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Spatial resolution is an important characteristic of structural models, and the

authors of structures determined by X-ray crystallography or electron cryo-

microscopy always provide the resolution upon publication and deposition.

Small-angle scattering of X-rays or neutrons (SAS) has recently become a

mainstream structural method providing the overall three-dimensional struc-

tures of proteins, nucleic acids and complexes in solution. However, no

quantitative resolution measure is available for SAS-derived models, which

significantly hampers their validation and further use. Here, a method is derived

for resolution assessment for ab initio shape reconstruction from scattering data.

The inherent variability of the ab initio shapes is utilized and it is demonstrated

how their average Fourier shell correlation function is related to the model

resolution. The method is validated against simulated data for proteins with

known high-resolution structures and its efficiency is demonstrated in

applications to experimental data. It is proposed that henceforth the resolution

be reported in publications and depositions of ab initio SAS models.

1. Introduction

In small-angle scattering (SAS) studies, the nanostructure of

matter is probed using X-rays or neutrons. The technique,

which is applicable to completely or partially disordered

objects, is particularly useful for the study of biological

macromolecules in close to native solutions and medical

formulations (Svergun et al., 2013). In a SAS experiment,

scattering intensity I from a dilute solution of macromolecules

(e.g. proteins, nucleic acids or complexes) is recorded. Since

the molecules are randomly oriented, the scattering profiles

from individual particles are averaged, yielding an isotropic

intensity I(s) as a function of momentum transfer s = 4�sin�/�,

where 2� is the scattering angle and � is the radiation wave-

length (Fig. 1). Nonetheless, even from these one-dimensional

scattering profiles one can reconstruct three-dimensional

models of the overall particle structure. This can be performed

either without any additional information by ab initio

approaches (Chacón et al., 1998; Svergun, 1999, 2001; Franke

& Svergun, 2009), or by hybrid modelling utilizing known

atomic structures of domains or subunits to construct models

of complexes (Petoukhov & Svergun, 2005).

The possibility of obtaining three-dimensional models

from solution-scattering profiles, accompanied by the recent

advances in instrumentation that are paving the way for high-

throughput studies on modern synchrotrons (Pernot et al.,

2013; Acerbo et al., 2015; Blanchet et al., 2015; Bizien et al.,

2016), have boosted the popularity of SAS in structural

biology during the last decade. The resurgence of SAS in
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structural biology is shown by an approximately fourfold

increase in publications devoted to biological solution scat-

tering in the last ten years according to PubMed statistics. Still,

two major unresolved issues prevent the method from

becoming a fully established structural biology technique. On

one hand, given that the amount of information in SAS data is

limited by spherical averaging, reconstructing three-dimen-

sional structural models is inherently ambiguous and ensem-

bles of models may be obtained that fit the experimental data

equally well. On the other hand, being a low-resolution

method, SAS does not provide information at an atomic level.

Usually, SAS-based models are tacitly assumed to have a

resolution of �10–20 Å, but no objective measures of reso-

lution are available for them. This situation contrasts with

structural techniques such as macromolecular X-ray crystallo-

graphy (MX) and electron cryo-microscopy (EM), where the

resolution criteria are well established.

For MX, the resolution depends according to Bragg’s law on

the reciprocal of the highest order diffraction peak that can

be detected from the background and that enters structure

refinement (Bragg & Bragg, 1913). Application of this prin-

ciple to deduce the resolution from the maximum momentum-

transfer value smax that was used to generate a SAS model

would only give a nominal theoretical limit (2�/smax) without

much practical value because of the ambiguity of SAS

reconstructions. The resolution of EM data is commonly

estimated by a Fourier shell correlation (FSC) method, where

the electron-density maps reconstructed from two separately

processed sets of experimental images are compared in reci-

procal space (van Heel & Stöffler-Meilicke, 1985; Saxton &

Baumeister, 1982; Harauz & van Heel, 1986). A separation

into two independent data sets is obviously not applicable to

SAS, where only a single experimental scattering profile is

available, and the experimental SAS data are inter-correlated

owing to Shannon sampling (Shannon & Weaver, 1949).

Another major structural method, nuclear magnetic resonance

spectroscopy (NMR), yields ensembles of atomic models

compatible with the experimental NMR data. Although no

agreed resolution criteria for NMR models are available [e.g.

the root-mean-square-deviation (r.m.s.d.) between the models

may sometimes overestimate the resolution; Montelione et al.,

2013; Vuister et al., 2014], stereochemical validation can

help one to assess the model

quality. Such a validation-based

approach, also common for MX

structures (Read et al., 2011;

Doreleijers et al., 2012; Berjanskii

et al., 2012), cannot be used for

solution scattering as SAS models

do not reveal atomic detail.

In ab initio shape reconstruc-

tion using SAS data, the three-

dimensional models are repre-

sented using finite volume

elements, e.g. densely packed

beads (Svergun, 1999; Franke &

Svergun, 2009) or dummy resi-

dues (DRs; Svergun et al., 2001).

The reconstruction starts from a

random configuration of volume

elements and utilizes an optimi-

zation algorithm (e.g. Monte

Carlo-based simulated annealing)

to fit the computed theoretical

scattering from the model to the

experimental SAS profile. In

addition to the discrepancy of the

fit, the target function includes

constraints ensuring the physical

feasibility of models such as

interconnectivity and compact-

ness. Multiple ab initio recon-

structions starting from different

random configurations yield

varying models with similar

overall appearance, with each

model being consistent with the

experimental SAS data. Typically,

research papers

IUCrJ (2016). 3, 440–447 Anne T. Tuukkanen et al. � Resolution of ab initio shapes from SAS 441

Figure 1
Overview of the FSC approach for estimating the variability of structural ensembles. Firstly, multiple runs
of ab initio modelling, shown here for lysozyme, are performed to generate an ensemble of models from the
given scattering intensity profile I(s) (s = 4�sin�/�, where 2� is the scattering angle and � is the radiation
wavelength). The reconstructed bead or dummy-residue models are then structurally aligned and their
pairwise FSC functions are computed. The average of all pairwise FSC functions is used to determine the
variability estimate �ens as 2�/sens, where sens is the momentum-transfer value at which the average FSC
falls below 0.5. The corresponding resolution is estimated based on the variability using a linear regression
model.



ten to 20 reconstructions are performed, and the models

(including their enantiomorphs, which give exactly the same

scattering patterns) are superimposed using pairwise normal-

ized spatial discrepancies (NSDs; Kozin & Svergun, 2001). The

model (or enanthiomorph) with the smallest average NSD is

selected, the other models are aligned with it and the resulting

map is averaged. The average model has been demonstrated

to retain the most persistent features of all reconstructions

(Volkov & Svergun, 2003). However, the averaging procedure

provides no assessment of resolution as, in contrast to NMR

ensembles, multiple SAS models do not possess a one-to-one

atom or residue correspondence and the calculation of r.m.s.d.

values is not possible.

The lack of objective criteria to assess SAS model resolu-

tion is a serious drawback that hinders critical assessment of

the results, especially in view of the growing use of SAS in

structural biology and the deposition of SAS models in

archives (Hura et al., 2009; Valentini et al., 2015). A quanti-

tative resolution measure is needed for meaningful compar-

ison of SAS models with structural results obtained by other

experimental techniques. Here, we present an approach to

estimate the resolution of ab initio SAS-derived shapes by

analysing FSC functions across an ensemble of models

compatible with the SAS data. It is demonstrated that the

average FSC function over an ensemble that reflects the

variability of models can be related to the resolution of the

individual models in the shape reconstruction. The approach is

implemented in a publicly available computer program and its

utility is demonstrated by a series of tests on synthetic data

and by practical examples.

2. FSC measure of variability for SAS models

Firstly, we introduce a variability measure of ab initio SAS

models consisting of beads or DRs. Given that the numbering

of volume elements in these models is arbitrary, no direct

correspondence exists between the beads or DRs in two

different models. A general real-space measure is thus difficult

to define and the use of Fourier transforms is appropriate.

Similar to the FSC function for EM (van Heel & Stöffler-

Meilicke, 1985; Saxton & Baumeister, 1982; Harauz & van

Heel, 1986), we employ the normalized cross-correlation

coefficient between scattering amplitudes of two structural

models over corresponding shells in reciprocal space. If A and

B are two (appropriately aligned) bodies with known struc-

tures and A(s) and B(s) are their three-dimensional scattering

amplitudes (here, s is the scattering vector in reciprocal space),

a one-dimensional FSC is the function of the momentum

transfer (also called spatial frequency),

FSCðsÞ ¼

P
ðs;�sÞAðsÞ � B

�ðsÞ

P
ðs;�sÞ jAðsÞj

2 P
½s;�s� jBðsÞj

2
n o1=2

ð1Þ

where (s, �s) are the radius and width of the spherical shell in

reciprocal space. The scattering amplitudes of ab initio models

A and B can be represented in reciprocal space using a

spherical harmonics expansion,

AðsÞ ¼
PL
l¼0

Pl

m¼�l

AlmðsÞYlmð�Þ; ð2Þ

BðsÞ ¼
PL
l¼0

Pl

m¼�l

BlmðsÞYlmð�Þ; ð3Þ

where s = (s, �) is the scattering vector in spherical coordi-

nates, Alm(s) and Blm(s) are the partial scattering amplitudes

of the models A and B, L is the truncation value which defines

the accuracy of the expansion and Ylm(�) are the spherical

harmonics of order (l, m) (Stuhrmann, 1970). The partial

amplitudes are computed using the form factor fk(s) of either a

bead or a dummy residue and using the equation

AlmðsÞ ¼ 4�il
PN
k¼1

fkðsÞjlðsrkÞY
�
lmð�kÞ; ð4Þ

where jl(sr) are spherical Bessel functions. Substituting the

spherical harmonics representation of scattering amplitudes

[equations (2) and (3)] into (1) and using the orthogonality of

spherical harmonics functions
R

Ylmð�ÞY
�
l0m0 ð�Þ d� ¼ �lm, the

FSC function becomes

FSCðsÞ ¼

P
s½
PL

l¼0

Pl
m¼�l AlmðsÞ � BðsÞlm�

½
P

s IAðsÞ � IBðsÞ�
1=2

; ð5Þ

where IA(s) and IB(s) are the scattering intensities of the

models A and B.

For non-identical structures, the FSC decreases with

momentum transfer, reflecting the loss of structural similarity

with increasing resolution. FSC is commonly used in EM when

comparing two density maps to estimate map resolution,

which is defined as the spatial frequency at which the FSC

function value falls below a certain threshold. The FSC

function usually decreases monotonically, although local

oscillations may also be observed, which can be dampened by

selecting an appropriate width of the spherical shell �s

[equation (1)].

As described above, multiple ab initio shape determinations

are typically carried out in SAS, and an ensemble of (typically

10–20) aligned models, each consistent with the experimental

data, is then available. To quantify the variability of an ab

initio ensemble, the scattering amplitudes of the aligned

models are computed and the pairwise FSC functions are

evaluated using (1). The average of these FSC functions can

then be used to obtain the variability measure �ens of the

ensemble (Fig. 1). For EM maps, the midpoint (0.5) threshold

in the FSC function is often employed to define the resolution,

although other values have also been discussed (van Heel &

Schatz, 2005; Penczek, 2010). Our calculations on randomized

models (xS1, Supporting Information) confirmed that the

midpoint of the FSC does provide a resolution measure that

agrees well with the randomization magnitude. An FSC

threshold of 0.5 was therefore adopted in subsequent calcu-

lations and the variability measure �ens was defined as 2�/sens

from the momentum-transfer value sens at which the average

FSC value falls below 0.5. Note that the averaging of the

pairwise FSCs dampens the oscillations observed in the indi-
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vidual FSC functions, thereby improving the precision of sens

estimation for the ensemble (Fig. 1).

2.1. Variability and the benchmark protein set

To analyse the properties of the variability estimate �ens, we

performed ab initio modelling on synthetic SAXS data sets

from 107 benchmark proteins with a wide range of molecular

weights (between 7 and 670 kDa), oligomeric states and

SCOPe folds with known high-resolution structures from the

Protein Data Bank (PDB; Fox et al., 2014; Berman et al., 2003;

Supplementary Tables S1 and S2). The structures were

annotated either as oblate, prolate or equant using Zingg’s

shape classification of particles (Zingg, 1935). Synthetic SAXS

profiles I(s) were generated for each benchmark with

CRYSOL using spherical harmonics with order up to 18, a

Fibonacci grid with order 17 and default parameters for the

solvent density as well as for the contrast of hydration layers

(Svergun et al., 1995). This was followed by determination of

the distance-distribution functions p(r) for each data set using

GNOM (Semenyuk & Svergun, 1991) and shape reconstruc-

tions with DAMMIF (bead models) or GASBOR (DR

models). Given that the range of scattering data containing

overall shape information is inversely proportional to the

particle size, the DAMMIF reconstructions were conducted in

the range (0, 7.0/Rg), where Rg is the radius of gyration of the

protein. This low-angle portion of the scattering profile,

corresponding to about five Shannon channels (Shannon &

Weaver, 1949), contains overall shape information and this

range is normally employed for shape determination.

GASBOR reconstructions with more detailed dummy residue

representation can utilize higher resolution data and were

conducted using a fixed smax value of 0.5 Å�1, which is a typical

experimental SAS data range. For each protein, 20 recon-

structions were generated, the models were pairwise aligned

using SUPCOMB (Kozin & Svergun, 2001) and the variability

within the ensembles was computed using the above FSC

approach. Among the proteins in the benchmark set, the

computed variability varied between 7.2 and 38.0 Å for the

bead models and between 9.0 and 47.8 Å for the DR models

(Fig. 2).

Additionally, variable data ranges were used for a subset of

15 benchmark proteins such that the product smax�Rg equalled

either 5.0, 7.0 or 9.0 (Supplementary Table S5). For GASBOR

modelling, two fixed smax values, 0.5 and 1.0 Å�1, were used.

Furthermore, a set of experimental SAXS profiles was

retrieved from the the Small Angle Scattering Biological Data

Bank (SASBDB; Valentini et al., 2015; Supplementary Table

S9 and Fig. 3) to test the variability approach on typical

experimental data ranges. 20 independent ab initio DAMMIF

and GASBOR models were generated for every protein using

the selected data ranges and default parameters of the

programs.

3. From variability to resolution

The ensemble variability is a measure of the reproducibility of

the shape reconstruction, and on its own does not provide the

resolution of the reconstructed models (which is a measure of

their accuracy, i.e. how close they are to the ‘true structure’). A

question arises as to whether and how the two quantities are

related to each other. To answer this, we calculated the FSC

functions between the known high-resolution X-ray crystallo-

graphic structures of the benchmark proteins and the ab initio

models in the generated ensembles (Supplementary Tables S1

and S2 and Supplementary Figs. S1 and S2). The cross-

correlated resolution �CC of the ensembles is the actual

resolution of the SAS models based on comparison with a
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Figure 2
Relationship between the �ens and �CC values of the benchmark protein
dummy-bead (a) and dummy-residue (b) ensembles. The two quantities
show linear correlation for both bead (Pearson correlation coefficient r =
0.80) and dummy-residue (Pearson correlation coefficient r = 0.86)
models. SAS resolution values can be estimated by linear regression
models (bead models, resolution = 0.96�ens + 7.7; dummy-residue models,
resolution = 1.10�ens + 5.8; red solid lines). The 95% confidence intervals
are shown by red dotted lines and the 95% prediction intervals by blue
dotted lines



known high-resolution structure of the same protein deter-

mined from the averaged pairwise FSC function at a cutoff of

0.5. For each ab initio model, the enantiomorph providing the

better alignment with the reference atomic model from PDB

was selected.

For all proteins analysed, �CC was found to be system-

atically somewhat larger than the ensemble variability �ens

(Supplementary Tables S1 and S2 and Fig. 2). The �CC values

of the ensembles within the benchmark data set ranged

between 13.5 and 52.2 Å for bead models and between 13.4

and 76.0 Å for DR models. Most importantly, the variability

measure �ens and the cross-validated resolution �CC

demonstrated a good correlation, as depicted in Fig. 2. The

dependence can be described well by a linear relationship

between the two parameters with Pearson correlation coeffi-

cients r = 0.80 for DAMMIF models and r = 0.86 for GASBOR

models. Separate linear regression models for bead and

dummy-residue ensembles based on benchmark data were

employed to predict the SAS resolutions from the ensemble

variation �ens. The observed correlation between �ens and

�CC allows one to directly estimate the resolution of ab initio

models from the variation of the ensembles �ens as

resolution ¼ ��ens þ �; ð6Þ

where the coefficient � is the slope presenting the expected

change in resolution in response to the change in ensemble

variability �ens, and � is a constant representing the attainable

resolution limit at zero variability. Coefficients � of 0.96� 0.07

and 1.10� 0.09 and constant values � of (7.7� 1.3) Å and (5.8

� 1.2) Å were found for DAMMIF and GASBOR models,

respectively. The 95% confidence intervals for new observa-

tions and the fitted functions were computed using the inverse

t statistic with n � 2 degrees of freedom, with n being the

number of data pairs (Fig. 2). All statistical analyses were

performed with MATLAB (Mathworks Inc.).

The ensemble variability is systematically smaller than the

actual resolution of the models because of the constraints such

as interconnectivity and compactness imposed in the ab initio

modelling. The constraints restrict the available conforma-

tional space, thus increasing the consistency of the models and

decreasing the ensemble variation (xS2, Supporting Informa-

tion). It must be underlined, however, that these constraints

are very mild, are always applied in a pre-defined way and do

not introduce misfitting to data or inaccuracy in the resulting

models. Thus, the established relations between variability

and resolution remain constant from one reconstruction to

another. Interestingly, both for bead and DR modelling, the

linear dependencies are offset by a constant (�), which may be

rationalized as the variability that is always present even for

idealized cases, i.e. the best resolution attainable for SAS-

based ab initio shape reconstruction (about 7–8 Å for bead

modelling and 5–6 Å for DR modelling). The different offset

values also correlate well with the fact that the size of the

smallest volume element in a structural model limits the

maximum obtainable resolution and that bead models have a

more coarse-grained representation than dummy-residue

models. We should note that the different representations of

the hydration layer employed by DAMMIF (hydration layer

included in bead models) and GASBOR (explicit dummy

water molecules) have only a minor impact on the relation

between variability and resolution.

For the bead modelling, a few data points are observed to

fall outside the 95% confidence interval (Fig. 2a). All of these

are structures of oligomeric proteins with internal cavities or

holes (xS3, Supporting Information). The bead-modelling

procedure always attempts to build the lowest complexity

models compatible with the experimental data and therefore

tends to smear the finer details. This

naturally increases the �CC value and

explains the elevated �CC/�ens ratio for

such structures. Interestingly, the effect

is absent for DR-based modelling,

which utilizes higher angle data and

thus can better represent more compli-

cated shapes (no outliers are observed

in Fig. 2b).

To further validate the proposed

method, we performed a jackknife test

on 25 synthetic data sets from proteins

with known structures taken from the

PDB that were not included in the

original benchmark set (Fig. 3 and

Supplementary Table S3). Using the

variability measure �ens of the bead and

DR model ensembles, we predicted the

effective resolutions with (6) and

compared these with the cross-corre-

lated resolution values �CC. The

comparison yielded an excellent corre-

lation, with an r of 0.84 and 0.97 for
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Figure 3
The ratio between the cross-validated resolution �CC and the estimated SAS resolution for the
jackknife set (blue dots) and for the experimental data set (red dots) as a function of the molecular
weight for DAMMIF bead models (a) and GASBOR dummy-residue models (b).



bead and DR models, respectively, indicating high fidelity of

the computation of resolution through the variability.

4. Implementation and testing of the resolution
assessment

The FSC approach for estimating the resolution of models

consists of four steps: (i) pairwise structural alignments of ab

initio models reconstructed from a given SAS profile, (ii)

computation of the scattering amplitudes of the aligned

models, (iii) evaluation of the pairwise FSC functions using

spherical harmonics and (iv) determination of the model

variability and resolution based on the average of the pairwise

FSC functions (equation 6 and Supplementary Figs. S1 and

S2). Pairs of models are structurally aligned using SUPCOMB

(Kozin & Svergun, 2001) or SUPALM (Konarev et al., 2006)

and the FSC is computed using spherical harmonics for all

possible model pairs within the ensemble. Hence, for an

ensemble of N ab initio models, N(N � 1)/2 FSC comparisons

are performed. The average FSC function is computed and

smoothed using a sliding window of width �s = 0.1 Å�1, which

is comparable to the standard width of the shell in reciprocal

space (�s = 0.08 Å�1) used in EM FSC computations (Shaikh

et al., 2008). The variability measure �ens is defined as 2�/sens,

where sens is the momentum-transfer value at which the

average FSC falls below 0.5. Similarly, the cross-validated

resolution �CC of an ab initio ensemble is obtained from the

FSC comparison against the reference high-resolution struc-

ture using the same threshold.

4.1. Influence of random noise and data range

We have further checked the effect of noise in the simulated

data on the assessment of resolution (Supplementary Table

S4). In order to observe the influence of noise on the ensemble

variability �ens and the cross-correlated resolution �CC, we

generated synthetic SAXS profiles for three proteins (PDB

entries 3lzt, 1wla and 1att) and added 5, 10 or 20% of simu-

lated white noise relative to the scattering intensity I(s) for

each data point (Supplementary Table S4). Ab initio modelling

and resolution estimations were performed in a standard way

using these noisy data sets. Both the �ens and �CC values were

found to be stable against random noise added to the simu-

lated data of up to 20% relative to the scattering intensity.

The conclusions about the transformation from variability to

resolution therefore remain valid even in the presence of

random errors in the experimental data.

To test the dependence of the ensemble resolution on

the data range, additional DAMMIF modelling runs were

performed for 12 proteins from the original benchmark set

utilizing data in the smax�Rg product range from 5.0 to 9.0. The

results, presented in Supplementary Table S5, indicate that the

effective resolution provided by the bead-model ensembles

is not directly related to the data range used. Some minor

improvements were observed in �CC for small globular

proteins with round shapes upon increasing smax, but in

general the variations were within the significance limits and

the correlation between �ens and �CC stayed as given in (6)

for all the data ranges used.

Generally, DR models utilizing higher scattering angles

showed better correlation with the crystal structures and

yielded better �ens and �CC values compared with the bead

models, especially for smaller proteins (Supplementary Tables

S1 and S2). However, DR reconstructions using data up to

smax = 1.0 Å�1 (nominal resolution 6 Å) yielded �ens and �CC

values very similar to those obtained using smax = 0.5 Å�1

(nominal resolution 12 Å). This (somewhat disappointing but

important) finding further confirms that most of the infor-

mation about the particle shape is concentrated at the very

low angles. The models built from the DRs are able to fit

higher scattering angles and to provide more detailed shapes,

but they do not necessarily yield better reconstructions of the

high-resolution structure at resolutions beyond 10 Å. This

result should by no means be taken as proof that information

about the internal structure is not present in the SAS data, but

rather as an indication that the approximations utilized in ab

initio methods do not extract it. Indeed, the DR modelling

approach employs identical residues with averaged scattering

form factors, representing a chain-compatible assembly. Upon

the addition of a priori information, e.g. sequence, secondary

structure and knowledge-based potentials, scattering at higher

angles may be meaningfully interpreted in SAXS-assisted

folding approaches (Zheng & Doniach, 2005; Dos Reis et al.,

2011).

Overall, our results further confirm that the resolution of ab

initio SAS models is not directly related to the range of the

fitted data. For the data ranges employed in the shape deter-

mination (about 4–7 Shannon channels for bead models and

10–20 channels for DR models), the resolution can be reliably

estimated through variability using equation (6).

4.2. Symmetric reconstructions

Macromolecules and complexes consisting of repeating

subunits often build symmetric assemblies. If known, the point

symmetry can be directly utilized in ab initio shape determi-

nation as a hard constraint whereby only the asymmetric unit

is restored and the complete shape is constructed by appro-

priate symmetry operations. Symmetric reconstructions

available both for bead (Franke & Svergun, 2009) and DR

(Svergun et al., 2001) models are often employed, e.g. for

shape analysis of oligomeric proteins. An important question

is: how do symmetry constraints influence the variability and

resolution of the shape restoration?

To answer this, we have conducted symmetric bead recon-

structions using synthetic data from 40 proteins taken from the

PDB, including dimers (point symmetry P2), trimers (P3),

tetramers (P222) and hexamers (P32 and P6) (Supplementary

Tables S6, S7 and S8). Imposing symmetry reduces the search

space, and one might have expected the symmetric recon-

structions to be less variable and to potentially provide better

resolution compared with the general case. However, the

situation is more complicated because the symmetry also
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makes the real-space search anisotropic. This is especially

critical for anisometric particles and it is known that shapes

with incorrect anisometry (prolate versus oblate) may be

obtained when imposing symmetry (Koch et al., 2003). Given

that the desired anisometry can be used as a restraint in the

shape reconstructions, the influence of the anisometry condi-

tion was also analysed. In general, symmetry constraints tend

to increase (and not decrease) the ensemble variability

because of the possibility of obtaining reconstructions with

varying orientations of symmetry axes and anisometry direc-

tions. This effect is more pronounced for single-axis symme-

tries (P2, P3 etc.; see Supplementary Tables S6 and S7) and is

less pronounced for multiple axes such as P222 symmetry

(Supplementary Table S8; for the latter case, the ensemble

variability is indeed comparable with the validated resolu-

tion). As expected, imposing incorrect anisometry (e.g. prolate

reconstruction of an oblate particle) leads to a significant

increase in the �CC/�ens ratio. Similar results were obtained

with the DR modelling method.

From the overall comparison of the results, it can be

concluded that the �CC/�ens ratios for symmetric recon-

structions are either less than or equal to those obtained in the

asymmetric shape analysis. The variability of the symmetric

ensembles can therefore be utilized for the assessment of the

resolution using (2) to obtain a conservative estimate of the

actual resolution. If needed, this estimate can always be

complemented or validated by calculations performed without

symmetry restrictions.

4.3. Program implementation and applications

The algorithm to evaluate the resolution of ab initio models

has been implemented in a Fortran program called SASRES,

which aligns multiple ab initio models provided by DAMMIF

or GASBOR using SUPCOMB (Kozin & Svergun, 2001) (or

its faster implementation SUPALM; Konarev et al., 2006) and

computes the FSC functions. The alignment and averaging is a

standard final step in the shape determination and, given that

SASRES is integrated in the workflow, its inclusion does not

require any additional effort from the user. SASRES can also

be used as a standalone program on any set of bead or DR

models obtained using alternative procedures.

To test the performance of the approach on real data, we

applied the resolution-assessment procedure to ten experi-

mental SAXS data sets taken from the SASBDB (Supple-

mentary Table S9 and Fig. 3). To cross-validate the resolution

estimates, entries were selected for which the scattering

computed from the available PDB structures matched the

experimental SAXS data well according to �2 statistics. Shapes

were generated directly from the experimental data using

DAMMIF and GASBOR and were then analysed using

SASRES. The resolutions estimated by SASRES and the

cross-validated resolutions �CC agree very well (red dots in

Fig. 3 and Supplementary Table S9), demonstrating the

robustness of the method as applied to real experimental

data.

5. Conclusions

The macromolecular models obtained by structural methods

such as MX and EM are always reported in publications and

deposited in public archives (Berman et al., 2003) along with

their resolution, which is an extremely important piece of

information related to the model quality. The last decade has

witnessed tremendous progress in the field of SAS, which has

become a mainstream method in structural biology, thanks to

new experimental possibilities and to novel data-interpreta-

tion approaches to reconstruct three-dimensional models from

one-dimensional SAS data. SAS-generated models are now

made available to the community through dedicated archives

(Hura et al., 2009; Valentini et al., 2015). However, until now,

no criteria have been available to quantify the resolution of

models constructed from SAS data, making it difficult

to meaningfully utilize these models to answer biological

questions.

The inherent ambiguity of three-dimensional reconstruc-

tions from one-dimensional data is one of the major problems

of SAS, as multiple (albeit similar at low resolution) models

may be generated yielding essentially the same scattering

profile. Here, we demonstrate that this ambiguity may para-

doxically be useful in establishing the resolution of ab initio

shape modelling. A resolution measure based on analysis of

the average FSC functions within an ensemble of recon-

structions compatible with a given data set is introduced.

Using numerous simulated and experimental data sets, it is

shown that the resolution of ab initio models is directly related

to the variability of the models in the ensemble. In standard

SAS applications, multiple ab initio runs are employed to

average the shapes and to find the most probable recon-

struction. The latter model by definition has the smallest

overall shape discrepancy from the other members of the

ensemble. Given that the FSC-based measure reflects an

average over this ensemble, the resolution assessment by

FSC is to be attributed to the most probable reconstruc-

tion, which is also the model typically reported in publi-

cations. The FSC-based resolution metric sets up a useful

threshold for the analysis of ab initio SAS models, stating

that structural features finer than the resolution cannot be

interpreted with confidence. Of course, one should not forget

about the possibility of reconstructing an enantiomorphous

model of the object. The enantiomorphs are automatically

considered in the alignment and averaging procedures (Kozin

& Svergun, 2001; Volkov & Svergun, 2003; Konarev et al.,

2006) and, correspondingly, in the analysis of the FSC

functions.

The program SASRES that evaluates the resolution is

seamlessly incorporated into the multiple-model analysis but

can also run in a standalone mode. The executable of SASRES

is free for academic users and can be downloaded with the

ATSAS software suite as of release 2.8 (http://www.embl-

hamburg.de/biosaxs/software.html). SASRES is also available

for online use at http://www.embl-hamburg.de/biosaxs/atsas-

online/sasres.php. We expect FSC-based resolution analysis to

become a standard step in ab initio modelling and propose
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that the resolution should be reported in publications and

depositions of SAS data and models.
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Heel, M. van & Stöffler-Meilicke, M. (1985). EMBO J. 4, 2389–2395.

Hura, G. L., Menon, A. L., Hammel, M., Rambo, R. P., Poole, F. L. II,
Tsutakawa, S. E., Jenney, F. E. Jr, Classen, S., Frankel, K. A.,
Hopkins, R. C., Yang, S.-J., Scott, J. W., Dillard, B. D., Adams,
M. W. W. & Tainer, J. A. (2009). Nat. Methods, 6, 606–612.

Koch, M. H. J., Vachette, P. & Svergun, D. I. (2003). Q. Rev. Biophys.
36, 147–227.

Konarev, P. V., Petoukhov, M. V., Volkov, V. V. & Svergun, D. I.
(2006). J. Appl. Cryst. 39, 277–286.

Kozin, M. B. & Svergun, D. I. (2001). J. Appl. Cryst. 34, 33–41.
Montelione, G. T., Nilges, M., Bax, A., Güntert, P., Herrmann, T.,

Richardson, J. S., Schwieters, C. D., Vranken, W. F., Vuister, G. W.,
Wishart, D. S., Berman, H. M., Kleywegt, G. J. & Markley, J. L.
(2013). Structure, 21, 1563–1570.

Penczek, P. A. (2010). Methods Enzymol. 482, 73–100.
Pernot, P. et al. (2013). J. Synchrotron Rad. 20, 660–664.
Petoukhov, M. V. & Svergun, D. I. (2005). Biophys. J. 89, 1237–1250.
Read, R. J. et al. (2011). Structure, 19, 1395–1412.
Reis, M. A. dos, Aparicio, R. & Zhang, Y. (2011). Biophys. J. 101,

2770–2781.
Saxton, W. O. & Baumeister, W. (1982). J. Microsc. 127, 127–138.
Semenyuk, A. V. & Svergun, D. I. (1991). J. Appl. Cryst. 24, 537–540.
Shaikh, T. R., Gao, H., Baxter, W. T., Asturias, F. J., Boisset, N., Leith,

A. & Frank, J. (2008). Nat. Protoc. 3, 1941–1974.
Shannon, C. E. & Weaver, W. (1949). The Mathematical Theory of

Communication. Urbana: University of Illinois Press.
Stuhrmann, H. B. (1970). Acta Cryst. A26, 297–306.
Svergun, D. I. (1999). Biophys. J. 76, 2879–2886.
Svergun, D., Barberato, C. & Koch, M. H. J. (1995). J. Appl. Cryst. 28,

768–773.
Svergun, D. I., Koch, M. H. J., Timmins, P. A. & May, R. P. (2013).

Small Angle X-ray and Neutron Scattering from Solutions of
Biological Macromolecules. Oxford University Press.

Svergun, D. I., Petoukhov, M. V. & Koch, M. H. J. (2001). Biophys. J.
80, 2946–2953.

Valentini, E., Kikhney, A. G., Previtali, G., Jeffries, C. M. & Svergun,
D. I. (2015). Nucleic Acids Res. 43, D357–D363.

Volkov, V. V. & Svergun, D. I. (2003). J. Appl. Cryst. 36, 860–864.
Vuister, G. W., Fogh, R. H., Hendrickx, P. M. S., Doreleijers, J. F. &

Gutmanas, A. (2014). J. Biomol. NMR, 58, 259–285.
Zheng, W. & Doniach, S. (2005). Protein Eng. Des. Sel. 18, 209–219.
Zingg, T. (1935). PhD thesis. ETH Zurich.

research papers

IUCrJ (2016). 3, 440–447 Anne T. Tuukkanen et al. � Resolution of ab initio shapes from SAS 447

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hi5642&bbid=BB39

