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X-ray scattering images contain numerous gaps and defects arising from

detector limitations and experimental configuration. We present a method to

heal X-ray scattering images, filling gaps in the data and removing defects in a

physically meaningful manner. Unlike generic inpainting methods, this method

is closely tuned to the expected structure of reciprocal-space data. In particular,

we exploit statistical tests and symmetry analysis to identify the structure of an

image; we then copy, average and interpolate measured data into gaps in a way

that respects the identified structure and symmetry. Importantly, the underlying

analysis methods provide useful characterization of structures present in the

image, including the identification of diffuse versus sharp features, anisotropy

and symmetry. The presented method leverages known characteristics of

reciprocal space, enabling physically reasonable reconstruction even with large

image gaps. The method will correspondingly fail for images that violate these

underlying assumptions. The method assumes point symmetry and is thus

applicable to small-angle X-ray scattering (SAXS) data, but only to a subset of

wide-angle data. Our method succeeds in filling gaps and healing defects in

experimental images, including extending data beyond the original detector

borders.

1. Introduction

X-ray scattering is a powerful technique for quantifying

structural order in materials. Small-angle X-ray scattering

(SAXS) enables probing of nanoscale structural order, while

wide-angle X-ray scattering (WAXS) can probe molecular and

atomic order. These techniques have seen broad uptake for

studying a wide variety of materials (Williams et al., 1999),

including hard matter such as alloys, ceramics and composites

(Fratzl, 2003); soft matter (Hexemer & Müller-Buschbaum,

2015), including polymers (Higgins & Stein, 1978; Chu &

Hsiao, 2001; Smilgies et al., 2002) and interfacial ordering

phenomena (Cristofolini, 2014); nanomaterials (Dubcek,

2005) such as block-copolymers (Müller-Buschbaum, 2003;

Müller-Buschbaum, 2016; Majewski & Yager, 2016), nano-

particles (Ingham, 2015; Li et al., 2016) and nanoparticle

superlattices (Yager et al., 2014; Senesi & Lee, 2015); and

biological materials (Blanchet & Svergun, 2013; Jacques &

Trewhella, 2010; Yang, 2014; Vestergaard & Sayers, 2014),

including plant (Liu, Kim et al., 2016) and human tissues (Liu,

Constantino et al., 2016).

In a modern synchrotron X-ray scattering experiment, data

are collected on a two-dimensional (area) detector. Beamlines

are increasingly using photon-counting area detectors, which

are fabricated by merging together many pixel-array modules

to provide tiled coverage of a given solid angle. An experi-

mental X-ray scattering image inevitably contains a host of

defects in the area image: bad pixels (either detector defects or
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‘zingers’ during the exposure), the beamstop, high-intensity

streaks (e.g. from slit scattering), detector inter-module gaps

and shadowing from the experimental geometry (sample

chamber, exit window etc.). Collectively, these defects are

treated by masking the experimental image, and thereby

discarding portions of the data that are erroneous or

untrustworthy. These masked regions are – manifestly – gaps

in the data; ideally these gaps would instead be filled with

physically correct information.

In this paper, we describe an algorithm to fill gaps in X-ray

scattering datasets, thereby ‘healing’ the image defects. At first

glance, this would seem to be a highly ill-advised operation.

The gaps in the data represent segments of reciprocal space

that were not measured; thus, nothing can be unambiguously

said about the data one would have obtained if those regions

had been experimentally measured. Any image correction will

thus either introduce substantial artifacts, or will simply reflect

the assumptions inherent to the healing algorithm. However,

there are in fact a number of reasons why healing of scattering

images can be extremely beneficial – provided the correction

is done in a way that respects the physics of scattering.

Firstly, we note that image healing can be useful as part of

data visualization. The exclusion of known defects and arti-

facts from X-ray scattering images allows the experimenter to

instead focus on the portions of the data that are meaningful.

While masking covers untrustworthy data, filling gaps is

preferable in the sense that unphysical regions of zero inten-

sity are avoided. Moreover, image healing can be applied in an

‘extension’ or ‘continuation’ mode, where the structure of the

image outside of the original image regions is inferred (e.g.

one can attempt to reconstruct the complete 360� pattern from

a single quadrant). Such a visualization can help a human

experimenter to identify the structure and symmetry of the

scattering pattern more easily.

Secondly, image completion allows X-ray scattering

detector data to be used in a wider range of software. Software

written specifically for X-ray scattering, diffraction and crys-

tallography is typically ‘mask aware,’ with explicit handling for

regions of data to be included/excluded from analysis (Yang,

2013; Jiang, 2015; Hammersley, 2016). Complete scattering

images can, however, additionally be transformed, processed

and analyzed using the enormous range of existing image

analysis algorithms, software libraries and graphic tools. For

instance, most existing implementations of correlation analysis

and convolution algorithms are not mask aware; yet these

tools can yield important insights about sample structure

(Wochner et al., 2009; Altarelli et al., 2010; Lhermitte et al.,

2017). It is also worth noting that computational performance

is likely to be higher for implementations that can ignore

masking issues.

Thirdly, image healing can be extremely beneficial for

automated analysis. Modern synchrotrons and X-ray free

electron lasers (XFELs) have unprecedented brightness and

are yielding data at previously unimaginable rates (Weckert,

2015; Schlichting, 2015). It is no longer practical for human

scientists to analyze these enormous data volumes manually;

instead, automated analysis is increasingly being pursued.

Machine-learning methods have made enormous progress in

recent years in a wide variety of domains, including text

recognition, machine translation, automated transcription and

image identification (Lecun et al., 1998; Krizhevsky et al.,

2012). Recently, these kinds of tools have been applied to

solve scientific data challenges, including in the analysis of

scattering images (Yoon et al., 2011; Giannakis et al., 2012;

Schwander et al., 2012). In our ongoing work on the use of

machine vision and deep learning methods to categorize X-ray

scattering images automatically (Huang et al., 2014; Kiapour et

al., 2014; Wang, Guan et al., 2016; Wang, Yager et al., 2016), we

have found that image masking can be a substantial hindrance.

From the point of view of image recognition, the mask

represents an extremely strong feature, exhibiting sharp edges

with high intensity variation. These features can easily domi-

nate the analysis (refer to Fig. S1 in the supporting informa-

tion for an example; where in a PCA analysis, all of the

components exhibit the mask features, since these features are

strong and invariant). Image healing is thus a useful prepro-

cessing step, removing an artifact that would otherwise

confuse machine-learning methods. Moreover, image exten-

sion can be useful to bring all training and testing images into a

uniform space. That is, X-ray scattering data are measured in a

highly heterogeneous way (sampling somewhat different

windows of reciprocal space, depending on beamline setup);

image extension can map this heterogeneous data into a

uniform representation. Overall, our preliminary results

indicate that preprocessing of X-ray scattering images is an

extremely useful tool for vastly improving the performance of

machine-learning methods.

Finally, as shall be seen throughout this manuscript, the

implementation of an image-healing algorithm tuned to X-ray

scattering data inherently extracts intermediate results that

are of value in the analysis of such data. A robust image-

healing workflow can be thought of instead as an image

analysis workflow, where the ultimate healed image is ignored

and the intermediate analysis results are used instead. In this

sense, image correction is an excellent test case to develop

improved analysis methods and pipelines.

Image healing is a well studied problem, especially as it

applies to photographs (e.g. removing dust and scratches),

scanned documents and photo retouching. In order to fill small

gaps in images, a variety of inpainting algorithms have been

developed (Bertalmio et al., 2003; Bugeau & Bertalmio, 2009).

The simplest algorithms involve interpolation using linear or

polynomial fits. While such methods can fill small gaps in

smooth and continuous data, they fail outside of these simple

cases. This approach can be improved by taking inspiration

from transport equations, thereby modeling ‘flow’ of image

intensity into gaps (Casaca et al., 2014). Structural inpainting

extrapolates the geometric structure of the image (Bertalmio

et al., 2000), while textural inpainting replicates repeating

patterns into gaps. These two approaches can be combined for

improved quality (Bertalmio et al., 2003; Sangeetha et al.,

2011). Another class of approaches focuses on identifying best

matches between patches adjacent to gaps and patches else-

where in the image (Criminisi et al., 2003, 2004). While these
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algorithms can achieve impressive results when applied to

photographs, they generally perform poorly for scientific

datasets, and X-ray scattering images in particular. Firstly, the

gaps in scattering images can be quite large (compared to what

simple inpainting methods can accommodate without arti-

facts). Moreover, most conventional approaches do not

correctly handle the (experimentally common) case of an

important feature being truncated by a mask edge, or entirely

lost behind a masked region. For instance, a Gaussian peak

bisected by a gap will not be correctly reconstructed by

interpolation (which will simply connect the shoulders of the

peak). More advanced algorithms may improve the visual

quality of the reconstruction, but they generally will not do so

in a way that actually matches the nature of the experimental

data.

Here, we develop a ‘physics-aware’ image-healing algo-

rithm. By exploiting fundamental properties of reciprocal

space (such as continuity and symmetry) and typical experi-

mental features (such as peaks and rings), our algorithm

reconstructs in a way that conforms to the known physics of

scattering experiments. We demonstrate robust statistical

methods for extracting a signature of overall image features

(e.g. diffuse versus localized) and for determining the

symmetry of features. We again emphasize that filling gaps in a

detector image is a formally ill-posed problem, without a well

defined single solution. Nevertheless, by using a healing

algorithm closely tied to the nature of scattering data, we are

able to both inpaint and extend scattering images in a manner

that preserves – and indeed highlights – the real structural

features of the data.

2. Methods and results

2.1. Approach

X-ray scattering area detector images

may have numerous regions of missing

or untrustworthy data, which are

masked for further analysis (white

regions in Fig. 1, left). A straightforward

method to inpainting is to interpolate

across gaps in the data. However, such

methods yield poor results when

applied to masked scattering images

(Fig. 1, top). The gaps in scattering

images can be quite large and naive

interpolation cannot recover important

features that have been truncated or

entirely lost. Moreover, such methods

ignore the structure inherent to the

scattering image. For instance, scat-

tering images have a well defined origin,

with a great number of image features

being coupled to this origin (e.g. rings

arc around the origin). We also note

that the computational performance of

traditional algorithms on scattering data

is quite poor. Because of the large size of scattering images

(e.g. megapixels) and the wide gaps of masked regions,

inpainting algorithms execute rather slowly. (In fact, for the

example in Fig. 1, the overall image quality is reduced because

the image needed to be downsampled in order for the algo-

rithm to complete in a reasonable time.) Although more

advanced algorithms can improve the inpainting quality, by

ignoring the structure of scattering data, they inevitably yield a

reconstruction that is not physically meaningful.

Here, we present a ‘physics-aware’ image-healing algo-

rithm, which exploits the properties of scattering datasets to

reconstruct in a physically sound manner. For instance, rings

of scattering intensity can be analyzed to estimate their

symmetry and this knowledge can be used to copy data from a

measured part of the image into a masked region in a way that

respects the measured symmetry. Our method (Fig. 1) out-

performs existing algorithms when applied to X-ray scattering

data, as it is able to fill image gaps in a way that maintains

image continuity and – more importantly – respects the

structure of the sample. Because the reconstruction is based

on an estimated structure for reciprocal space, the image can

moreover be extended even beyond the borders of the original

detector image.

Because X-ray scattering data can be highly complex, with

scattering contributions from multiple sources, we developed a

pipeline (supporting Fig. S2) that first analyzes the overall

structure in the image, in order to estimate what kinds of

features are present (sharp peaks, diffuse background etc.).

Subsequently, these specific features are analyzed in turn,

fitting each component in order to yield estimates for these

components into the masked regions. Over the course of this

analysis, our pipeline incidentally computes a variety of

extremely useful metrics regarding the structure in the image.
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Figure 1
X-ray scattering area detector images include numerous regions of missing or untrustworthy data,
which must be masked (left image, white regions). A simple inpainting algorithm (from the scikit-
image library) fills gaps using interpolation (upper image). This yields poor results because the
structure inherent to the scattering data is ignored. We present an algorithm that exploits symmetry
analysis to heal images in a ‘physics-aware’ mode (bottom image). By exploiting the symmetry of
scattering data, the filled regions connect correctly with the measured data. This algorithm can
moreover be used to ‘extend’ the image well beyond the borders of the original detector (bottom
right). This highlights the overall structure and symmetry of the original data.



Even if the healed image itself is not desired, these analysis

results provide a useful fingerprint of the scattering data.

In this work, we assume images exhibit point symmetry,

Iðþqx;þqyÞ ¼ Ið�qx;�qyÞ. Reciprocal space is centrosym-

metric and thus in the small-angle limit the detector image

(which is a cut through the three-dimensional reciprocal

space) will exhibit point symmetry. Many wide-angle scat-

tering patterns will also exhibit point symmetry; e.g. for

powder-like samples, or where the material’s symmetry axes

are appropriately aligned with the experimental geometry. In

general, however, wide-angle scattering images need not

exhibit point symmetry, because of the curvature of the Ewald

sphere (Breiby et al., 2008; Baker et al., 2010).

We implemented our workflow in the Python programming

language, taking advantage of existing Python libraries for

efficient numerical computations [numpy (Oliphant, 2007)],

fitting (scipy and lmfit), image analysis

[scikit-image (van der Walt et al., 2014)]

and plotting [matplotlib (Hunter, 2007)].

To test our method, we use both simu-

lated and experimental data. The simu-

lated data (Yager et al., 2017) allow us to

systematically vary image features in

order to test hypotheses and optimize

our workflow; the experimental data

provide a rigorous test of the validity of

our approach even on the messy,

inconsistent and heterogeneous data

encountered at a modern synchrotron

beamline. Simulated images were

generated using an ad hoc approach;

that is, summing together computed

contributions for various features typi-

cally seen in scattering images (isotropic

rings, diffuse halos, peaks organized

along rings or forming a well defined

lattice etc.).

The input to our software is the

detector image, the corresponding mask

and the beam center position. The

workflow outputs the image with

masked regions filled-in and (option-

ally) an extended version of the image

going beyond the original detector

boundary. The input mask can be

minimal (e.g. only the intermodule

gaps), or can include untrustworthy

parts of the image (bad pixels, parasitic

streaks etc.). In this sense, our algorithm

acts as both a gap-filling method and a

defect-removal method.

2.2. Structural identification

The starting point for healing an X-

ray scattering image is to identify the

types of structures that appear in the

image. We differentiate between diffuse and broad scattering

patterns (which we can label as the ‘background’) and more

sharp and local patterns, including most peaks and rings

(which we can analogously refer to as ‘foreground’ features).

Both diffuse and sharp features can be either isotropic or

anisotropic; i.e. uniform along the azimuthal angular direction

(�), or angularly structured. We thus classify each input image

into one of four possible categories (Fig. 2b): purely isotropic

patterns, images with isotropic background but anisotropic

peaks overlaid, anisotropic patterns with purely diffuse

features, or complex images containing both a structured

background and structured sharp features.

Fig. 2(a) shows the analysis steps used to quantify image

structures. For each q value in the image, we extract the

intensity along the azimuthal angular direction, Ið�Þ. From

each of these curves, we compute the overall standard devia-
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Figure 2
(a) Method to quantify structural features. For each q value, the intensity along the angular
direction, Ið�Þ, can be analyzed. The standard deviation of this entire curve (��) can be compared
with the average of the ‘local’ standard deviations along this curve (h�loci). The ratio of these
quantities provides a measure of whether Ið�Þ is structured: one expects h�loci=�� � 1 for an
isotropic curve and h�loci=�� < 1 for an anisotropic curve. The histograms (right) of �� and h�loci=��
(accumulated across all q) provide a signature of the overall structure in the image. (b) Method to
classify images. When the h�loci=�� histogram is peaked near 1.0, the background can be inferred to
be isotropic. When the �� histogram is skewed (relative to the h�loci=�� histogram), one can infer
the presence of sharp anisotropic peaks in the data.



tion of the curve, ��, as well as a series of local standard

deviations, �loc (we empirically select a binning width of 7.5�).

We then average these local standard deviations to obtain

h�loci. Intuitively, if a curve is uniform (isotropic), then the

local and overall standard deviations will be similar. Any

discrepancy between these values suggests that the curve is

locally smoother than it is overall; h�loci=�� < 1 implies it is

structured (anisotropic at that q). We empirically select a

threshold value of 0.8 to differentiate between regions along q

where the scattering pattern is isotropic versus anisotropic.

Thus, regions where h�loci=�� < 0:8 can be identified as

anisotropic and flagged for subsequent symmetry analysis. By

using a ratio of variances (rather than absolute variances), we

normalize against the enormous variability observed among

different detector images. This procedure also normalizes

against the non-uniform sampling across the image; different q

regions have both different intensities and different numbers

of available pixels.

The calculation of these standard deviations can be pooled

to yield a signature of the overall structure in the image (Fig.

2b). In particular, we generate histograms of both �� and

h�loci=��. For automated analysis of these histograms, we fit

them to a Poisson distribution:

f ðkÞ ¼
�k expð�kÞ

k!
ð1Þ

where f is frequency, k is the bin index for the histogram

variable (�� or h�loci=��) and � is a fit parameter, which we use

to quantify the center of the distribution (the Poisson �
provides a better estimate than the mean because the distri-

butions can be highly skewed). We empirically select a histo-

gram with 30 bins, spanning from the minimum to the

maximum of the distribution. Fitting using the bin index

inherently normalizes the distributions to a common (albeit

arbitrary) scale; we convert the computed � values back to the

corresponding histogram variable (and denote them as �� and

�loc=�).

When f ðh�loci=��Þ is peaked near 1.0, we can infer that the

majority of the image is angularly unstructured. Thus, when

�loc=�> 0:8, we conclude that the background is isotropic. If

the background is isotropic, we identify the existence of peaks

by inspecting f ð��Þ. If there are no anisotropic peaks, then

f ð��Þ resembles a balanced normal distribution and �� is close

to the center of the distribution span. On the other hand, if

anisotropic peaks are present in the data, this will add larger

values of �� to the distribution, which will create a ‘long tail’ in

the distribution. This will move �� towards the low end of the

distribution (relative to the overall span of the distribution).

We consider the relative position of the distribution’s center,

�rel ¼ ½�� �minð��Þ�=½maxð��Þ �minð��Þ�; our empirically

developed criterion is that when �rel < 0:13, we conclude that

anisotropic peaks are superimposed on the isotropic back-

ground.

If the background has been identified as anisotropic, the

interpretation of f ð��Þ is different. Owing to the anisotropy

over large q-spans, f ð��Þ will be highly skewed, with a

substantial ‘long tail,’ and a correspondingly small �rel. We

thus identify purely diffuse scattering patterns as when

�loc=� < 0:8 and �rel < 0:13. Conversely, the appearance of

sharp, anisotropic peaks superimposed on such data will

increase the histogram bins at large �� and thereby tend to

shift the center of the distribution to larger values (i.e. �rel will

increase). Thus, we can identify complex scattering patterns

(with anisotropic diffuse and localized features) as when

�loc=� < 0:8 and �rel> 0:13.

Overall, these simple statistical metrics provide a robust

way to estimate the overall character of the scattering pattern

(supporting Fig. S3). These metrics are intrinsically useful as a

way to assess a scattering image automatically (to identify

anisotropy or the appearance of peaks); we also exploit the

metrics in this work to categorize images into the appropriate

branch of the healing workflow (supporting Fig. S2).

2.3. Healing isotropic data

The simplest data to consider are those that are essentially

isotropic across the entire measured q-range. In such a case,

the one-dimensional circularly averaged curve (computed by

excluding masked pixels) yields a robust estimate of the

scattering intensity throughout the entire image. This case by

itself is not particularly useful, since the two-dimensional

image does not contain any information beyond that captured

in the one-dimensional curve. Nevertheless, this operation is a

useful tool as part of our complete workflow. In particular,

image regions found to be purely isotropic, or that cannot be

healed with any other method, can be filled with the one-

dimensional curve.

2.4. Healing ordered patterns

A common type of X-ray scattering image is that where the

background is smooth and isotropic, but where structural

features (peaks, rings etc.) are not isotropic. Since our method

assumes point symmetry, we can first fill image regions

assuming twofold symmetry. That is, we can copy data from

Iðq; �Þ to any gap located at Iðq; � + 180�). This will, of course,

not fill all the image gaps. The underlying physics of X-ray

scattering causes the majority of structured, anisotropic

patterns to exhibit some form of well defined symmetry. In

particular, distinct peaks or textured rings arise from scat-

tering from well defined local order (a nanoscale packing

motif for SAXS, or a molecular/atomic unit cell for WAXS).

The symmetry of this local order is reproduced in the resulting

scattering pattern. Even in cases where a scattering ring

appears nearly isotropic, the seemingly random fluctuations in

the ring are in fact angularly correlated, as they arise from a

large population of randomly oriented grains, each exhibiting

a well defined unit cell (Lehmkühler et al., 2014; Ingham, 2014;

Yager & Majewski, 2014). We exploit this well known char-

acteristic of scattering patterns to fill image gaps.

As shown in Fig. 3, we simplify this analysis by remeshing

the data from the usual Iðqx; qyÞ image into an Iðq; �Þ repre-

sentation. Using the previously described statistical metrics

(cf. Fig. 2a), we identify the q-ranges where anisotropic peaks

are present (supporting Fig. S4). For each peak, we measure
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the angular symmetry. A variety of methods can be used to

assess this symmetry, including a Fourier or spherical

harmonic decomposition, or angular correlation methods

(Altarelli et al., 2010; Kurta et al., 2013; Lehmkühler et al.,

2014; Mendez et al., 2016). Here, we use a brute-force

comparison method, since it is robust, involves very few

assumptions and is easily generalizable to assessing other data

features. The method (Fig. 3b) consists of taking the experi-

mental data (black) and comparing them with a variety of

models (green) constructed by shifting and averaging the

experimental data following different symmetry assumptions.

Since we assume point symmetry, we only evaluate even

symmetries (2, 4, 6, 8, 10, . . . ). The error between the

experimental and candidate n-fold model (residuals shown

above each comparison) provides a measure of whether the

given model is valid. We note that the error will always be

smaller for lower symmetry (especially since, e.g., any sixfold

symmetric pattern is of course twofold symmetric), whereas

we wish to identify the highest symmetry that is consistent

with the data. As such, we apply an additional bias to favor

cases where there is more overlap in generating the model. In

particular, we select the smallest � defined as:

� ¼

P
jIð�Þ � Imodelð�Þj

2

N�

ð2� overlapÞbias
ð2Þ

where N� is the number of experimental points [in Ið�Þ]. The

‘overlap’ parameter is the relative amount of overlapped

experimental data used to generate the model (i.e. the number

of points within an n-fold span that were averaged, divided by

the width of the span). This parameter takes on a value

between 0 and 1, with overlap ¼ 0 occurring when the n-fold

copy does not result in any averaging of different parts of the

curve (data from one span are copied into gaps in the other

spans), while overlap ¼ 1 occurs when averaging occurs over

the entire span (no gaps). The ð2� overlapÞ term thus biases

towards higher symmetries (which involve more overlap

copying). The ‘bias’ exponent controls the relative weighting

of this effect; we select bias ¼ 4 empirically. This regulariza-

tion term can be fine-tuned for specific datasets. For instance,

extremely noisy data will increase the

residuals contribution, in which case a

larger bias may be necessary in order to

correctly identify the highest valid

symmetry.

Once the symmetry of a given q-

range is determined, it can be healed by

simply copying the two-dimensional

data in Iðq; �Þ following this computed

symmetry for shifting and averaging. As

always in our algorithm, we favor

experimental data wherever possible. In

other words, the symmetry-averaged

data are only used to fill masked gaps.

Any gaps remaining after this operation

is complete are, as always, filled with the

one-dimensional circularly averaged

curve. The data can then be remeshed

back into an Iðqx; qyÞ image. As can be

seen, this relatively simple sequence of

operations succeeds in filling the image

gaps in a visually smooth and physically

correct manner.

2.5. Healing diffuse patterns

Poorly ordered materials that never-

theless exhibit some kind of preferred

packing motif give rise to broad and

diffuse rings/halos of scattering inten-

sity. For instance, amorphous polymers

will exhibit a WAXS halo, nanoparticle

packing will give rise to a SAXS ring

and very small crystalline domains will

generate very broad diffraction peaks.

Orientation of semi-ordered materials

(due to shear, stretching, field alignment

etc.) leads to diffuse scattering that is
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Figure 3
(a) Anisotropic peaks are healed using symmetry analysis. The Iðqx; qyÞ image is remeshed into a
Iðq; �Þ representation. Each peak is analyzed in turn to determine its symmetry. Based on the
calculated symmetry, the experimental data for this region are copied repeatedly into gaps (with
shifts along � consistent with the determined symmetry). Any remaining gaps in the isotropic
background are filled using the one-dimensional curve (circular average). (b) The symmetry of an
incomplete Ið�Þ curve is assessed by calculating the residuals between the experimental data and
various model curves (3 examples are shown). The model curves are generated by copying and
averaging the curve with a shift determined by the symmetry.



angularly structured. Our analysis

pipeline (cf. supporting Fig. S2) first

identifies whether such diffuse aniso-

tropic features are present, and if so,

then applies an inpainting method

tuned to these kinds of structures.

Diffuse anisotropic scattering patterns

can again be healed using symmetry

analysis (Fig. 4), with the added

complication that the breadth of diffuse

scattering increases the likelihood of

gaps remaining even after symmetry

averaging.

In healing diffuse scattering patterns,

we again first identify q-regions exhi-

biting anisotropy, using the previously

described statistical measure. The

symmetry of these regions is computed

as described earlier: the experimental

data are compared with candidate models for even symme-

tries. By copying and averaging the Iðq; �Þ data according to

the computed symmetry, we build an n-fold model for the

data. This model fills regions using available experimental

data, averaging where data from multiple parts of the original

image are available. Because diffuse scattering is, by defini-

tion, spread over a very wide q-space, it is likely that gaps

remain even after this averaging operation. Given the breadth

of the features relative to the gaps, relatively simple and

generic interpolate can be used to fill the remaining gaps. In

Fig. 4, we use an iterative local mean convolution filter, which

progressively extends the image into gaps, while also

smoothing the image. More sophisticated interpolation (e.g.

two-dimensional polynomial), intensity diffusion, or

inpainting methods could be used at this stage, at a cost in

execution time.

The filled n-fold model can then be copied throughout the

image (filling, as always, the isotropic regions with the circular

average). This operation yields a completely healed image that

respects both the symmetry of the diffuse scattering and the

local continuity of the image. We note that although using a

simple interpolation method can give rise to artifacts, the scale

of these errors is small compared to the overall scattering.

2.6. Healing complex patterns

The most general case in X-ray scattering is a complex

pattern exhibiting structured local features (peaks, textured

rings etc.) and anisotropic diffuse scattering. The symmetry

and orientation of these patterns need not coincide. For

instance, a structured background can arise due to experi-

mental geometry (sample cell window shadowing etc.) unre-

lated to sample alignment. Structural scattering from distinct

coexisting phases exhibiting different symmetry and alignment

behavior is also possible.

Our strategy in this case is to separate the experimental

scattering intensity into two components (sharp and diffuse)

and heal these components separately using the previously

described methods (Fig. 5). In this case, we cannot simply

identify the q-regions that exhibit sharp peaks, but must

instead construct a two-dimensional peak mask that localizes

peaks in both q and �. To do this, we first generate an estimate

of the background scattering. We use singular value decom-

position (SVD), which conceptually represents the input

image as a linear combination of basis terms (Golub &

Reinsch, 1970). While the full input image can be recon-

structed by combining all the singular values, we can inten-

tionally reconstruct a low-fidelity image using a selected

subset of the singular values. By using only the low-rank

components (we select only the first two), the reconstruction is

intentionally low resolution, reproducing the broad and

diffuse features while omitting sharp and local structures.

While this provides an estimate of the background scattering,

the low-rank matrix contains artifacts arising from the

decomposition. In principle, one can subtract this background

estimate from the original data and identify peaks as regions

of significant intensity variation. However, because noise

scales with intensity (� � I1=2), regions of the image with

substantial diffuse intensity may exhibit large local variance

(even after background subtraction). We thus generate a ‘total

variation’ map, by dividing the original diffraction pattern by

the low-rank image (rather than subtracting); this technique is

extremely useful for highlighting sharp local intensity varia-

tions (Vese & Osher, 2003). The peak mask is then generated

by thresholding this variation image.

Once the peak mask is generated, the background and

foreground components can be healed as previously

described. The background is healed using a mask that is

the union of the original mask and the peak mask. Aniso-

tropic background regions are identified and an n-fold

symmetry model computed. This model is filled via inter-

polation and copied to fill the background component. A

peak-only image is then generated by subtracting this back-

ground component from the original image. The peak

component is healed using symmetry analysis to copy and

average the experimental peak intensity into image gaps.
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Figure 4
Anisotropic diffuse scattering is healed by combining symmetry analysis with interpolation. The
Iðqx; qyÞ image is remeshed into a Iðq; �Þ representation. Anisotropic regions are analyzed in turn to
determine symmetry; experimental data are averaged into an n-fold model. Remaining gaps are
filled using interpolation. The filled symmetric model is then copied repeatedly (according to the
computed symmetry) to fill the image.



Finally, the two components are added together and remeshed

back into a Iðqx; qyÞ image.

2.7. Image extension

Because the described image-healing method analyzes

image structure, it can be used to reconstruct even outside the

original image boundaries (cf. Fig. 1). Throughout the work-

flow, images are healed in an Iðq; �Þ map, which allows

features (peaks, diffuse scattering) to be healed across the full

� range. One can thus remesh to Iðqx; qyÞ over an extended

window to reconstruct the full 360� of each scattering arc.

Moreover, we can also attempt to fill in the lingering gaps at

low-q and high-q by fitting the available data to reasonable

models (supporting Fig. S5). It is important to note that this

aggressive extension into regions outside of that directly

measured experimentally is inherently error prone and model

dependent. Thus, data reconstructed in this manner should not

generally be used as the basis for fitting to extract physical

parameters. Any such analysis would be highly dependent on

the assumptions that have been built into the correction

pipeline. Nevertheless, generating these extended images is

useful to emphasize the overall structure of the scattering

pattern visually and as an input to analysis methods that

cannot tolerate any masking effects, and where model-

dependent artifacts are preferable to artifacts resulting from

image discontinuities.

3. Discussion

Our image correction method is closely aligned with the

structures and features typically seen in X-ray scattering data.

While this reduces the generality of the method, it greatly

improves the quality of the healing. Our method is ‘physics-

aware’ in the sense that the known

physics of the X-ray scattering process,

the traditional experimental geometry

and the typical experimentally observed

features, have all been encoded into the

assumptions and processing steps of the

method. The method is implemented as

a workflow of modules, each of which is

useful on its own when tackling the

analysis of X-ray scattering data

(supporting Fig. S2). The method first

involves the high-level analysis of the

image, identifying anisotropy and local

versus diffuse structures; this classifica-

tion is then used to decide what

sequence of healing operations is

required. Where necessary, the image is

split into diffuse (background) and

sharp (e.g. peaks) components. Sharp

peaks are assumed to lie along rings of

constant q and exhibit a well defined

even angular symmetry. Once symmetry

is assessed, healed amounts to copying

(and, where possible, averaging)

existing data into gaps according to the

symmetry. Anisotropic diffuse scat-

tering can be similarly healed, with

added low-pass filtering and interpola-

tion to fill small gaps. Overall, this

relatively simple workflow allows a wide

variety of experimentally interesting

images to be healed.

Fig. 6 shows example experimental

X-ray scattering data healed using this

method (including nanoparticle super-

lattices self-assembled using DNA

origami (Tian et al., 2016), a hexagonal

array of nanopores in silicon fabrication

using electron-beam lithography and a

liquid-crystalline phase (Yager &
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Figure 5
Complex scattering patterns are healed by first separating the scattering into ‘background’ and
‘sharp peak’ components. These two components are healed as demonstrated in previous figures.
The image is separated into components by assessing the local variation in the image, in order to
identify localized regions of high variance, from which a ‘peak mask’ is constructed.



Majewski, 2014). As can be seen, the healing is both visually

convincing and physically meaningful (additional examples

shown in supporting Fig. S6). As a further test of the method,

we can intentionally remove valid portions of the data and

compare these masked regions to the healed image. Fig. 6 b

(and supporting Fig. S6a) shows an example (dashed boxes

denote regions intentionally masked), where the reconstruc-

tion successfully fills the excluded regions.

This image healing can be used both to fill unavoidable gaps

(intermodule gaps, beamstop etc.) and to remove defects.

Examples are shown in Fig. 6(a,c,d) where streaks (arising

from parasitic slit scattering or from sample holder sidewalls)

are added to the mask and thereby eliminated. Individual

erroneous pixels (either damaged detector pixels, or spurious

counts) can be added to the mask and similarly healed

(supporting Fig. S7). Our method is in fact quite robust to the

kinds of noise encountered in X-ray scattering area images

(Poisson/shot noise, salt and pepper noise etc.). The healed

images are easier for a human experimenter to visually assess,

as image defects (including gaps) are removed, thereby

highlighting the meaningful structure of the data. Moreover,

the healed images are ideally suited as inputs to image analysis

methods (which may not be able to handle masks) and

machine learning methods (where any masking leads to a

deterioration in performance).

The image-healing workflow inherently involves a variety of

analysis modules that produce useful results. Our method

provides statistical measures of the global structure in a

scattering image, allowing rapid classification of images (e.g.

structured versus purely diffuse scattering). We also demon-

strate local structure identification, identifying peaks in the

one-dimensional circularly averaged curve, flagging these

peaks as isotropic versus anisotropic, or generating a two-

dimensional mask of all peaks throughout the image. For

identified peaks, we demonstrate the estimation of symmetry.

We similarly demonstrate the recognition of anisotropic

diffuse features and symmetry assignments. Finally, the fitting

of low-q and high-q regions (in order to extend/complete the

image) provides useful information about the functional form

of the scattering in these regimes. These analysis results are

useful to experimenters when trying to understand their X-ray

scattering data. Moreover, taken together they provide a

unique and physically grounded signature for any particular

scattering pattern. The concatenation of these results is thus

an ideal input to statistical machine learning methods, such as

support vector machines (SVM). Thus, our pipeline can be

viewed as a physics-based feature extractor, pre-processing a

scattering image into a concise descriptor that can be used for

machine learning.

Our healing workflow is not without limitations. The

underlying remeshing makes the method sensitive to an

arbitrarily selected � resolution (supporting Fig. S8). If the �
binning is too coarse, the healed image will exhibit significant

artifacts (especially at high q); if the binning is too fine, the

computation time will be increased unnecessarily. Our method

relies on several adjustable parameters, which we tuned to

empirically yield reasonable results across a wide range of

images. While these provide user-adjustable parameters to

modulate the output, automated healing may fail for images

very different from our test conditions. A core strength and

weakness of our approach is its physics-awareness. By expli-

citly encoding many assumptions into the algorithm, we

leverage our domain knowledge and thereby construct an

algorithm that achieves excellent quality healing, far in excess

of more general inpainting methods (cf. Fig. 1). However, by

being closely tied to particular assumptions (point symmetry,

well defined symmetry for rings/peaksetc.), our method will

fail on any data outside of these bounds.

There are numerous avenues for future improvements of

the presented method. The most immediate is to remove the

assumption of point symmetry, and thereby allow the method

to be applied to WAXS and crystallographic images. In these

cases, a more generalized symmetry analysis could be
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Figure 6
Examples of image healing applied to experimental data (left, original
data; center, masking; right, healed image). (a), (b) Nanoparticle
superlattices self-assembled using DNA nanostructures. In (b), valid
areas of the image (dashed boxes) are intentionally added to the mask
(and thereby healed), to demonstrate the capability of the method. (c)
Hexagonal arrangement of cylindrical nanopores etched into silicon. (d)
A liquid-crystalline small-molecule forming a weakly aligned poly grain
phase. Both missing data regions and corrupted data (e.g. streaks at small
angle) can be effectively healed.



performed, which identifies point symmetry (and n-fold

symmetry) where it exists, but is also able to identify distorted

and non-concentric rings, two-dimensional arrays of peak and

the correlated peak positions arising from the intersection of

the Ewald sphere with a reciprocal-lattice. In these cases, one

can take advantage of known crystallographic symmetry, and

the known experimental Ewald curvature, to identify peak

patterns. A yet more challenging case is to apply these

methods in the context of a grazing-incidence (GI) experiment

(GISAXS/GIWAXS), where one must also contend with

refraction distortion (Busch et al., 2006; Breiby et al., 2008; Lu

et al., 2013). Another possibility is to exploit the image-healing

algorithm as a denoising method. In the presented imple-

mentation, we favored wherever possible the experimental

data, only filling gaps. However, the underlying models that

are computed for the background scattering (effectively low-

pass filtered) and structural peaks (averaged over all available

symmetry repetitions), have low noise compared to the input

data. Thus, one could exploit the workflow to generate a low-

noise estimate of data, without the increase in peak width that

accompanies conventional smoothing approaches.

Finally, we wish to emphasize several cautionary notes. The

availability of image correction methods should never be

considered a substitute for proper design of experiment and

analysis. It is obvious that it is far preferable to avoid the

appearance of image gaps in the raw experimental data as

much as possible. In this sense, all best practices for data

collection should be followed as much as possible. For

instance, the obstruction from windows or samples cells should

be minimized; the beamstop should be made as small and thin

as reasonable; for multi-module detectors featuring image

gaps, multiple acquisitions with detector offsets should be used

to fill gaps; and detector motion should be used to measure (in

a tiling mode) as much of the relevant reciprocal space as

possible. While the methods presented here are powerful with

respect to visualization and pre-processing, the corrected or

‘healed’ images should never be considered as (nor repre-

sented to others as) the actual experimental measurement.

The data added to the masked parts of the image are inferred

in a way that is highly dependent on the assumptions built into

the algorithm. Such reconstructed data can be used as a guide,

but should not generally be used for quantitative analysis or in

the extraction of physical parameters from the data. Data

analysis and fitting pipelines should, wherever possible,

operate in a mask-aware mode that ignores empty regions

rather than analyzing inpainted data. Importantly, the healed

images should be clearly identified as having been heavily

modified, and the associated mask (which differentiates

regions from the original image versus inpainted) should be

paired with such images. In this regard, accurate metadata are

crucial to the use of this and other forms of complicated image

correction. The importance of metadata for scientific datasets

is being recognized, with several efforts underway to provide

guidelines, software and file formats appropriate for X-ray

scattering and diffraction data (Könnecke, 2006; Könnecke et

al., 2015; Kroon-Batenburg et al., 2017). Both raw and

corrected images should be shared with the community, with

metadata clearly differentiating between these data types and

capturing the workflow that was used for image correction.

4. Conclusion

Inpainting algorithms have proven useful in a variety of

domains to restore incomplete images. X-ray scattering data

can include a variety of defects and gaps that are distracting to

experimenters and problematic in subsequent analysis. Yet,

conventional inpainting algorithms perform very poorly on

scattering data, as they do not automatically recognize the

kinds of features that appear frequently in the data. We have

presented a new physics-aware workflow for correcting and

‘healing’ scattering images, which exploits the known structure

of these datasets. In particular, our method differentiates

between local and diffuse patterns, and reconstructs into

missing parts of the data by assuming the scattering pattern

exhibits a recognizable symmetry (isotropic, point symmetry,

n-fold etc.). This method allows us to convincingly heal a wide

variety of experimentally observed scattering patterns,

including isotropic images, diffuse scattering, the rings or

peaks arising from structural order. This image correction

method can be useful for data visualization and as a pre-

processing step for subsequent analysis. Existing software

packages targetted towards two-dimensional X-ray scattering

images enable analysis in a mask-aware manner, by ignoring

data in the masked regions (Yang, 2013; Jiang, 2015;

Hammersley, 2016). However, existing software does not allow

estimation of data in missing regions. Our image-healing

method can be useful to generate datasets for use in software

and with algorithms that are not mask aware. In particular,

these healed images are useful regularized inputs for statistical

analysis and machine-learning methods.
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Criminisi, A., Pérez, P. & Toyama, K. (2004). IEEE Trans. Image

Process. 13, 1200–1212.
Cristofolini, L. (2014). Curr. Opin. Colloid Interface Sci. 19, 228–241.
Dubcek, P. (2005). Vacuum, 80, 92–97.
Fratzl, P. (2003). J. Appl. Cryst. 36, 397–404.
Giannakis, D., Schwander, P. & Ourmazd, A. (2012). Opt. Express, 20,

12799–12826.
Golub, G. H. & Reinsch, C. (1970). Numer. Math. 14, 403–420.
Hammersley, A. P. (2016). J. Appl. Cryst. 49, 646–652.
Hexemer, A. & Müller-Buschbaum, P. (2015). IUCrJ, 2, 106–125.
Higgins, J. S. & Stein, R. S. (1978). J. Appl. Cryst. 11, 346–375.
Huang, H., Yoo, S., Kaznatcheev, K., Yager, K. G., Lu, F., Yu, D.,

Gang, O., Fluerasu, A. & Qin, H. (2014). Proceedings of the 29th
Annual ACM Symposium on Applied Computing, pp. 85–90. New
York: ACM.

Hunter, J. D. (2007). Comput. Sci. Eng. 9, 90–95.
Ingham, B. (2014). J. Appl. Cryst. 47, 166–172.
Ingham, B. (2015). Crystallogr. Rev. 21, 229–303.
Jacques, D. A. & Trewhella, J. (2010). Protein Sci. 19, 642–657.
Jiang, Z. (2015). J. Appl. Cryst. 48, 917–926.
Kiapour, M., Yager, K., Berg, A. C. & Berg, T. L. (2014). IEEE Winter

Conference on Applications of Computer Vision, pp. 933–940. New
York: IEEE.

Könnecke, M. (2006). Phys. B Condens. Matter, 385–386, 1343–1345.
Könnecke, M., Akeroyd, F. A., Bernstein, H. J., Brewster, A. S.,

Campbell, S. I., Clausen, B., Cottrell, S., Hoffmann, J. U., Jemian, P.
R., Männicke, D., Osborn, R., Peterson, P. F., Richter, T., Suzuki, J.,
Watts, B., Wintersberger, E. & Wuttke, J. (2015). J. Appl. Cryst. 48,
301–305.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). NIPS 2012:
Neural Information Processing Systems, Lake Tahoe, Nevada. Red
Hook, NY: Curran Associates.

Kroon-Batenburg, L. M. J., Helliwell, J. R., McMahon, B. &
Terwilliger, T. C. (2017). IUCrJ, 4, 87–99.

Kurta, R. P., Dronyak, R., Altarelli, M., Weckert, E. & Vartanyants, I.
A. (2013). New J. Phys. 15, 013059.

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Proc. IEEE, 86,
2278–2324.
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