C14—H14C109.5C38—C37—C36115.6 (3)
H14B—C14—H14C109.5C38—C37—C35ii124.3 (3)
C11—C15—H15A109.5C36—C37—C35ii120.1 (2)
C11—C15—H15B109.5C37—C38—H38A109.5
H15A—C15—H15B109.5C37—C38—H38B109.5
C11—C15—H15C109.5H38A—C38—H38B109.5
H15A—C15—H15C109.5C37—C38—H38C109.5
H15B—C15—H15C109.5H38A—C38—H38C109.5
N3—C16—C17123.97 (17)H38B—C38—H38C109.5
N3—C16—H16118.0C36—C39—H39A109.5
C17—C16—H16118.0C36—C39—H39B109.5
C16—C17—C18119.72 (17)H39A—C39—H39B109.5
C16—C17—H17120.1C36—C39—H39C109.5
C18—C17—H17120.1H39A—C39—H39C109.5
C17—C18—C19116.76 (16)H39B—C39—H39C109.5
C17—C18—C21120.55 (16)C8—N1—C11119.61 (16)
C19—C18—C21122.68 (16)C10—N2—C9119.69 (16)
C20—C19—C18119.72 (16)C16—N3—C20116.41 (15)
C20—C19—H19120.1C34—N4—C22118.25 (19)
C18—C19—H19120.1C1—O1—H1109.5
N3—C20—C19123.38 (17)C3—O2—H2109.5
N3—C20—H20118.3
O1—C1—C2—C3178.61 (15)C25—C26—C27—C28178.6 (2)
C6—C1—C2—C31.8 (3)C25—C26—C27—C221.0 (3)
O1—C1—C2—C72.1 (2)C22—C27—C28—C290.7 (3)
C6—C1—C2—C7177.52 (16)C26—C27—C28—C29179.7 (2)
C1—C2—C3—O2179.12 (15)C27—C28—C29—C30177.6 (2)
C7—C2—C3—O21.6 (2)C27—C28—C29—C340.7 (3)
C1—C2—C3—C41.4 (2)C28—C29—C30—C31177.3 (2)
C7—C2—C3—C4177.88 (16)C34—C29—C30—C310.9 (3)
O2—C3—C4—C5179.54 (16)C29—C30—C31—C322.0 (4)
C2—C3—C4—C50.1 (3)C30—C31—C32—C331.3 (4)
C3—C4—C5—C60.9 (3)C31—C32—C33—C340.5 (4)
C4—C5—C6—C10.5 (3)C32—C33—C34—N4177.5 (2)
O1—C1—C6—C5179.58 (17)C32—C33—C34—C291.5 (4)
C2—C1—C6—C50.8 (3)C28—C29—C34—N40.2 (3)
N1—C8—C9—N20.0 (3)C30—C29—C34—N4178.2 (2)
C12—C8—C9—N2179.72 (18)C28—C29—C34—C33179.1 (2)
N1—C8—C9—C13179.25 (18)C30—C29—C34—C330.8 (3)
C12—C8—C9—C130.5 (3)O3—C35—C36—C390.1 (4)
N2—C10—C11—N10.8 (3)C37ii—C35—C36—C39174.9 (3)
C14—C10—C11—N1177.93 (18)O3—C35—C36—C37175.7 (3)
N2—C10—C11—C15179.91 (19)C37ii—C35—C36—C370.7 (4)
C14—C10—C11—C151.4 (3)C39—C36—C37—C386.9 (4)
N3—C16—C17—C180.4 (3)C35—C36—C37—C38177.0 (3)
C16—C17—C18—C191.3 (3)C39—C36—C37—C35ii175.5 (2)
C16—C17—C18—C21178.51 (17)C35—C36—C37—C35ii0.7 (4)
C17—C18—C19—C201.6 (3)C9—C8—N1—C111.2 (3)
C21—C18—C19—C20178.20 (16)C12—C8—N1—C11179.02 (18)
C18—C19—C20—N30.3 (3)C10—C11—N1—C81.6 (3)
C17—C18—C21—C21i67.4 (3)C15—C11—N1—C8179.03 (18)
C19—C18—C21—C21i112.8 (2)C11—C10—N2—C90.5 (3)
N4—C22—C23—C24178.9 (2)C14—C10—N2—C9179.24 (18)
C27—C22—C23—C241.5 (3)C8—C9—N2—C100.9 (3)
C22—C23—C24—C250.8 (4)C13—C9—N2—C10179.88 (18)
C23—C24—C25—C260.8 (4)C17—C16—N3—C201.7 (3)
C24—C25—C26—C271.7 (4)C19—C20—N3—C161.3 (3)
N4—C22—C27—C280.2 (3)C33—C34—N4—C22178.7 (2)
C23—C22—C27—C28179.8 (2)C29—C34—N4—C220.3 (3)
N4—C22—C27—C26179.9 (2)C27—C22—N4—C340.2 (3)
C23—C22—C27—C260.6 (3)C23—C22—N4—C34179.4 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z+1.
(MRE_TMP_DPE-II_ANT) top
Crystal data top
C77H77N6O6V = 1554.77 (11) Å3
Mr = 1182.44Z = 1
Triclinic, P1F(000) = 629
a = 7.4914 (3) ÅDx = 1.263 Mg m3
b = 8.8265 (4) ÅMo Kα radiation, λ = 0.71073 Å
c = 23.583 (1) ŵ = 0.08 mm1
α = 92.722 (1)°T = 150 K
β = 92.976 (1)°Block, colorless
γ = 91.626 (1)°0.88 × 0.39 × 0.22 mm
Data collection top
CCD area detector
diffractometer
4165 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.080
phi and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: analytical
Bruker, AXS, 2008
h = 99
Tmin = 0.963, Tmax = 0.983k = 1010
36300 measured reflectionsl = 2929
6096 independent reflections
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0955P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.021
6096 reflectionsΔρmax = 0.31 e Å3
433 parametersΔρmin = 0.30 e Å3
Crystal data top
C77H77N6O6γ = 91.626 (1)°
Mr = 1182.44V = 1554.77 (11) Å3
Triclinic, P1Z = 1
a = 7.4914 (3) ÅMo Kα radiation
b = 8.8265 (4) ŵ = 0.08 mm1
c = 23.583 (1) ÅT = 150 K
α = 92.722 (1)°0.88 × 0.39 × 0.22 mm
β = 92.976 (1)°
Data collection top
CCD area detector
diffractometer
6096 independent reflections
Absorption correction: analytical
Bruker, AXS, 2008
4165 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.983Rint = 0.080
36300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05510 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
6096 reflectionsΔρmin = 0.30 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
H22A0.564 (3)1.396 (2)0.0411 (8)0.025 (5)*
H22B0.486 (2)1.567 (2)0.0570 (8)0.025 (5)*
O10.57452 (17)0.71363 (15)0.17027 (6)0.0290 (4)
H10.54970.66040.19760.044*
O20.34266 (17)1.10855 (14)0.06395 (5)0.0255 (3)
H20.25251.16260.06090.038*
N10.4901 (2)0.53664 (17)0.26129 (6)0.0239 (4)
N20.4740 (2)0.34175 (17)0.34810 (6)0.0237 (4)
N30.0529 (2)1.29792 (17)0.04831 (6)0.0240 (4)
C20.4319 (2)0.8003 (2)0.15619 (7)0.0189 (4)
C70.3143 (2)1.00096 (19)0.10256 (7)0.0185 (4)
C10.4583 (2)0.90938 (19)0.11590 (7)0.0160 (4)
C120.5400 (2)0.5846 (2)0.31464 (8)0.0217 (4)
C90.4274 (2)0.3943 (2)0.25096 (8)0.0235 (4)
C60.1508 (3)0.9826 (2)0.12688 (8)0.0243 (4)
H60.05481.04610.11710.029*
C180.1501 (2)1.4964 (2)0.06684 (8)0.0224 (4)
H180.16851.59360.08420.027*
C100.4188 (2)0.2952 (2)0.29508 (8)0.0223 (4)
C190.2910 (2)1.4172 (2)0.03664 (7)0.0186 (4)
C110.5340 (2)0.4849 (2)0.35877 (8)0.0215 (4)
C80.6316 (2)0.9240 (2)0.08756 (8)0.0219 (4)
H8A0.72920.89220.11320.033*
H8B0.65301.02990.07840.033*
H8C0.62620.85950.05250.033*
C170.0161 (3)1.4335 (2)0.07147 (8)0.0240 (4)
H170.10971.48990.09230.029*
C220.4756 (3)1.4779 (2)0.03042 (8)0.0224 (4)
C30.2686 (3)0.7808 (2)0.18042 (8)0.0260 (5)
H30.25300.70530.20730.031*
C200.2515 (3)1.2775 (2)0.01213 (8)0.0271 (5)
H200.34221.21860.00910.033*
C50.1288 (3)0.8717 (2)0.16534 (8)0.0285 (5)
H50.01640.85770.18160.034*
C210.0820 (3)1.2235 (2)0.01837 (8)0.0286 (5)
H210.05901.12790.00040.034*
C140.3501 (3)0.1344 (2)0.28500 (10)0.0353 (5)
H14A0.35450.08340.32100.053*
H14B0.42460.08100.25810.053*
H14C0.22630.13370.26930.053*
C130.3669 (3)0.3468 (2)0.19099 (9)0.0374 (5)
H13A0.23640.33300.18820.056*
H13B0.42170.25100.18000.056*
H13C0.40290.42520.16550.056*
C160.6017 (3)0.7471 (2)0.32434 (9)0.0360 (5)
H16A0.58250.80030.28910.054*
H16B0.72930.75190.33600.054*
H16C0.53370.79550.35430.054*
C150.5958 (3)0.5323 (3)0.41833 (8)0.0353 (5)
H15A0.56550.45180.44370.053*
H15B0.53690.62560.43000.053*
H15C0.72570.55080.42030.053*
C360.0173 (3)0.5367 (2)0.27882 (9)0.0338 (5)
H360.01990.60690.24950.041*
C280.0771 (3)0.2835 (2)0.30995 (9)0.0324 (5)
C300.0501 (3)0.4796 (3)0.37707 (9)0.0333 (5)
C290.0122 (3)0.3309 (2)0.36401 (10)0.0362 (5)
H290.01000.26020.39320.043*
C350.0481 (3)0.5857 (2)0.33284 (9)0.0319 (5)
C230.0791 (3)0.3889 (2)0.26610 (9)0.0322 (5)
C270.1424 (3)0.1313 (3)0.29517 (12)0.0517 (7)
H270.14340.05810.32340.062*
C340.1089 (3)0.7379 (3)0.34688 (12)0.0523 (7)
H340.10980.80960.31810.063*
C240.1466 (3)0.3390 (3)0.21061 (10)0.0533 (7)
H240.14980.40920.18130.064*
C260.2029 (3)0.0915 (3)0.24087 (16)0.0681 (10)
H260.24410.00990.23170.082*
C320.1665 (4)0.6756 (4)0.44393 (14)0.0722 (9)
H320.20610.70780.48160.087*
C310.1129 (3)0.5315 (3)0.43268 (11)0.0547 (7)
H310.11670.46240.46240.066*
C250.2055 (4)0.1960 (4)0.19865 (14)0.0715 (10)
H250.24920.16580.16120.086*
C330.1655 (4)0.7813 (4)0.40076 (16)0.0738 (10)
H330.20470.88340.40960.089*
C380.6661 (4)0.9517 (3)0.48276 (10)0.0467 (7)
C390.5909 (4)0.8911 (3)0.53001 (10)0.0520 (8)
C370.5740 (4)1.0610 (3)0.45310 (11)0.0533 (8)
O30.6308 (4)1.1261 (3)0.41344 (11)0.0312 (7)0.5
H3A0.54811.17370.39760.047*0.5
O40.6636 (4)0.8006 (3)0.56187 (12)0.0341 (7)0.5
H40.59190.77450.58610.051*0.5
C400.8215 (5)0.9156 (4)0.47039 (16)0.0224 (8)0.5
H40A0.90880.96160.49900.034*0.5
H40B0.84660.95220.43290.034*0.5
H40C0.83000.80490.46960.034*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0271 (8)0.0322 (8)0.0304 (8)0.0128 (6)0.0052 (6)0.0176 (6)
O20.0255 (8)0.0255 (8)0.0278 (8)0.0104 (6)0.0063 (6)0.0138 (6)
N10.0294 (9)0.0199 (9)0.0225 (9)0.0030 (7)0.0016 (7)0.0059 (7)
N20.0250 (9)0.0217 (9)0.0253 (9)0.0034 (7)0.0043 (7)0.0076 (7)
N30.0237 (9)0.0231 (9)0.0261 (9)0.0061 (7)0.0007 (7)0.0089 (7)
C20.0224 (10)0.0175 (9)0.0171 (9)0.0066 (8)0.0003 (8)0.0016 (7)
C70.0255 (10)0.0161 (9)0.0140 (9)0.0037 (8)0.0002 (8)0.0016 (7)
C10.0177 (10)0.0159 (9)0.0138 (9)0.0009 (7)0.0003 (7)0.0034 (7)
C120.0223 (10)0.0191 (10)0.0237 (11)0.0030 (8)0.0001 (8)0.0012 (8)
C90.0238 (11)0.0219 (10)0.0245 (11)0.0043 (8)0.0039 (8)0.0010 (8)
C60.0216 (10)0.0253 (11)0.0275 (11)0.0090 (8)0.0051 (8)0.0056 (8)
C180.0273 (11)0.0194 (10)0.0205 (10)0.0056 (8)0.0011 (8)0.0003 (8)
C100.0192 (10)0.0207 (10)0.0274 (11)0.0026 (8)0.0019 (8)0.0011 (8)
C190.0207 (10)0.0179 (9)0.0177 (9)0.0035 (8)0.0006 (8)0.0073 (7)
C110.0202 (10)0.0223 (10)0.0223 (10)0.0042 (8)0.0018 (8)0.0017 (8)
C80.0207 (10)0.0249 (10)0.0200 (10)0.0019 (8)0.0000 (8)0.0010 (8)
C170.0228 (11)0.0258 (11)0.0232 (10)0.0023 (8)0.0047 (8)0.0041 (8)
C220.0207 (11)0.0230 (10)0.0237 (10)0.0048 (8)0.0012 (8)0.0043 (9)
C30.0288 (11)0.0247 (11)0.0266 (11)0.0055 (8)0.0091 (9)0.0123 (8)
C200.0271 (11)0.0186 (10)0.0347 (12)0.0032 (8)0.0077 (9)0.0000 (8)
C50.0233 (11)0.0315 (11)0.0328 (12)0.0063 (9)0.0106 (9)0.0096 (9)
C210.0340 (12)0.0176 (10)0.0339 (12)0.0084 (9)0.0045 (9)0.0008 (9)
C140.0358 (13)0.0202 (11)0.0498 (14)0.0015 (9)0.0038 (11)0.0020 (10)
C130.0451 (14)0.0365 (13)0.0290 (12)0.0003 (10)0.0102 (10)0.0002 (10)
C160.0460 (14)0.0202 (11)0.0412 (13)0.0012 (10)0.0011 (11)0.0022 (9)
C150.0406 (13)0.0427 (13)0.0223 (11)0.0069 (10)0.0004 (9)0.0016 (9)
C360.0341 (12)0.0356 (13)0.0330 (12)0.0029 (10)0.0144 (10)0.0038 (10)
C280.0230 (11)0.0286 (11)0.0462 (14)0.0014 (9)0.0180 (10)0.0084 (10)
C300.0233 (11)0.0448 (14)0.0316 (12)0.0048 (10)0.0051 (9)0.0085 (10)
C290.0318 (12)0.0374 (13)0.0414 (13)0.0088 (10)0.0129 (10)0.0077 (10)
C350.0246 (11)0.0304 (12)0.0406 (13)0.0033 (9)0.0120 (10)0.0081 (10)
C230.0248 (11)0.0403 (13)0.0313 (12)0.0034 (9)0.0138 (9)0.0094 (10)
C270.0382 (14)0.0312 (13)0.087 (2)0.0039 (11)0.0354 (14)0.0119 (13)
C340.0435 (15)0.0355 (14)0.0771 (19)0.0140 (11)0.0221 (13)0.0170 (13)
C240.0406 (15)0.0821 (19)0.0357 (14)0.0081 (14)0.0156 (11)0.0225 (13)
C260.0373 (15)0.0555 (18)0.108 (3)0.0155 (14)0.0353 (16)0.0580 (18)
C320.0426 (17)0.105 (3)0.063 (2)0.0048 (17)0.0057 (15)0.0479 (19)
C310.0370 (15)0.085 (2)0.0403 (15)0.0096 (14)0.0037 (11)0.0157 (14)
C250.0432 (16)0.095 (2)0.071 (2)0.0203 (17)0.0228 (15)0.0583 (19)
C330.0505 (18)0.064 (2)0.102 (3)0.0259 (15)0.0206 (17)0.0536 (19)
C380.0638 (18)0.0319 (13)0.0408 (14)0.0241 (12)0.0258 (13)0.0118 (10)
C390.076 (2)0.0352 (14)0.0416 (15)0.0281 (14)0.0326 (14)0.0206 (11)
C370.077 (2)0.0352 (14)0.0436 (15)0.0313 (14)0.0364 (14)0.0208 (11)
O30.0363 (17)0.0365 (17)0.0238 (15)0.0101 (13)0.0096 (13)0.0182 (13)
O40.0347 (17)0.0372 (17)0.0335 (17)0.0124 (14)0.0072 (13)0.0223 (13)
C400.022 (2)0.024 (2)0.022 (2)0.0024 (16)0.0024 (16)0.0031 (16)
Geometric parameters (Å, º) top
O1—C21.368 (2)C13—H13C0.9800
O1—H10.8400C16—H16A0.9800
O2—C71.366 (2)C16—H16B0.9800
O2—H20.8400C16—H16C0.9800
N1—C91.336 (2)C15—H15A0.9800
N1—C121.339 (2)C15—H15B0.9800
N2—C111.337 (2)C15—H15C0.9800
N2—C101.338 (2)C36—C351.386 (3)
N3—C171.333 (2)C36—C231.386 (3)
N3—C211.340 (2)C36—H360.9500
C2—C31.387 (3)C28—C291.382 (3)
C2—C11.401 (2)C28—C231.423 (3)
C7—C61.387 (3)C28—C271.437 (3)
C7—C11.398 (2)C30—C291.395 (3)
C1—C81.496 (2)C30—C311.421 (3)
C12—C111.396 (2)C30—C351.435 (3)
C12—C161.498 (3)C29—H290.9500
C9—C101.394 (3)C35—C341.424 (3)
C9—C131.499 (3)C23—C241.423 (3)
C6—C51.378 (3)C27—C261.362 (4)
C6—H60.9500C27—H270.9500
C18—C171.379 (3)C34—C331.353 (4)
C18—C191.394 (3)C34—H340.9500
C18—H180.9500C24—C251.338 (4)
C10—C141.500 (3)C24—H240.9500
C19—C201.383 (3)C26—C251.389 (4)
C19—C221.500 (3)C26—H260.9500
C11—C151.493 (3)C32—C311.333 (4)
C8—H8A0.9800C32—C331.413 (5)
C8—H8B0.9800C32—H320.9500
C8—H8C0.9800C31—H310.9500
C17—H170.9500C25—H250.9500
C22—C22i1.533 (4)C33—H330.9500
C22—H22A1.02 (2)C38—C401.261 (4)
C22—H22B0.99 (2)C38—C371.396 (3)
C3—C51.379 (3)C38—C391.396 (3)
C3—H30.9500C39—O41.240 (3)
C20—C211.372 (3)C39—C37ii1.389 (4)
C20—H200.9500C37—O31.211 (3)
C5—H50.9500C37—C39ii1.388 (4)
C21—H210.9500O3—H3A0.8400
C14—H14A0.9800O4—H40.8400
C14—H14B0.9800C40—H40A0.9800
C14—H14C0.9800C40—H40B0.9800
C13—H13A0.9800C40—H40C0.9800
C13—H13B0.9800
C2—O1—H1109.5H13B—C13—H13C109.5
C7—O2—H2109.5C12—C16—H16A109.5
C9—N1—C12119.47 (16)C12—C16—H16B109.5
C11—N2—C10119.66 (16)H16A—C16—H16B109.5
C17—N3—C21116.19 (16)C12—C16—H16C109.5
O1—C2—C3121.62 (16)H16A—C16—H16C109.5
O1—C2—C1116.86 (16)H16B—C16—H16C109.5
C3—C2—C1121.52 (16)C11—C15—H15A109.5
O2—C7—C6121.81 (16)C11—C15—H15B109.5
O2—C7—C1116.43 (15)H15A—C15—H15B109.5
C6—C7—C1121.75 (16)C11—C15—H15C109.5
C7—C1—C2116.99 (16)H15A—C15—H15C109.5
C7—C1—C8121.76 (16)H15B—C15—H15C109.5
C2—C1—C8121.23 (16)C35—C36—C23122.3 (2)
N1—C12—C11120.32 (16)C35—C36—H36118.9
N1—C12—C16117.37 (16)C23—C36—H36118.9
C11—C12—C16122.30 (17)C29—C28—C23119.10 (19)
N1—C9—C10120.27 (17)C29—C28—C27123.3 (2)
N1—C9—C13117.79 (17)C23—C28—C27117.6 (2)
C10—C9—C13121.94 (17)C29—C30—C31122.8 (2)
C5—C6—C7119.53 (17)C29—C30—C35118.86 (19)
C5—C6—H6120.2C31—C30—C35118.3 (2)
C7—C6—H6120.2C28—C29—C30122.0 (2)
C17—C18—C19119.92 (17)C28—C29—H29119.0
C17—C18—H18120.0C30—C29—H29119.0
C19—C18—H18120.0C36—C35—C34123.0 (2)
N2—C10—C9120.22 (17)C36—C35—C30118.58 (19)
N2—C10—C14118.03 (17)C34—C35—C30118.4 (2)
C9—C10—C14121.74 (17)C36—C23—C28119.17 (19)
C20—C19—C18116.12 (17)C36—C23—C24122.1 (2)
C20—C19—C22121.09 (17)C28—C23—C24118.7 (2)
C18—C19—C22122.79 (16)C26—C27—C28120.4 (3)
N2—C11—C12119.99 (16)C26—C27—H27119.8
N2—C11—C15118.11 (17)C28—C27—H27119.8
C12—C11—C15121.89 (17)C33—C34—C35120.7 (3)
C1—C8—H8A109.5C33—C34—H34119.7
C1—C8—H8B109.5C35—C34—H34119.7
H8A—C8—H8B109.5C25—C24—C23121.8 (3)
C1—C8—H8C109.5C25—C24—H24119.1
H8A—C8—H8C109.5C23—C24—H24119.1
H8B—C8—H8C109.5C27—C26—C25121.4 (2)
N3—C17—C18123.70 (18)C27—C26—H26119.3
N3—C17—H17118.1C25—C26—H26119.3
C18—C17—H17118.1C31—C32—C33121.2 (3)
C19—C22—C22i112.5 (2)C31—C32—H32119.4
C19—C22—H22A108.0 (11)C33—C32—H32119.4
C22i—C22—H22A108.8 (10)C32—C31—C30121.1 (3)
C19—C22—H22B110.0 (11)C32—C31—H31119.4
C22i—C22—H22B109.4 (11)C30—C31—H31119.4
H22A—C22—H22B108.1 (15)C24—C25—C26120.2 (3)
C5—C3—C2119.67 (17)C24—C25—H25119.9
C5—C3—H3120.2C26—C25—H25119.9
C2—C3—H3120.2C34—C33—C32120.3 (3)
C21—C20—C19120.31 (18)C34—C33—H33119.8
C21—C20—H20119.8C32—C33—H33119.8
C19—C20—H20119.8C40—C38—C37121.1 (3)
C6—C5—C3120.50 (18)C40—C38—C39119.4 (3)
C6—C5—H5119.7C37—C38—C39119.2 (3)
C3—C5—H5119.7O4—C39—C37ii114.3 (3)
N3—C21—C20123.73 (18)O4—C39—C38125.5 (3)
N3—C21—H21118.1C37ii—C39—C38120.1 (2)
C20—C21—H21118.1O3—C37—C39ii114.6 (3)
C10—C14—H14A109.5O3—C37—C38124.6 (3)
C10—C14—H14B109.5C39ii—C37—C38120.7 (2)
H14A—C14—H14B109.5C37—O3—H3A109.5
C10—C14—H14C109.5C39—O4—H4109.5
H14A—C14—H14C109.5C38—C40—H40A109.5
H14B—C14—H14C109.5C38—C40—H40B109.5
C9—C13—H13A109.5H40A—C40—H40B109.5
C9—C13—H13B109.5C38—C40—H40C109.5
H13A—C13—H13B109.5H40A—C40—H40C109.5
C9—C13—H13C109.5H40B—C40—H40C109.5
H13A—C13—H13C109.5
Symmetry codes: (i) x1, y+3, z; (ii) x+1, y+2, z+1.
(MRE_TMP_DPE-II_DP) top
Crystal data top
C46H50N4O4V = 948.9 (3) Å3
Mr = 722.90Z = 1
Triclinic, P1F(000) = 386
a = 7.5407 (12) ÅDx = 1.265 Mg m3
b = 8.9198 (13) ÅMo Kα radiation, λ = 0.71073 Å
c = 14.284 (3) ŵ = 0.08 mm1
α = 96.506 (7)°T = 150 K
β = 96.093 (10)°Block, colorless
γ = 90.634 (10)°0.48 × 0.38 × 0.20 mm
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
3687 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.093
profile data from ω–scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
h = 99
Tmin = 0.699, Tmax = 1.000k = 1111
10144 measured reflectionsl = 1818
4338 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0815P)2 + 0.1168P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
4338 reflectionsΔρmax = 0.35 e Å3
257 parametersΔρmin = 0.25 e Å3
Crystal data top
C46H50N4O4γ = 90.634 (10)°
Mr = 722.90V = 948.9 (3) Å3
Triclinic, P1Z = 1
a = 7.5407 (12) ÅMo Kα radiation
b = 8.9198 (13) ŵ = 0.08 mm1
c = 14.284 (3) ÅT = 150 K
α = 96.506 (7)°0.48 × 0.38 × 0.20 mm
β = 96.093 (10)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
4338 independent reflections
Absorption correction: multi-scan
Jacobson, R. (1998) Private communication
3687 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 1.000Rint = 0.093
10144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.35 e Å3
4338 reflectionsΔρmin = 0.25 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H17A0.974 (3)1.577 (2)0.5922 (16)0.042 (5)*
H17B1.060 (3)1.410 (2)0.5722 (16)0.044 (5)*
O10.11600 (14)0.74909 (12)0.77875 (8)0.0302 (3)
H10.09200.69410.82000.045*
O20.13940 (14)1.12835 (12)0.60492 (8)0.0290 (3)
H20.23081.18120.60030.044*
N10.03319 (16)0.58255 (13)0.92772 (9)0.0237 (3)
N20.43670 (18)1.31028 (15)0.58177 (10)0.0306 (3)
C10.01229 (18)0.93674 (15)0.68965 (9)0.0214 (3)
C50.3232 (2)1.00202 (17)0.70110 (11)0.0283 (3)
H50.42261.06160.68410.034*
C20.03121 (19)0.83044 (15)0.75275 (10)0.0229 (3)
C100.06533 (18)0.64368 (15)1.01830 (10)0.0229 (3)
C60.1613